
OSCON: AN OPERATING SYSTEM CONSULTANT∗

Louise Guthrie, Paul Mc Kevitt and Yorick Wilks

Computing Research Laboratory
Dept. 3CRL, Box 30001,

New Mexico State University
Las Cruces, NM 88003-0001, USA.

CSNET: paul@nmsu.edu [505-646-5109]

ABSTRACT

One of the most useful applications of natural language
interface technology is the area of computer consultants.
Computer consultants are programs which a user can ask
for help about some topic. One of the easiest ways to
interact with computer consultants is by typed English.
These programs can give answers in English too. We hav e
developed a computer consultant called OSCON (Operat-
ing System CONsultant) which gives English answers to
English queries about computer operating systems.The
program currently answers over 1000 queries for over 40
commands from the UNIX† and MS-DOS† operating sys-
tems. OSCON answers a wide variation of queries that
users may wish to ask.OSCON is intended to be a con-
sultant for various types of users who may ask vague and
detailed queries. The OSCON system is one of the most
advanced natural language interfaces for operating system
help available today. OSCON is programmed in Quintus
Prolog and does not take more than 2.5 seconds to answer
a query.

KEYWORDS

Natural language interface’s, Operating Systems, Informa-
tion retrieval.

INTRODUCTION

This paper describes the OSCON (Operating System
CONsultant) program (OSCON[1.2]) and its capabilities.
OSCON is a natural language interface which answers
English queries about computer Operating Systems (see
Mc Kevitt, 1986; Mc Kevitt, 1988; Mc Kevitt & Wilks,
1987). OSCONallows the user to enter English queries
and then answers them in English.The program is written
in Quintus Prolog, runs on a Sun-3/ME-4 computer, and
the maximum time taken to answer a given query is 2.5
seconds. OSCON answers over 1000 queries for over 40
commands from the UNIX and MS-DOS Operating Sys-
tems. Thereare four basic types of query a user can ask
and the system handles all of these. OSCON will also
answer queries about options on UNIX commands and

∗ This research is currently funded by U S WESTAdvanced Technologies, Denver, Colorado, under their Sponsored
Research Program.

†UNIX is a trademark of AT&T Bell Laboratories.

†MS-DOS is a trademark of Microsoft Corporation.

complex queries about command compositions. The sys-
tem is intended to be used by varying types of users with
different levels of expertise. Thearchitecture of OSCON
is modular so that it is easily updated and can be easily
mapped over to other domains.

QUERY COVERAGE OF OSCON

The problem with building effective natural language
interfaces is that there are many ways of asking English
queries. The system must attempt to capture all the differ-
ent possibilities. One way to do this is to capture the basic
types of queries that people ask. This gives the system the
power of answering a large number of queries when it
caters for each type.

There are four basic types of query that people ask about
Operating Systems. These are: (1) what-is-attribute of
mentioned command (e.g. ‘‘What does rm do?’’), (2)
what-is mentioned command (e.g. ‘‘What is more?’’), (3)
what-is-command for mentioned effect (e.g. ‘‘How do I
see my file on the printer?’’), and (4) what-is mentioned
concept (e.g. ‘‘What is a file?’’). Thereare three cases of
type (1): (1) what-is-effect (e.g. ‘‘What does rm do?’’), (2)
what-is-syntax (e.g. ‘‘What is the syntax of cp?’’), and (3)
what-is-precondition (e.g. ‘‘What is needed for rm?’’).
Each of these basic query types can also be asked in terms
of options. Examples are, ‘‘What option of ‘ls’ shows the
number of bytes in my files?’’ (what-is-option + men-
tioned command), ‘‘What does ls -l do?’’ (what-is-effect
+ option), ‘‘How do I rename a file without having
reported errors?’’ (what-is-command + option), ‘‘What
are the options on ls?’’ (what-are-options), ‘‘What does
the -i option normally do?’’ (what-is mentioned concept).
Users can also ask queries involving command composi-
tions. An example is, ‘‘How do I list my files and print
them on the printer?’’ This query involves a query about
listing files (what-is-command) and then printing them on
the printer (what-is-command).

The OSCON program currently answers (1) the four basic
query types, (2) queries about options, and (3) command

composition queries for both the UNIX and MS-DOS
Operating Systems. The fact that queries are of a given
type aids in understanding and generating answers to
them. For example, queries of type (1) above will always
include a command name. Therefore, the parser for
OSCON could check for command names and if it found
them, then discover that the query was of type (1). Also,
the generator would generate an answer, in a particular
format, depending on the type of query. Rules of thumb
such as these also speed up the time it takes OSCON to
answer queries. Although one can add such rules of
thumb into the interface it does not reflect a short-cut to
natural language parsing.For example, there is no such
short cut to understanding the query, ‘‘How do I print a
file on the Imagen with no page burst?’’ Understanding
queries is a combination of both (1) filtering the query
type, and then (2) understanding the query. Examples of
queries answered by OSCON[1.2] are shown in Appendix
A (p. 11). These examples are listed by query type.

THE ARCHITECTURE OF OSCON

The architecture of the OSCON system is well defined
and exists as six distinct modules. There are two argu-
ments for modularizing any system: (1) It is much easier
to update the system at any point, and (2) it is easier to
map the system over to another domain. The six modules
in OSCON are as follows: (1) ParseCon: natural language
syntactic grammar parser which detects query-type, (2)
MeanCon: a natural language semantic grammar which
determines query meaning, (3) KnowCon: a knowledge
representation for understanding, (4) DataCon: a knowl-
edge representation for solving, (5) SolveCon: a solver for
resolving query representations against knowledge base
representations, and (6) GenCon: a natural language gen-
erator for generating answers in English.

ParseConconsists of a set of programs which read natural
language input and determine the type of query being
asked by the user. We hav edescribed the four basic types
of query in the ‘‘Query coverage of OSCON’’ section
above. For each type of query there are tests for charac-
teristic ways of asking that query.

MeanCon consists of programs which check queries for
important information. There are predicates which check
for mentioned (1) command names (e.g. ‘‘ls’ ’, ‘ ‘more’’),
(2) command-effect specifications (e.g ‘‘see a file’’), and
(3) concepts (e.g. ‘‘file’ ’, ‘ ‘directory’’). In case (2) there
are specific types of information searched for: (1)verb
specifying action (e.g. ‘‘see’’, ‘ ‘remove’’), (2) object of
action (e.g. ‘‘file’ ’), (3) modifier of object (e.g. ‘‘con-
tents’’), and (4)location of object (e.g. ‘‘screen’’). Mean-
Con also checks for option verbs (e.g ‘‘number’’) and
option verb objects (e.g. ‘‘lines’’). MeanConcontains a
dictionary of English words that define categories such as
‘‘ person’’, ‘ ‘modifier’’, ‘ ‘article’’, ‘ ‘quantifier’’ and
‘‘ prepositions’’.

KnowCon consists of a set of data files to represent the
knowledge about the domain language used for under-
standing English queries. Files contain information about
verbs which categorize types of command or action.

Examples of categories of action are: (1) creating, (2)
screenlisting, (3) printerlisting, (4) sending, (5) transfer-
ring, and (6) removing. KnowCon also contains grammar
rules for Operating System objects like ‘‘date’’, ‘ ‘file’ ’ and
‘‘ directory’’. The grammar rules encode characteristic
ways in which people talk about the objects in English.

DataCon consists of a set of data files defining detailed
information about Operating System commands.This
information is stored for the UNIX and MS-DOS Operat-
ing Systems.The data for UNIX is split among seven
files: (1) command preconditions, (2) command effects,
(3) command syntax, (4) command names, (5) command
precondition options, (6) command effect options, and (7)
command name options.The first four files contain basic
data about commands while the last three contain data for
options. For MS-DOS, data is contained in just four files
which are similar to the first four here.

SolveConis a solver which constructs and matches repre-
sentations of user queries (called Formal Queries) against
DataCon and produces an instantiated Formal Query
which serves as an answer for the query. SolveCon is the
driver of the OSCON program because it contains the
information for mapping English sentences into instanti-
ated answers. It contains a set of complex rules which call
other OSCON modules to determine (1) query type, and
(2) the instantiated Formal Query for that query.

GenCon is the natural language generator for OSCON
and maps instantiatied information from SolveCon into
English answers. Here, there are algorithms for printing
out (1) preconditions, (2) effects, and (3) syntax of com-
mands. Also,there are routines for printing out examples
of the use of commands and command compositions.The
type of query asked by the user determines the informa-
tion mapped to the user.

KNOWLEDGE REPRESENTATION IN OSCON

One of the problems in building natural language inter-
faces is to organize the knowledge of the domain in some
form which will be effective. There are two types of
knowledge stored in OSCON: (1) knowledge about lan-
guage, and (2) knowledge about Operating Systems.

The knowledge about language stored includes words
used to refer to command actions. For example, a user
may use the words ‘‘delete’’, ‘ ‘remove’’ , ‘‘get rid of’’ ,
‘‘ erase’’ and so on to ask a query about deleting files and
directories. These words must be stored under the general
category of delete. Also, there are many ways in which
people ask queries about actions. For example, if you are
asking about copying a file you will probably specify the
file which you wish to copy. If you are asking about ‘‘dis-
playing’’ you will specify what you wish to display and
where you wish to display it. This type of knowledge is
called ‘‘understanding knowledge’’ and is stored within a
module of OSCON called KnowCon.

More detailed knowledge about Operating Systems is con-
tained in a database called DataCon. This type of knowl-
edge includes command preconditions, command effects,
command syntax, and the names of commands.Also,

stored here is (1) knowledge about options for commands,
(2) English descriptions of Operating System concepts
like ‘‘files’’ and ‘‘directories’’, and (3) knowledge about
plans or possible command combinations (e.g. ‘ls’ can
precede ‘lpr’ but the converse is not true).The knowledge
stored here is for the UNIX and MS-DOS Operating Sys-
tems. The distinction between the two types of knowledge
is that one is language oriented and the other is domain
oriented. One type of knowledge is used for understanding
queries and the other for solving queries. This is the prin-
ciple of separation of understanding and solving defined in
Hegner (1988).

Knowledg e for understanding (KnowCon)

There are two types of understanding knowledge stored in
the KnowCon module: (1) data on Operating System
action reference, and (2) data on descriptions of Operating
System objects. The first type of knowledge includes sets
of words or phrases that may refer to some operating sys-
tem action or command. For example, the words, ‘‘print’’,
‘‘ print out’’, and ‘‘get a copy’’ would indicate that the user
was referring to printing something on the printer. Such
words and phrases are stored as being associated with the
general concept of printing. The second type of knowl-
edge is used for defining the ways that users refer to Oper-
ating System objects.For convenience the data has been
split up into two types (a) data on files and directories, and
(b) data on other Operating System objects. In type (a)
there are grammar rules specifying how users refer to files
and directories, and in type (b) there are rules for how
users refer to other Operating System objects.

Referring to actions

In asking queries about Operating Systems users com-
monly use a well defined set of verbs or verb phrases.For
example, if a user wants to know about removing files or
directories he/she will use the following verbs and
phrases: ‘‘delete’’, ‘ ‘remove’’ , ‘‘get rid of’’ , ‘‘erase’’ and
so on. Queries about copying may be referenced by:
‘‘ copy’’, ‘ ‘transfer’’, and ‘‘move’’ . These phrases should
be captured by the OSCON program. Phrase and words
are stored under their categories in the KnowCon module
of the program.

It is possible to divide the set of Operating Systems com-
mands into various categories. We hav e defined three
major command categories and each of these have various
subdivisions. The three categories are ‘‘listing’ ’, ‘ ‘alter-
ing’’ and ‘‘compiling’’ commands. Listing commands are
those which display information about the state of files in
an Operating System. Altering commands are used to alter
the state of files in the system. Compiling commands are
used to compile files in the system rather than dis-
play/alter them.There are two types of listing command,
(1) screenlisting, and (2) printerlisting. Screenlisting com-
mands are those which allow the user to see information
on the screen and printerlisting will do the same for the
printer. There are three subtypes of screenlisting com-
mand, (1) display-file (e.g. ‘‘more’’, ‘ ‘nroff’ ’, ‘ ‘cat’’), (2)
display-file/directory-information (e.g. ‘‘ls’ ’), and (3)

display-system-information (e.g. ‘‘users’’, ‘ ‘who’’, ‘ ‘ps’’,
‘‘ jobs’’). Thereis only one subtype of printerlisting com-
mand (e.g. ‘‘lpr’’, ‘‘runoff∗ ’’ , ‘‘itrof f’ ’).

Altering commands are of three types, (1) creating (e.g.
‘‘ gemacs’’, ‘ ‘vi’ ’, ‘ ‘mkdir’ ’), (2) removing (e.g. ‘‘rm’’,
‘‘ rmdir’’, ‘ ‘kill’ ’), and (3) transferring (e.g. ‘‘mv’ ’, ‘ ‘cp’’).
Each of these can be applied to either files or directories.
A third type of command is compiling commands. These
commands cannot be categorized under altering com-
mands as they are really utilities which do not change files
but use them. An example of such a command is ‘‘run’’.

It is important to point out that certain commands apply to
files which are not directories and others only apply to
files which are directories.For example, ‘‘more’’ can only
be used on files and not directories and ‘‘rmdir’ ’ can only
be used on directories and not files.Such information can
be used to specify the preconditions for commands and
enables the system the capability to detect errors in user
queries and inform the user about such errors.For exam-
ple, if a user asked, ‘‘How do I use ‘‘more’’ to display a
directory?’’ the system could locate that the precondition
for ‘‘more’’ is that it only works over files. Then the sys-
tem could tell the user this information.

The rules listed below are examples of typical action rules
in KnowCon. Rules[1] and [2] show typical verb phras-
ings used to reference the action of screenlisting. Rule [3]
is for printerlisting, and rules [4] and [5] for creating.

[1] screenlist --> [see].
[2] screenlist --> [look, at].
[3] printerlist --> [print].
[4] create --> [edit].
[5] create --> [produce].

Referring to objects

Queries about Operating Systems often include reference
to operating system objects like files and directories. Typi-
cally, users will refer to the object which is operated over
by some command. The phrasing of the English query will
dictate the object present. KnowCon has objects separated
into two categories: (1) file/directory object specifications,
and (2) other Operating System object specifications.

The rules listed below are examples of file/directory object
specifications. Fileobject specifications include grammar
rule definitions for files and directories.The first rule def-
inition below [1] specifies that a file can be mentioned in a
query by the word ‘‘file’ ’ preceded by three modifiers. The
first modifier can be (1) a quantifier (e.g. ‘‘all’ ’, ‘ ‘some
of ’’), and the second (2) a possessive (e.g. ‘‘my’ ’, ‘ ‘our’’).
Thenfilemod can be a modifier of type of file.Examples
are ‘‘mail’ ’, ‘ ‘device’’, ‘ ‘plain’’, ‘ ‘executable’’ and so on.
This grammar rule will capture most of the ways that a
user might refer to a file.

The second rule [2] shows that a directory may have two
modifiers and then the word referring to directory itself.

∗ ‘‘ runoff’ ’ i s a command defined at the Computing Research Labora-
tory to load text formatting packages for word processing a text file.

Rule [3] shows that a file or directory could be in refer-
ence. Thishappens because it is ambiguous as to whether
the intended referent is file or directory. The user, by using
the plural of file may intend directory∗ rather than the plu-
ral for file. Rule [4] defines location to be a triple: (1)
preposition (prep), (2) modifier (mod), and (3) directory
(dir). Phrases like ‘‘..in my directory’’, ‘‘..in our direc-
tory’’, and ‘‘..in the directory’’ w ill match here.There are
more specific definitions of location for where the location
is. Rule [5] is a definition of screen location in terms of
(1) preposition (prep), (2) modifier (mod), and (3) screen-
output (soutput). Preposition and modifier are self
explanatory and output is the location of output. This
could be ‘‘terminal’’ or ‘ ‘screen’’. Rule [6] is the equiv-
alent definition for a printer location.The output specifi-
cation here is for a printer. Then poutput can be (1)
‘‘ printer’’, (2) ‘‘imagen’’ or (3) ‘‘laser writer’’.

[1] file --> mod, mod, filemod, [file].
[2] directory --> mod, mod, [directory].
[3] fileordir --> mod, mod, filemod, [files].
[4] location --> prep, mod, dir.
[5] slocation --> prep, mod, soutput.
[6] plocation --> prep, mod, poutput.

The second type of object definitions include objects other
than those to do with files and directories. Some examples
are shown below. Rule [1] shows the definition of a queue
in terms of (1) a modifier, followed by (2) [printer, queue].
There are definitions of users by rules [2] and [3]. Rules
[4] and [5] define names. The definitions of objects are
simply definitions of the various ways with which users
refer to the objects.

[1] queue --> mod, [printer, queue].
[2] users -->

names, mod, [users], prep, mod, [system].
[3] users --> names, [system, users].
[4] names --> mod, [names, of].
[5] names --> [].

Knowledg e for solving (DataCon)

The knowledge for solving in OSCON consists of files of
data that describe detailed information about Operating
Systems. Thereare four types of knowledge stored here
(1) Basic command representation, (2) Option representa-
tion, (3) Concept representation, and (4) Plan representa-
tion.

Basic command representation

There are basically four types of information
about any command held in the database. These are (1)
Preconditions, (2) Effects or Postconditions, (3) Syntax,
and (4) Command Names. Preconditions are lists of
objects that are necessary for a command to be executed.
Here are some examples of preconditions for commands
from UNIX. Rules [1] and [2] show that ‘‘more’’ and
‘‘ cat’’ hav e the precondition, ‘‘file’ ’. The command,
‘‘ mkdir’’ has the precondition ‘‘directory’’ and ‘‘cp’’ has

∗ A directory is a set of files.

no precondition.

[1] precon(more, [file]).
[2] precon(cat, [file]).
[3] precon(mkdir, [directory]).
[4] precon(cp, []).

Effects, or postconditions, are definitions of the outcome
of commands. The effect is defined by a predicate which
has a name and three arguments. The predicate name is
the action and the arguments are (1) object, (2) object
modifier, and (3) location. The rules below show some
effects for UNIX commands.Rule [1] shows the effect
for the command ‘‘more’’. The object for ‘‘more’’ i s
‘‘ file’’ and its modifier ‘‘contents’’. The location of output
of ‘‘more’’ is the ‘‘screen’’. One case of the ‘‘cat’’ com-
mand [2] has the same effect as ‘‘more’’. The other effect
case of ‘‘cat’’ [3] is defined as concatenate and describes
the concatenation of files together. The command ‘‘ls’’
will either display directory contents [4], or file informa-
tion [5] on the screen. The displaying-information com-
mand ‘‘users’’ w ill display usernames on the screen. Rule
[7] describes the ‘‘gemacs’’ command which creates files,
and rule [8] the ‘‘rm’’ command which deletes them.

[1] comm(more, display(file, contents, screen)).
[2] comm(cat, display(file, contents, screen)).
[3] comm(cat, concat(file1, file2, file3)).
[4] comm(ls, display(directory, contents, screen)).
[5] comm(ls, display(file, info, screen)).
[6] comm(users, display(usernames, @, screen)).
[7] comm(gemacs, create(file, @, loc)).
[8] comm(rm, remove(directory, @, loc)).

The syntax of commands is defined as a structure which
contains the name of some command and then its syntac-
tic definition of use. Shown below are some examples of
the syntax for UNIX commands. The syntax rules are
three place lists containing (1) Command name, (2)
Optionname (filled in from context), and (3) Syntax
description.

[1] syn(more, Optionname, "[more <filename>]").
[2] syn(cat, Optionname, "[cat <filename>]").
[3] syn(ls, Optionname, "[ls <directoryname>]").
[4] syn(users, Optionname, "[users]").
[5] syn(gemacs, Optionname, "[gemacs <filename>]").

Option representation

DataCon also contains information for option specifica-
tions of commands.DataCon has files for (1) Option Pre-
conditions, (2) Option Effects, (3) Option Names. There is
no distinction for option syntax as this is practically the
same for commands with options or not.

Option Preconditions are defined as three place lists with
the (1) Command Name, (2) Option name, and (3) Pre-
condition List. Shown below are a set of options for the
various commands. The Precondition List contains the
objects which must be present for the command to be
executed. Rules [1],[2] and [3] show that each option for
‘‘ cat’’ has ‘‘file’ ’ as precondition. Rules[4] and [5] show

that for one option of ‘‘cp’’ (i) there is no precondition,
and for the other option (r), ‘‘directory’’ is the precondi-
tion. Rules [6] and [7] show the preconditions for ‘‘ls’’.

[1] opprecon(cat, n, [file])
[2] opprecon(cat, s, [file])
[3] opprecon(cat, v, [file])
[4] opprecon(cp, i, [])
[5] opprecon(cp, r, [directory])
[6] opprecon(ls, f, [directory])
[7] opprecon(ls, l, [])

The definition of the Option Effects are also stored as
strings of English words. This is merely a convenience for
generation. The definitions will enable the generator to
give more detail about the specific effect of some option.
Each rule here contains (1) Command Name, (2) Option
Name, and (3) Option Effect with an English description.

[1] opeffect(more,#,
"set the window size to # lines").

[2] opeffect(more,c,
"display each page after cleaning screen").

[3] opeffect(more,d,
"prompt to hit space to continue at each screen").

[4] opeffect(cp,i,
"prompt file name when overwriting").

[5] opeffect(cp,p,
"preserve the modification information from
the source").

[6] opeffect(cp,r,
"copy each subtree rooted at that directory").

Option Name definitions are similar in spirit to the Com-
mand Effect specifications defined in the ‘‘Basic com-
mand representation’’ section above. Howev er, the defini-
tions here are for specific options. The option definitions
have three arguments: (1) Option Effect defined as an
action(object) specification, (2) the Command Name, and
(3) Option Name. The first three rules [1],[2] and [3] show
the option variations on ‘‘cat’’. The various options allow
the displaying of file contents in a specific manner. We
also show the options for ‘‘ls’ ’ (rules [4]-[10]) and for
‘‘ cp’’ (rules [11]-[13]). Note that a characteristic of
options is that sometimes they hav ethe same action as the
main action (e.g. display and display(non-printing-charac-
ters)) while other times they hav ea different action (e.g.
display and squeeze(blanklines)).

[1] opcomm(number(lines), cat, n)
[2] opcomm(squeeze(blank-lines), cat, s)
[3] opcomm(display(non-printing-characters), cat, v)

[4] opcomm(include(hidden-files), ls, a).
[5] opcomm(display(directory-name), ls, d).
[6] opcomm(display(directory-content), ls, f).
[7] opcomm(display(group-ownership), ls, g).
[8] opcomm(display(long-listing), ls, l).
[9] opcomm(sort(file-ages), ls, t).
[10] opcomm(display(subdirectories), ls, R).

[11] opcomm(prompt(overwriting), cp, i).

[12] opcomm(preserve(modification-information), cp, p).
[13] opcomm(copy(subdirectories), cp, r).

Concept representation

DataCon also contains a set of definitions of the possible
concepts which a user may wish to ask about. Such con-
cepts are considered to be Operating System objects like
files and directories, and concepts like piping and filtering.
Concept representations are three place lists with (1) Con-
cept name, (2) Concept name pluralized, and (3) English
description of concept.We show the definitions for ,
‘‘ ada’’, ‘‘working directory’’ and ‘‘unix’’ here.

[1] con([ada],[ada],
"Ada is developed on behalf of the U.S. Department of
Defense for use in embedded systems. Ada is the first
practical language to bring together important features
such as data abstraction, multitasking, exception
handling, encapsulation and generics.").

[2] con([working, directory],[working, directories],
"The directory you ar e working in.").

[3] con([unix],[unix],
"UNIX Operating System manages the resources of your
computer system to perform useful work on your behalf.
It is composed of three major parts: the kernel,
the file system, and the shell.").

Plan representation

DataCon contains a list of possible Plans for command
sequences which users may ask about. These command
sequences are defined in terms of predicates which have
five arguments. Thefirst three arguments represent (1) an
action, (2) an object, and (3) location of output. The last
two arguments define the second action and its output
location. We show two example rules below. Rule [1]
represents displaying directories on the screen and then on
the printer, and Rule [2] likewise for files.

[1] plan(display,directory,screen,display,printer).
[2] plan(display,file,screen,display,printer).

NATURAL LANGUAGE UNDERSTANDING

The most important part of any program which acts as a
natural language interface is the natural language under-
stander. There must be some means of mapping a user
query into a good meaning representation of that query.
The problem, of course, is that there are very many ways
of specifying queries in English. The first job of the natu-
ral language interface is to use some type of syntactic fil-
tering which determines the type of query being asked.
The filter will check queries for certain objects or phases
and works as a fast mechanism for determining query
type. The second job is that of determining the meaning of
a query, or its content, once the type of query is deter-
mined. Let’s take a look at the two components of
OSCON which tackle these two problems.

Parsing natural language queries (ParseCon)

The parser called ParseCon has the job of determining the
type of query present.There are characteristic ways of
asking certain types of queries and the parser checks for
these. Theparser checks for the four basic types of query
described in section 1. The ParseCon module has lists of
the characteristic ways which people use to ask queries
about particular query types.

One of the query types checked for is what-is concept.
There are a number of characteristic phrases which are
used. Some of these are listed below. The first set of rules
[1-4] and rules [1a-1e] define the syntax of what would
come before and after some concept respectively. The
second set of rules [6-11] only define possible uses of syn-
tax before the concept but do not reflect any after-concept
syntax.

[1] firstphrase([what, does|X], o1).
[2] firstphrase([what, a|X],o2).
[3] firstphrase([what|X],o3).
[4] firstphrase([what|X],o4).

[1a] secphrase([mean|X],o1).
[2b] secphrase([is|X],o2).
[3c] secphrase([is|X],o3).
[4d] secphrase([are|X],o3).
[5e] secphrase([means|X],o4).

[6] wphrase([what, is, a]).
[7] wphrase([what, are]).
[8] wphrase([what, is]).
[9] wphrase([explain]).
[10] wphrase([describe]).
[11] wphrase([]).

Another query type checked for is what-is-effect. Here,
again there are a number of possible characteristic
phrases. We list some here.Similarly, there are rules for
(i) what-is-precondition, (ii) what-is-syntax, (iii) what-is-
command, (iv) what-is mentioned command, and (v)
what-is mentioned concept queries. Of course, there are
syntax rules which will be compatible for all query types.
However, this is not a problem because there are other
characteristics of query types which separate them out.

[1] firstdesc([what|X],o1).
[2] firstdesc([does|X],o2).
[3] firstdesc([does|X],o3).

[1a] secdesc([does|X],o1).
[2b] secdesc([do|X],o2).
[3c] secdesc([have|X],o3).

[4] desc([what, happens, with|X]).
[5] desc([result|X]).
[6] desc([results|X]).
[7] desc([uses, of|X]).
[8] desc([effect, of|X]).

Determining query meaning (MeanCon)

The function of the MeanCon component of OSCON is to
determine query meaning. This is obvious for most query
types except for what-is-command queries. These queries
involve complex phrasings of English to describe the
effects which the user wishes to execute. The MeanCon
component of OSCON has the function of determining the
occurrence of objects in user queries. There are seven
types of object searched for: (1) command name, (2)
option name, (3) verb reference, (4) object, (5) object
modifier, (6) object location, and (7) concept.

MeanCon has a predicate calledfindcmd which searches
for command names. The mention of command name is a
good indicator of the type of query being asked. If a com-
mand name is present this indicates that the query is prob-
ably about (1) command preconditions, (2) command
effects, or (3) command syntax. MeanCon also has a
predicate calledfindopt which searches for mention of
option names in queries.

One of the most difficult types of user query to be under-
stood by the system are what-is command for mentioned
effect queries.These are queries where the user knows
what he/she wishes to accomplish but does not know the
command to do that. In these cases the user will specify,
in English, some process, or effect, which he/she wants to
be executed. The process/effect can be described with (1)
a primary verb and (2) a secondary verb. The user will use
a primary verb to describe the main action/command in
question. Asecondary verb may be used to describe a
restriction on the main action/command. This restriction
could be a definition of some option specification for the
major command.

Therefore, MeanCon has algorithms which check for (i)
Primary Verb, (ii) Primary Verb Object, (iii) Object Modi-
fiers, and (iv) Locations. There are also algorithms which
search for (i) Secondary Verb, and (ii) Secondary Objects
which usually describe option effects.

In checking for what-is-command queries the user will
usually specify some action with a verb. This will be fol-
lowed by the mention of an object such as a ‘‘file’ ’ or
‘‘ directory’’. There may be a modifier of the object such
as ‘‘contents’’. The location of the object may also be
specified such as ‘‘printer’’ or ‘ ‘screen’’ or ‘ ‘directory’’.

There’s a predicate in MeanCon calledfindverb which
searches for verbs in user queries. When a verb is located
this will determine the major category of action/command.
Therefore, the word ‘‘delete’’ w ill reference removing,
‘‘ see’’ w ill reference displaying and so on. MeanCon uses
the stored verb-action structures in KnowCon to find verbs
in queries and their related action representations.

Another predicate calledfindobj searches for the object of
a verb. Say, for example, the user had asked, ‘‘How do I
see a file?’’ then the findverb predicate will locate the verb
‘‘ see’’. The query is split up so that the phrase after the
verb is checked for an object. The object ‘‘file’ ’ is located
and marked.

More complex queries may include modifiers and loca-
tions. Take the query, ‘‘How do I see my file contents on

the screen?’’ I n this case, the phrase ‘‘|..file contents on
the screen?’’ i s checked for an object by findobj. Then,
‘‘ |..contents on the screen?’’ is checked for modifier by
findmod. Findmod locates ‘‘contents’’ as a modifier.

A predicate calledfindloc checks for locations in queries.
Locations include ‘‘screen’’, ‘ ‘printer’’ and ‘‘directory’’.
In our example, ‘‘|..on the screen?’’ is checked for location
and ‘‘screen’’ is uncovered.

MeanCon has a predicate calledfindcon which checks for
concepts in user queries.For example, the existence for
the concept, ‘‘ada’’ w ill denote a query asking about,
‘‘ ada’’.

RULES FOR SOLVING (SolveCon)

Now that we have defined the data available to OSCON
before the system begins to process a query we move on
to describe the rules which match user queries to database
information. SolveCon determines the answer for a query
by (1) building an uninstantiated Formal Query from the
query, (2) matching this structure to the DataCon
database, (3) retrieving data from the database, and (4)
using the data to build an instantiated Formal Query which
is passed back to the GenCon natural language generator.
We shall describe the answering process in two steps: (1)
the algorithm used by SolveCon to specify the query and
to retrieve data from the database, and (2) the structure of
instantiated Formal Queries returned by SolveCon to the
GenCon generator.

The solving algorithm

The Solver basically searches queries for three types of
information: (1) Command Names, (2) English Descrip-
tions of command effects, and (3) Concepts. The search
process in conducted in the following order.

[1] SolveCon checks to see if a command name is men-
tioned in the query. Then, (a) SolveCon checks if an
option (e.g. -l) is mentioned. If (a) fails then (b) SolveCon
checks if the query is which-option. This check is done by
having ParseCon check the syntax of the query, having
MeanCon check for an English Description of an option
effect. If either (a) or (b) are satisfied SolveCon will
retrieve from the database Option Preconditions, Option
Effect, Option Syntax, and Option Name.

If (a) and (b) have both failed then (c) SolveCon checks if
the query is a what-is-precondition, what-is-effect or
what-is-syntax query. Here, SolveCon checks the syntax
again using ParseCon. If(c) fails, then (d) SolveCon
checks the query for what-is-mentioned-command query.
ParseCon is involved here too.If either (c) or (d) are sat-
isfied SolveCon will retrieve Command Preconditions,
Command Effect, Command Syntax, and Command
Name from the database. If (d) fails then SolveCon
moves on to step [2].

[2] SolveCon checks the query semantics. In this case the
user must have asked an English query with no command

names. (i)SolveCon has ParseCon check the syntax of
the query. (ii) Then, SolveCon calls MeanCon to check
for a Primary Verb, Verb Object, Modifier, and Location.
SolveCon will retrieve Command Preconditions, Com-
mand Effect, Command Syntax, and Command Name
from the database.Next, (iii) SolveCon has MeanCon
check for a Secondary Verb (option action), and Sec-
ondary Verb Object. SolveCon will retrieve from the
database Option Preconditions, Option Effect, and Option
Syntax. Ifstep [2] fails then SolveCon goes on to step [3].

[3] SolveCon checks the query semantics. In this case the
user must have asked an English query involving no com-
mand names.Also, the query must be about command
combinations, or pipes, otherwise step [2] would have
passed. SolveCon checks for the existence of a command
combination in the user query. SolveCon has MeanCon
check for the existence of a sentence connector like
‘‘ and’’. If this occurs then is it possible that the query
involves command combination.SolveCon then calls the
SolveCon algorithm again for (1) the piece of the query
before the connector, and (2) the piece of the query after
the connector. The data returned from (1) and (2) is inte-
grated. If[3] fails then SolveCon tries step [4].

[4] SolveCon checks query syntax through ParseCon.
Then MeanCon searches for concepts mentioned in the
query. Examples of such concepts are ‘‘ada’’ and ‘‘protec-
tion’’.

Structures returned

The step of SolveCon which succeeds will return an
instantiated Formal Query to the generator. In step [1], if
cases (a) or (b) succeed, an instantiated Formal Query will
be returned containing the following: (1) Option Precondi-
tions, (2) Option Effect, (3) Option Syntax, (4) Option
Name, and (5) Query Type. Instep [1], if cases (c) or (d)
succeed, the instantiated Formal Query contains: (1) Com-
mand Preconditions, (2) Command Effect, (3) Command
Syntax, (4) Command Name, and (5) Query Type.

In step [2] the Formal Query returned will contain slots
for: (1) Command Preconditions, (2) Command Effect, (3)
Command Syntax, (4) Option Preconditions, (5) Option
Effect, (6) Option Syntax, and (7) Query Type. Thecom-
plete structure will be instantiated when step [2] involves
options. However, only parts (1),(2),(3), and (7) are
instantiated when there is no mention of options.

With step [3] a list containing two instantiated Formal
Queries is returned. Each formal query will contain: (1)
Command Preconditions, (2) Command Effect, (3) Com-
mand Syntax, (4) Command Name, and (5) Query Type.

In step [4] a Formal Query with three pieces of informa-
tion is returned.The structure contains (1) the Concept
Name, (2) Concept Description, and (3) Query Type.

NATURAL LANGUAGE GENERATION (GenCon)

The final phase of the OSCON program is to map an
instantiated formal representation into an English answer.
There are two types of answer which may be returned to
the user: (1) Stored English sentences describing some
concept which are contained in the DataCon knowledge
base, and (2) English sentences mapped out from instanti-
ated Formal Queries.

The natural language generator for the OSCON system is
used to map instantiated formal queries into English
answers. The generator has five primary components:
[1] psyntax: gives the syntax for a command
[2] peffect: gives the effect of some command
[3] pexample:gives an example on the use

of some command
[4] ppre: gives the preconditions for some command
[5] ppipe: gives the commands involved in some

piping example and an example of the piping

For each of the major query types various configurations
of printing components are used. There are three types of
what-is-attribute query: (1) what-is-precondition, (2)
what-is-effect, and (3) what-is-syntax.In these cases the
components [1], [2], [3] and [4] are combined in order.
Printing out the syntax for some command is trivial. The
syntax is already stored in the DataCon knowledge base.
This is just returned to the user. Printing out precondi-
tions is quite trivial too as all GenCon has to do is to print
those preconditions retrieved from the DataCon precondi-
tion information.

Generation for what-is-effect queries is more complex.
GenCon will print command effects by (1) checking to see
if the output should be in plan/pipe form, and if it is, then
generating the answer in plan/pipe form; (2) generating
the (a) Command Syntax, (b) Effect and (c) Preconditions
for the command. The Effect is generated from the instan-
tiated Formal Query produced by SolveCon which con-
tains action, object, object modifier and object location.
The latter information is generated in sentence form.
Some interleaving information such as the output of
prepositions between object modifier and location are han-
dled too.

For what-is-command for effect queries the latter algo-
rithm is used.For what-is-mentioned command compo-
nents [1], [2], [3] and [4] are used.For what-is mentioned
concept, the answer is output from a stored piece of text.
Often users ask queries about commands as concepts.The
generation of these is simple as the definitions of such
concepts are just stored as English descriptions in the first
place. Therefore,all GenCon has to do is to map the
stored sentences into English answers. We hav ewritten a
simple algorithm which maps the English text into pretty
format on the screen.

AN EXAMPLE

In this section we show an example of how the query
‘‘ How do I see my files with numbered lines?’’ i s under-
stood and answered by OSCON. First, SolveCon attempts
to find out the type of query being asked. Initially, Solve-
Con tries step [1] to match the query as one mentioning a

command and there is no match. Then step [2] is tried
and a match occurs. The query is a semantic one. Par-
seCon is called forth and a syntactic match is found.
‘‘ How do I’’ matches the syntactic form [how, do, i] for
what-command queries.

Next, SolveCon calls MeanCon which analyzes the mean-
ing of the sentence. (i) Findverb checks for a verb and gets
‘‘ see’’. From KnowCon, ‘‘display’’ is marked as the
action. Then,(ii) findobj checks ‘‘How do I’’ and ‘‘my
files with numbered lines’’ f or objects. ‘‘Files’’ is matched
as an object.Data from the query (i.e.display(file,con-
tents,*)) is matched against the DataCon database Effects
and a match is found withdisplay(file,contents,screen).
This effect match from the query data to DataCon will
allow SolveCon to retrieve (1) Command Preconditions
([file]), (2) Command Effect (display(file,con-
tents,screen)), (3) Command Syntax (cat -n <filename>),
and (4) Command Name (cat).

Next, the query is checked for existence of a secondary
action. The findverb predicate retrieves ‘‘numbered’’ as a
secondary action and its object is retrieved as ‘‘lines’’.
This representation is matched against the option database
and number(lines) from the query matches number(lines)
in the Option Effect definition in the database.The Data-
Con database is referenced and (1) Option Preconditions,
(2) Option Effect, and (3) Option Name are returned.The
data retrieved is integrated to form an instantiated Formal
Query which is passed to the generator. The representa-
tion for this query is as shown below.

cquery(display(file,contents,screen), %Command Effect
"with numbered lines", % Option Effect
[cat -n <filename>], % Syntax
[file]), % Preconditions
cat), % Command Name
-n). % Option Name

The GenCon generator takes the Formal Query and maps
it into an English answer. (i) psyntax will print out ‘‘cat -n
<filename>’’, (ii) peffect will display ‘‘will display file
contents on the screen.’’ , and (iii) popeffect will display
‘‘ with numbered lines.’’ T herefore, the complete answer
generated for this query is:

‘cat -n <filename>’ will display file contents
on the screen with numbered lines.

CURRENT STATE OF THE IMPLEMENTATION

The OSCON program can now answer over 1000 English
queries. Themaximum time for a query answer is 2.5
seconds when the Sun computer is at low load. OSCON
answers four major types of query (1) what-is-attribute of
mentioned command, (2) what-is mentioned command,
(3) what-is-command for mentioned effect, and (4) what-
is-mentioned concept. There are three cases of type (1):
(1) what-is-precondition (2) what-is-effect, and (3) what-
is-syntax. In real terms this brings the query types covered
up to six. The system answers the latter three query types
with options and will soon answer the other types with

options. OSCON’s database contains information on 40
UNIX and 40 MS-DOS commands with their respective
preconditions, effects, syntax and command names.
OSCON has 20 grammar rules for understanding the ways
that users ask queries about categories of commands.
OSCON also contains 10 plan sets for possible combina-
tions of commands.

COMPARISON TO OTHER SYSTEMS

There are basically two other natural language consultants
for Operating Systems.These are the Unix Consultant
(UC), and the Sinix Consultant (SC).

The Unix Consultant (UC) (see Wilensky et al. 1984,
1986, 1988; Chin 1988) is a natural language consultation
system for UNIX, and is in many ways similar in scope
and intent to OSCON.However, there are some key dif-
ferences: (1) While OSCON is a specialized system with
the sole goal of providing detailed expert help, UC has the
broader goal of studying knowledge representation and
planning (as well as natural language understanding) at a
basic level. As such, UC takes a fundamentally different
approach to knowledge representation, in that employs a
much more general knowledge representation and plan-
ning mechanism, with a somewhat cognitive flavor. UC
contains only one knowledge base of Operating System
concepts which must serve both the understanding and the
solving phases of query resolution, while OSCON incor-
porates specialized representations for each function.
Hence, UC must sacrifice some of the specialization built
into OSCON.

(2) Not unexpectedly, an examination of the examples pre-
sented in Wilensky et al. (1986) suggests that UC will
have to perform far more extensive procedures to solve a
given query, and that it may not be able to answer some of
the very detailed queries that OSCON will address; (3)
UC is not intended to be a consultant which will help
users migrating from one system to another. UC is a con-
sultant for the UNIX Operating System. We do not claim
that the UC system could not act as a consultant on other
Operating Systems.We claim that the Berkeley team have
not concerned themselves with putting information from
more than one Operating System in their program; (4) It is
a characteristic of computer Operating Systems that com-
mands can be combined in various ways to execute com-
plex processes. InWilensky et al. (1986, p. 6-10) there
are a number of examples of the queries which the UC
system handles. These examples are intended to show the
kinds and scope of requests answered by the system. None
of the examples involve command compositions but oper-
ations of single commands.The UC system has no capa-
bility for answering complex natural language queries
which involve command sequencing; UC and OSCON are
not truly competitors, but rather systems with different
emphases.

The Sinix Consultant (SC) (see Kemke 1986, 1987; Heck-
ing et al., 1988) is a broad-based UNIX help system It is
similar to OSCON in that it is designed from the start to
be an Operating System consultant rather than a more
general system into which a UNIX model is embedded.

Although SC contains a rich knowledge base, which
reflects the technical aspects of the domain as well as the
users view of the system, the focus of SC, like UC, is to
provide help on the use of individual commands, rather
than the interconnection of several. Our knowledge repre-
sentation of plans has more emphasis on answering com-
plex queries. Thereis no mechanism whereby the SC sys-
tem will understand complex command sequences. How-
ev er, the authors do predict in Hecking et al. (1988) that
future development of the SINIX Knowledge Base will
include ‘‘combinators’’ f or I/O-redirection and pipelining.
The SC system has a dialogue modeling component, for
(1) handling elliptical queries, and (2) anaphora.

There are several other consultation systems for Operating
Systems, including CMS-HELP developed by Yun (1984),
TVX by Billmers & Garifo (1985), Wizard (see Shrager &
Finin 1982; Finin 1983), and USCSH by Matthews &
Pharr (1987).However, all of these systems appear to be
either far less ambitious in scope than OSCON, or else
have a totally different emphasis. In particular, all appear
to employ rather simple surface models of UNIX.

CONCLUSION AND FURTHER WORK

It is concluded that it is possible to build a computer pro-
gram which will answer natural language user queries
about Operating Systems. We hav e shown how this is
done by the OSCON system.The OSCON program
answers over 1000 English queries in English. Each query
is answered within seconds.

The development of any program like OSCON is
enhanced if the program is built in a modular form where
each module has a distinct function. This has been done
for OSCON which is divided up into six distinct modules.
This methodology allows for easy update of the program
and also will allow the possibility of mapping the program
over to a new domain.

In comparing OSCON to the other three systems available
today OSCON turns out to have a different emphasis. The
OSCON system is more concerned with the detail of
Operating Systems and natural language processing rather
than an experiment on cognitive modeling. Also, OSCON
is the only system which answers queries involving com-
mand combinations.

There are three areas of further work proposed for
OSCON which are all part of a dialogue interface to be
added to the system. These are: (1) context storage mecha-
nisms, (2) reference determination algorithms, and (3)
user modeling capabilities (see Chin, 1988).Dialogue
management is important and it will permit the user to ask
queries without having to spell the queries out in elaborate
English. Initial thoughts on this research are reported in
Ball et al. (1989).

ACKNOWLEDGEMENTS

We would like to thank Zhaoxin Pan for programming
parts of OSCON. Also, Hans Brunner, Andy Parng and
Scott Wolff of the Intelligent Customer Assistance Project
at U S WESTAdvanced Technologies are thanked for

consultations on this research.

REFERENCES

Ball, Jerry, John A. Barnden, Sylvia Candelaria de Ram,
David Farwell, Louise Guthrie, Cheng-Ming
Guo, Stephen Helmreich, Paul Mc Kevitt, Liu
Min (1989) The need for belief modelling in
natural language processing. In Proc. of the
International Conference on Cross-Cultural
Communication (ICC-CC-89), Trinity Univer-
sity, San Antonio, Texas, March.

Billmers, Meyer A. & Michael G. Carifio (1985)Building
knowledge-based operating system consul-
tants. Proceedings of the Second Conference
on Artificial Intelligence Applications, pp.
449-454, Miami Beach, December.

Chin, David (1988) ‘‘Exploiting user expertise in answer
expression’’ In Proceedings of the Seventh
National American Conference on Artificial
Intelligence (AAAI-88), St. Paul, Minnesota,
Vol. 2, 756-760, August.

Douglass, R. & Hegner, Stephen J. (1982) ‘‘A n expert
consultant for the UNIX operating system:
Bridging the gap between the user and com-
mand language semantics’’. In Proceedings of
the CSCSI/SCIEO, Conference 1982, Saska-
toon, Saskatchewan, 92-96, May.

Finin, Timothy W. (1983) Providing help and advice in
task oriented systems. Proceedings of the
Eighth International Joint Conference on Arti-
ficial Intelligence (IJCAI-83), Karlsruhe, West
Germany, pp. 176-178.

Hecking, M. C. Kemke, E. Nessen, D. Dengler, M. Gut-
mann & G. Hector (1988) ‘‘The SINIX consul-
tant —a progress report’’ M emo Nr. 28, Uni-
versitat des Saarlandes, FB 10 Informatik IV,
Im Stanwald 15, D — 6600 Saarbrucken 11,
Fed. Rep. of Germany, August.

Hegner, Stephen J. (1988)Representations of command
language behavior for an operating system
expert consultation facility. In ‘‘Intelligent
Help Systems for UNIX — Case Studies in
Artificial Intelligence’’ Peter Norvig, Wolfgang
Wahlster & Robert Wilensky (Eds.), Heidel-
berg: Springer-Verlag Symbolic Computation
Series.

Hegner, Stephen J. & Douglass, Robert J. (1984)Knowl-
edge base design for an operating system
expert consultant. Proc. of the Fifth National
Conference of the Canadian Society for Com-
putational Studies of Intelligence (CSCSI),
London, Ontario, December, 159-161.

Kemke, Christel (1986)The SINIX Consultant — Require-
ments, Design, and Implementation of an intel-
ligent Help System for a UNIX Derivative.
Universitat des Saarlandes, KI-Labor (SC-

Project), Bericht Nr. 11, October.

Kemke, Christel (1987)Representation of domain knowl-
edge in an intelligent help system. In Human-
Computer Interaction — INTERACT ’87, H.J.
Bullinger and B. Shakel (Eds.), pp. 215-220.
Amsterdam: Elsevier Science Publications B.V.
(North-Holland).

Matthews, Manton & Walter Pharr (1987)Knowledge
acquisition for active assistance. Preprints of
the First International Workshop on Knowl-
edge representation in the UNIX help domain,
University of California, Berkeley, California,
December.

Mc Kevitt, Paul (1986)Formalization in an English inter-
face to a UNIX database. Memoranda in
Computer and Cognitive Science,
MCCS-86-73, Computing Research Labora-
tory, Dept. 3CRL, Box 30001, New Mexico
State University, Las Cruces, NM 88003-0001.

Mc Kevitt, Paul (1988)Rules of inference in an operating
system consultant. In Proc. of the First Irish
National Conference on Artificial Intelligence
and Cognitive Science (AI/CS-88), Vol. 1, Uni-
versity Industry Center, University College
Dublin, Dublin, Eire (Republic of Ireland),
September.

Mc Kevitt, Paul & Yorick Wilks (1987)Tr ansfer Seman-
tics in an Operating System Consultant: the
formalization of actions involving object trans-
fer.. In Proceedings of the Tenth International
Joint Conference on Artificial Intelligence
(IJCAI-87), Vol. 1, 569-575, Milan, Italy,
August.

Selfridge, Peter G. (1988) ‘‘How to print a file: An expert
system approach to software knowledge repre-
sentation’’ In Proceedings of the Seventh
National American Conference on Artificial
Intelligence (AAAI-88), St. Paul, Minnesota,
Vol. 2, 380-385, August.

Shrager, Jeff & T im Finin (1982)An expert system that
volunteers advice. Proceedings National Con-
ference on Artificial Intelligence (AAAI-82),
pp. 339-340

Wilensky, Robert; Arens, Yigal & Chin, David (1984)
Talking to UNIX in English: An overview of
UC. Communications of the ACM, Vol. 27,
No. 6, June, 574-593.

Wilensky, Robert; Mayfield, Jim; Albert, Anthony; Chin,
David; Cox, Charles; Luria, Marc; Martin,
James and Wu, Dekai (1986)UC — a progress
report. Report No. UCB/CSD 87/303, Com-
puter Science Division (EECS), University of
California, Berkeley, California 94720, July.

Wilensky, Robert; David N. Chin, Marc Luria, James Mar-
tin, James Mayfield and Dekai Wu (1988)The
Berkeley UNIX Consultant project.

Computational Linguistics, Vol. 14, No. 4,
35-84, December.

Yun, David Y & David Loeb (1984)The CMS-HELP
expert system. Proceedings International Con-
ference on Data Engineering, IEEE Computer
Society, 459-466, Los Angeles.

APPENDIX A

This appendix contains a list of some of the queries which
OSCON[1.2] currently answers. The maximum time
taken to answer any query is 2.5 seconds. The query sets
have been divided into four major types (1) what-is-
attribute of mentioned command, (2) what-is mentioned
command, (3) what-is-command for mentioned effect, and
(4) what-is mentioned concept.

| ?- oscon.
OSCON Program 1.0 (Sun-3, Sun Unix 4.2)
Copyright (C) 1988, Computing Research Laboratory.
All rights reserved.
Dept. 3CRL, Box 30001, NMSU, Las Cruces, NM (505) 646-5466
U S WEST Advances Technology
Please input your question ending with with a ‘?’
Write ‘quit.’ when you are finished

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; what-is-effect

--> what does ls do?
‘ls <directoryname>’ will display directory contents on the screen.

--> what happens with rm?
‘rm <filename>’ will remove a file from your current directory.

--> what is the effect of date?
‘date’ will display a date on the screen.

--> what does more -c do?
‘more -c’ will display each page after clearing the screen.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; what-is-syntax

--> what is the syntax of rm?
It has the syntax ‘rm <filename>’.

--> How do i use cp?
It has the syntax ‘cp <file1> <file2>’.

--> how does he use more?
It has the syntax ‘more <filename>’.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; what-is mentioned command

--> what is ls?
‘ls’ is a command.
It has the syntax ‘ls <directoryname>’.
‘ls <directoryname>’ will display directory contents on the screen.

--> what is more?
‘more’ is a command.
It has the syntax ‘more <filename>’.
‘more <filename>’ will display file contents on the screen.
‘more’ only takes the argument ‘file’

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; what-is-command for mentioned effect

--> how do i see my file?
‘more <filename>’ will display file contents on the screen.

--> how do i see my file on the screen?
‘more <filename>’ will display file contents on the screen.

--> how do i see my file on the printer?
‘lpr <filename>’ will display file contents on the printer.

--> how do i see all my files?
‘more <filename>’ will display file contents on the screen.

‘ls <directoryname>’ will display directory contents on the screen.

--> how do i see this file?
‘more <filename>’ will display file contents on the screen.

--> how do i see that file?
‘more <filename>’ will display file contents on the screen.

--> how do i see his files?
‘more <filename>’ will display file contents on the screen.
‘ls <directoryname>’ will display directory contents on the screen.

--> how do i read my files?
‘more <filename>’ will display file contents on the screen.
‘ls <directoryname>’ will display directory contents on the screen.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; what-is-command for mentioned effect

--> how do i list my files and print my files?
‘more <filename>’ will display file contents on the screen.
‘lpr <filename>’ will display file contents on the printer.
To display file contents on the printer use ‘more <filename> | lpr’

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; what-is concept

--> what are aliases?
alias is the ability to establish shorthand names
for frequently used but long-winded commands.

--> quit.
over
yes
| ?-

