OSCON: AN OPERATING SYSTEM CONSULTANTO

Louise GuthriePaul Mc Kevtt and Yoridk WIks

Computing Research Laboratory
Dept. 3CRL, Box 30001,
New Mexico State Uniersity
Las Cruces, NM 88003-0001, USA.
CSNET paul@nmsu.edu [505-646-5109]

ABSTRACT

One of the most useful applications of natural language
interface technology is the area of computer consultants.
Computer consultants are programs which a user can ask
for help about some topic. One of the easiest ways to
interact with computer consultants is by typed English.
These programs canvgi answers in English too. @/have
developed a computer consultant called OSCON (Operat-
ing System CONsultant) whichwgss English answers to
English queries about computer operating systefise
program currently answersva 1000 queries forer 40
commands from the UNIXt and MS-DOSt operating sys-
tems. OSCON answers a wide variation of queries that
users may wish to askOSCON is intended to be a con-
sultant for various types of users who may ask vague and
detailed queries. The OSCON system is one of the most
adwanced natural language ini@eés for operating system
help aailable today OSCON is programmed in Quintus
Prolog and does not takrore than 2.5 seconds to answer

a query.
KEYWORDS

Natural language inteates, Operating Systems, Informa-
tion retrieval.

INTRODUCTION

This paper describes the OSCON (Operating System
CONsultant) program (OSCONJ1.2]) and its capabilities.
OSCON is a natural language insé which answers
English queries about computer Operating Systems (see
Mc Kevitt, 1986; Mc Kevitt, 1988; Mc Kevitt & Wilks,
1987). OSCONallows the user to enter English queries
and then answers them in Englishhe program is written

in Quintus Prolog, runs on a Sun-3/ME-4 compusad

the maximum time taken to answer &egi query is 2.5
seconds. OSCON answergen 1000 queries for wer 40
commands from the UNIX and MS-DOS Operating Sys-
tems. Therare four basic types of query a user can ask
and the system handles all of these. OSCON will also
answer queries about options on UNIX commands and

complex queries about command compositions. The sys-
tem is intended to be used barying types of users with
different levels of expertise. Thearchitecture of OSCON

is modular so that it is easily updated and can be easily
mapped wver to cther domains.

QUERY COVERAGE OF OSCON

The problem with building &ctive matural language
interfaces is that there are nyaways of asking English
gueries. The system must attempt to capture all tifierdif
ent possibilities. One way to do this is to capture the basic
types of queries that people ask. Thigegithe system the
power of answering a lge number of queries when it
caters for each type.

There are four basic types of query that people ask about
Operating Systems. These are: (1) what-is-atteibof
mentioned command (e.g. “What does rm §o?A2)
what-is mentioned command (e.g. “What is more?”), (3)
what-is-command for mentionedfedt (e.g. ‘How do |
see my file on the printer?”), and (4) what-is mentioned
concept (e.g. “What is a file?’ Thereare three cases of
type (1): (1) what-is-effect (e.g. “What does rm dp?%2)
what-is-syntax (e.g. “What is the syntax of cp?”), and (3)
what-is-precondition (e.g. “What is needed for rin?’
Each of these basic query types can also be asked in terms
of options. Examples aréWhat option of ‘Is’ shows the
number of bytes in my files?’(what-is-option + men-
tioned command),What does Is -| do?’ (what-is-effect

+ option), ‘How do | rename a file without kg
reported errors?’ (what-is-command + option),What
are the options on Is?(what-are-options), “What does
the -i option normally do?’(what-is mentioned concept).
Users can also ask queriesdlving command composi-
tions. An ekample is, ‘How do | list my files and print
them on the printer?This query inolves a query about
listing files (what-is-command) and then printing them on
the printer (what-is-command).

The OSCON program currently answers (1) the four basic
query types, (2) queries about options, and (3) command

[Orhis reseach is currently funded by U S WESTAdvanced Technologies, Demr, Colorado, under their Sponsoed

Research Program.
TUNIX is a trademark of AT&T Bell Laboratories.
TMS-DOS is a trademark of Microsoft Corporation.

composition queries for both the UNIX and MS-DOS
Operating Systems. The fact that queries are ofvengi
type aids in understanding and generating answers to
them. For gample, queries of type (1) amwill always
include a command name. Therefore, the parser for
OSCON could check for command names and if it found
them, then disoer that the query was of type (1). Also,
the generator would generate an answera particular
format, depending on the type of queRules of thumb
such as these also speed up the time @staBSCON to
answer queries. Although one can add such rules of
thumb into the interface it does not reflect a short-cut to
natural language parsing=or example, there is no such
short cut to understanding the quetiow do | print a

file on the Imagen with no pageiist?” Understanding
gueries is a combination of both (1) filtering the query
type, and then (2) understanding the qudgtyamples of
gueries answered by OSCONJ[1.2] arevshan Appendix

A (p. 11). These examples are listed by query type.

THE ARCHITECTURE OF OSCON

The architecture of the OSCON system is well defined
and «ists as six distinct modules. There areo tevgu-
ments for modularizing ansystem: (1) It is much easier

to update the system atyapoint, and (2) it is easier to
map the systemver to another domain. The six modules

in OSCON are as follows: (1)aPseCon: natural language
syntactic grammar parser which detects query-type, (2)
MeanCon: a natural language semantic grammar which
determines query meaning, (3) KmBon: a knaledge
representation for understanding, (4) DataCon: avkno
edge representation for solving, (5) SolveCon: a solver for
resolving query representations against knowledge base
representations, and (6) GenCon: a natural language gen-
erator for generating answers in English.

ParseConconsists of a set of programs which read natural
language input and determine the type of query being
asled by the useWe havedescribed the four basic types
of query in the ‘Query corerage of OSCON'section
above. For each type of query there are tests for charac-
teristic ways of asking that query.

MeanCon consists of programs which check queries for
important information. There are predicates which check
for mentioned (1) command names (e!l3.’; ‘‘more”),
(2) command-effect specifications (e'see a file”), and
(3) concepts (e.g:file’’, “‘directory”). In case (2) there
are specific types of information searched for: \(éfb
specifying action (e.g.'see’, ‘‘remove”), (2) object of
action (e.g. ‘file’’), (3) modifier of object (e.g. ‘ton-
tents’), and (4)location of object (e.g.'screen’). Mean-
Con also checks for option verbs (e:gumber’) and
option verb objects (e.g'lihes”). MeanConcontains a
dictionary of English words that define qgteies such as
“person’, ‘‘modifier”, ‘‘article”, ‘‘quantifier’ and
“ prepositions”.

KnowCon consists of a set of data files to represent the
knowledge about the domain language used for under
standing English queries. Files contain information about
verbs which catgorize types of command or action.

Examples of categories of action are: (1) creating, (2)
screenlisting, (3) printerlisting, (4) sending, (5) transfer
ring, and (6) removing. KnmeCon also contains grammar
rules for Operating System objectsditdate”, ‘*file’” and
“directory’. The grammar rules encode characteristic

ways in which people talk about the objects in English.

DataCon consists of a set of data files defining detailed
information about Operating System commandsis
information is stored for the UNIX and MS-DOS Operat-
ing Systems.The data for UNIX is split among &
files: (1) command preconditions, (2) commanteas,

(3) command syntax, (4) command names, (5) command
precondition options, (6) commandesft options, and (7)
command name optionsLhe first four files contain basic
data about commands while the last three contain data for
options. Br MS-DOS, data is contained in just four files
which are similar to the first four here.

SolveConis a solver which constructs and matches repre-
sentations of user queries (callearfral Queries) aanst
DataCon and produces an instantiated Formal Query
which serves as an answer for the qu&ojveCon is the
driver of the OSCON program because it contains the
information for mapping English sentences into instanti-
ated answers. It contains a set of complées which call
other OSCON modules to determine (1) query type, and
(2) the instantiated Formal Query for that query.

GenCon is the natural language generator for OSCON
and maps instantiatied information from SuBon into
English answers. Here, there are algorithms for printing
out (1) preconditions, (2) fefcts, and (3) syntax of com-
mands. Alsothere are routines for printing owtamples

of the use of commands and command compositidhs.
type of query askd by the user determines the informa-
tion mapped to the user.

KNOWLEDGE REPRESENTATION IN OSCON

One of the problems in building natural language inter
faces is to aganize the knowledge of the domain in some
form which will be efective. There are tw types of
knowledge stored in OSCON: (1) kwtedge about lan-
guage, and (2) knowledge about Operating Systems.

The knavledge about language stored includesrds
used to refer to command actionsr Fexample, a user
may use the wordsdelete’, ‘‘remove’, “get rid of”,
“erase€’and so on to ask a query about deleting files and
directories. These words must be stored under the general
catgyory of delete. Also, there are nyaways in which
people ask queries about actions. Baneple, if you are
asking about copying a file you will probably specify the
file which you wish to cop If you are asking aboutis-
playing” you will specify what you wish to display and
where you wish to display it. This type of knowledge is
called ‘understanding kneledge’ and is stored within a
module of OSCON called KnowCon.

More detailed knaledge about Operating Systems is con-
tained in a database called DataCon. This type ofvkno
edge includes command preconditions, commafettst
command syntax, and the names of commanilso,

stored here is (1) kmdedge about options for commands,
(2) English descriptions of Operating System concepts
like “files” and “directories’, and (3) knowledge about
plans or possible command combinations (e.g. ‘Is’ can
precede ‘Ipr’ but the camerse is not true).The knavledge
stored here is for the UNIX and MS-DOS Operating Sys-
tems. The distinction between theottypes of knavledge

is that one is language oriented and the other is domain
oriented. One type of knowledge is used for understanding
gueries and the other for solving queries. This is the prin-
ciple of separation of understanding and solving defined in
Hegner (1988).

Knowledge for understanding (KnowCon)

There are tw types of understanding knowledge stored in
the KnowCon module: (1) data on Operating System
action reference, and (2) data on descriptions of Operating
System objects. The first type of knowledge includes sets
of words or phrases that may refer to some operating sys-
tem action or commandoF example, the wordsptint”,

“ print out”, and “get a cop”’ would indicate that the user
was referring to printing something on the print&uch
words and phrases are stored as being associated with the
general concept of printing. The second type ofwkno
edge is used for defining theays that users refer to Oper
ating System objectskor convenience the data has been
split up into tvo types (a) data on files and directories, and
(b) data on other Operating System objects. In type (a)
there are grammar rules specifyingihasers refer to files
and directories, and in type (b) there are rules fav ho
users refer to other Operating System objects.

Referring to actions

In asking queries about Operating Systems users com-
monly use a well defined set of verbs or verb phraBes.
example, if a user wants to kwosbout removing files or
directories he/she will use the foNimg verbs and
phrases:‘delete’, ‘‘remove”, “get rid of’, “erase’ and

so on. Queries about copying may be referenced by:
“copy’, ‘‘transfer’, and ‘move’. These phrases should
be captured by the OSCON program. Phrase amaisv
are stored under their categories in the KnowCon module

of the program.

It is possible to divide the set of Operating Systems com-
mands into various caeries. V¢ have defined three
major command categories and each of these taxious
subdvisions. The three categories atiésting’’, ‘‘alter-

ing” and “compiling” commands. Listing commands are
those which display information about the state of files in
an Operating System. Altering commands are used to alter
the state of files in the system. Compiling commands are
used to compile files in the system rather than dis-
play/alter them.There are tw types of listing command,
(1) screenlisting, and (2) printerlisting. Screenlisting com-
mands are those which allahe user to see information
on the screen and printerlisting will do the same for the
printer There are three subtypes of screenlisting com-
mand, (1) display-file (e.g:more”, ‘‘nroff’’, ‘‘cat”), (2)
display-file/directory-information (e.g.‘ls”’), and (3)

display-system-information (e.gusers’, ‘“‘who’’, ‘‘ps”,
“jobs”). Thereis only one subtype of printerlisting com-
mand (e.g. “lpr”, “runoff, “itroff"").

Altering commands are of three types, (1) creating (e.g.
“gemacs, ‘‘vi'’, “‘mkdir’), (2) remwing (e.g. ‘rm”,
“rmdir”, “kill’ ’), and (3) transferring (e.gmv’’, ‘‘cp”).

Each of these can be applied to either files or directories.
A third type of command is compiling commands. These
commands cannot be cgtgized under altering com-
mands as theare really utilities which do not change files
but use them. An example of such a command is “run”.

It is important to point out that certain commands apply to
files which are not directories and others only apply to
files which are directoried-or example, ‘more” can only

be used on files and not directories d@nadir’’ can only

be used on directories and not fil&uch information can

be used to specify the preconditions for commands and
enables the system the capability to detect errors in user
gueries and inform the user about such erré®.exam-

ple, if a user askedHow do | use ‘more” to display a
directory?’ the system could locate that the precondition
for “more” is that it only works wer files. Then the sys-
tem could tell the user this information.

The rules listed belo are examples of typical action rules
in KnowCon. Ruleq1] and [2] shav typical verb phras-
ings used to reference the action of screenlisting. Rule [3]
is for printerlisting, and rules [4] and [5] for creating.

[1] screenlist --> [see].

[2] screenlist --> [look, at].
[3] printerlist --> [print].

[4] create --> [edit].

[5] create --> [produce].

Referring to objects

Queries about Operating Systems often include reference
to operating system objectsdikiles and directories.ypi-

cally, users will refer to the object which is operatedro

by some command. The phrasing of the English query will
dictate the object present. KmGon has objects separated
into two catggories: (1) file/directory object specifications,
and (2) other Operating System object specifications.

The rules listed belw are exkamples of file/directory object
specifications. Fil®bject specifications include grammar
rule definitions for files and directorie3he first rule def-
inition below [1] specifies that a file can be mentioned in a
query by the wordfile’’ preceded by three modifiers. The
first modifier can be (1) a quantifier (e.@ll'’, ‘‘some
of”), and the second (2) a possessg.g. ‘my’’, ‘‘our”).
Thenfilemod can be a modifier of type of fileEExamples
are ‘mail”’, ‘‘device’, ‘‘plain”, ‘‘executable’ and so on.
This grammar rule will capture most of the ways that a
user might refer to a file.

The second rule [2] shows that a directory mayehiao
modifiers and then the okd referring to directory itself.

O'runoff’’ is a ommand defined at the Computing Research Labora-
tory to load text formatting packages for word processing a text file.

Rule [3] shavs that a file or directory could be in refer
ence. Thishappens because it is ambiguous as to whether
the intended referent is file or directofye userby using

the plural of file may intend directdryrather than the plu-
ral for file. Rule [4] defines location to be a triple: (1)
preposition (prep), (2) modifier (mod), and (3) directory
(dir). Phrases li& “..in my directory”, “..in our direc-
tory”, and “..in the directory’will match here.There are
more specific definitions of location for where the location
is. Rule [5] is a definition of screen location in terms of
(1) preposition (prep), (2) modifier (mod), and (3) screen-
output (soutput). Preposition and modifier are self
explanatory and output is the location of output. This
could be ‘terminal” or ‘‘screen’. Rule [6] is the equi-
alent definition for a printer locationThe output specifi-
cation here is for a printefThen poutput can be (1)

“ printer”, (2) “imagen’ or (3) “laser writer”.

[1] file --> mod, mod, filemod, [file].

[2] directory --> mod, mod, [directory].
[3] fileordir --> mod, mod, filemod, [files].
[4] location --> prep, mod, dir.

[5] slocation --> prep, mod, soutput.

[6] plocation --> prep, mod, poutput.

The second type of object definitions include objects other
than those to do with files and directories. Sowsareles

are shown bels. Rule [1] shows the definition of a queue
in terms of (1) a modifiefollowed by (2) [printerqueue].
There are definitions of users by rules [2] and [3]. Rules
[4] and [5] define names. The definitions of objects are
simply definitions of the arious ways with which users
refer to the objects.

[1] queue --> mod, [printer, queue].
[2] users -->
names, mod, [users], prep, mod, [system].
[3] users --> names, [system, users].
[4] names --> mod, [names, of].
[5] names -->[].

Knowledge for solving (DataCon)

The knowledge for solving in OSCON consists of files of
data that describe detailed information about Operating
Systems. Therare four types of kneledge stored here

(1) Basic command representation, (2) Option representa-
tion, (3) Concept representation, and (4) Plan representa-
tion.

Basic command representation

There are basically four types of information
about ay command held in the database. These are (1)
Preconditions, (2) Effects or Postconditions, (3) Syntax,
and (4) Command Names. Preconditions are lists of
objects that are necessary for a command taxbeuted.
Here are some examples of preconditions for commands
from UNIX. Rules [1] and [2] she that ‘more” and
“cat” have the precondition, file’’. The command,
“mkdir” has the preconditioridirectory” and “cp” has

[A directory is a set of files.

no precondition.

[1] precon(more, [file]).

[2] precon(cat, [file]).

[3] precon(mkdir, [directory]).
[4] precon(cp, []).

Effects, or postconditions, are definitions of the outcome
of commands. The effect is defined by a predicate which
has a name and three arguments. The predicate name is
the action and the arguments are (1) object, (2) object
modifier, and (3) location. The rules bely show some
effects for UNIX commands.Rule [1] shows the &ct

for the command‘ore”. The object for ‘more” is
“file” and its modifier ‘contents’. The location of output

of “more” is the ‘screen’. One case of thécat” com-
mand [2] has the same effect aadre”. The other dect
case of ‘cat” [3] is defined as concatenate and describes
the concatenation of files togethihe command‘ls”

will either display directory contents [4], or file informa-
tion [5] on the screen. The displaying-information com-
mand ‘users’ will display usernames on the screen. Rule
[7] describes thégemacs’ command which creates files,
and rule [8] the “rm’command which deletes them.

[1] comm(more, display(file, contents, screen)).
[2] comm(cat, display(file, contents, screen)).

[3] comm(cat, concat(filel, file2, file3)).

[4] comm(Is, display(directory, contents, screen)).
[5] comm(ls, display(file, info, screen)).

[6] comm(users, display(usernames, @, screen)).
[7] comm(gemacs, create(file, @, loc)).

[8] comm(rm, remove(directory, @, loc)).

The syntax of commands is defined as a structure which
contains the name of some command and then its syntac-
tic definition of use. Shwn belav are some examples of
the syntax for UNIX commands. The syntax rules are
three place lists containing (1) Command name, (2)
Optionname (filled in from comt®), and (3) Syntax
description.

[1] syn(more, Optionname, "[more <filename>]").

[2] syn(cat, Optionname, "[cat <filename>]").

[3] syn(ls, Optionname, "[Is <directoryname>]").

[4] syn(users, Optionname, "[users]").

[5] syn(gemacs, Optionname, "[gemacs <filename>]").

Option representation

DataCon also contains information for option specifica-
tions of commandsDataCon has files for (1) Option Pre-
conditions, (2) Option Effects, (3) Option Names. There is
no distinction for option syntax as this is practically the
same for commands with options or not.

Option Preconditions are defined as three place lists with
the (1) Command Name, (2) Option name, and (3) Pre-
condition List. Shown belo are a set of options for the
various commands. The Precondition List contains the
objects which must be present for the command to be
executed. Rules [1],[2] and [3] skothat each option for
“cat” has ‘file’” as precondition. Rule$4] and [5] shav

that for one option of‘'¢p” (i) there is no precondition,
and for the other option (r)idirectory” is the precondi-
tion. Rules [6] and [7] shvathe preconditions for “Is”.

[1] opprecon(cat, n, [file])

[2] opprecon(cat, s, [file])

[3] opprecon(cat, v [file])

[4] opprecon(cp, i, [])

[5] opprecon(cp, &, [directory])
[6] opprecon(ls, f [directory])
[7] opprecon(ls, I, [])

The definition of the Option Effects are also stored as
strings of English wrds. This is merely a ceenience for
generation. The definitions will enable the generator to
give nore detail about the specific effect of some option.
Each rule here contains (1) Command Name, (2) Option
Name, and (3) Option Effect with an English description.

[1] opeffect(more,#,
"set the window size to # lines").
[2] opeffect(more,c,
"display each page after cleaning screen").
[3] opeffect(more,d,
"prompt to hit space to continue at each screen").

[4] opeffect(cp,i,
"prompt file name when overwriting").
[5] opeffect(cp,p,
"preserve the modification information from
the source").
[6] opeffect(cp,r,
"copy each subtree rooted at that directory").

Option Name definitions are similar in spirit to the Com-
mand Efect specifications defined in the “Basic com-
mand representatidrsection abge. Howeve, the defini-
tions here are for specific options. The option definitions
have three arguments: (1) Option fEft defined as an
action(object) specification, (2) the Command Name, and
(3) Option Name. The first three rules [1],[2] and [3]who
the option wariations on‘tat”. The various options alo

the displaying of file contents in a specific manie
also shav the options for'‘ls’’ (rules [4]-[10]) and for
“cp” (rules [11]-[13]). Note that a characteristic of
options is that sometimes theavethe same action as the
main action (e.g. display and display(non-printing-charac-
ters)) while other times tlgehave a dfferent action (e.g.
display and squeeze(blanklines)).

[1] opcomm(number(lines), cat, n)
[2] opcomm(squeeze(blank-lines), cat, s)
[3] opcomm(display(non-printing-characters), cat, v)

[4] opcomm(include(hidden-files), Is, a).

[5] opcomm(display(directory-name), Is, d).
[6] opcomm(display(directory-content), Is, f).
[7] opcomm(display(group-ownership), Is, g).
[8] opcomm(display(long-listing), Is, I).

[9] opcomm(sort(file-ages), Is, t).

[10] opcomm(display(subdirectories), Is, R).

[11] opcomm(prompt(overwriting), cp, i).

[12] opcomm(presewe(modification-information), cp, p).
[13] opcomm(copy(subdirectories), cp, r).

Concept representation

DataCon also contains a set of definitions of the possible
concepts which a user may wish to ask about. Such con-
cepts are considered to be Operating System objeets lik
files and directories, and conceptliiping and filtering.
Concept representations are three place lists with (1) Con-
cept name, (2) Concept name pluralized, and (3) English
description of conceptWe dow the definitions for ,
“ada”, “working directory’ and “unix’’ here.

[1] con([ada],[ada],
"Ada is developed on behalf of the U.S. Department of
Defense for use in embedded systems. Ada is the first
practical language to bring together important features
such as data abstraction, multitasking, exception
handling, encapsulation and generics.").

[2] con([working, directory],[working, directories],
"The directory you ar e working in.").

[3] con([unix],[unix],
"UNIX Operating System manages the resources of your
computer system to perform useful work on your behalf.
It is composed of three major parts: the kernel,
the file system, and the shell.").

Plan representation

DataCon contains a list of possible Plans for command
sequences which users may ask about. These command
sequences are defined in terms of predicates whieh ha
five aguments. Thdirst three aguments represent (1) an
action, (2) an object, and (3) location of output. The last
two aguments define the second action and its output
location. W& chow two example rules bels. Rule [1]
represents displaying directories on the screen and then on
the printeyand Rule [2] likewise for files.

[1] plan(display,directory,screen,display,printer).
[2] plan(displayfile,screen,display,printer).

NATURAL LANGUAGE UNDERSTANDING

The most important part of grprogram which acts as a
natural language interface is the natural language under
stander There must be some means of mapping a user
qguery into a good meaning representation of that query
The problem, of course, is that there are veryymwaays

of specifying queries in English. The first job of the natu-
ral language interface is to use some type of syntactic fil-
tering which determines the type of query beingedsk
The filter will check queries for certain objects or phases
and works as a fast mechanism for determining query
type. The second job is that of determining the meaning of
a query, or its content, once the type of query is deter
mined. Lets take a bok at the tw components of
OSCON which tackle these twproblems.

Parsing natural language queries (ParseCon)

The parser calleddPseCon has the job of determining the
type of query presentThere are characteristic ways of
asking certain types of queries and the parser checks for
these. Theparser checks for the four basic types of query
described in section 1. The ParseCon module has lists of
the characteristic ways which people use to ask queries
about particular query types.

One of the query types chexk for is what-is concept.
There are a number of characteristic phrases which are
used. Some of these are listed lbeldhe first set of rules
[1-4] and rules [1a-1e] define the syntax of whatuld
come before and after some concept respebgti The
second set of rules [6-11] only define possible uses of syn-
tax before the conceptibdo not reflect anafter-concept
syntax.

[1] firstphrase([what, does|X], 0l).
[2] firstphrase([what, a|X],02).

[3] firstphrase([what|X],03).

[4] firstphrase([what|X],04).

[1a] secphrase([mean|X],01).
[2b] secphrase([is|X],02).

[3c] secphrase([is|X],03).

[4d] secphrase([are|X],03).
[5e] secphrase([means|X],04).

[6] wphrase([what, is, a]).
[7] wphrase([what, are]).
[8] wphrase([what, is]).
[9] wphrase([explain]).
[10] wphrase([describe]).
[11] wphrase([]).

Another query type checked for is what-ieef. Here,
aguin there are a number of possible characteristic
phrases. W list some here Similarly, there are rules for

(i) what-is-precondition, (ii) what-is-syntax, (iii) what-is-
command, () what-is mentioned command, and (v)
what-is mentioned concept queries. Of course, there are
syntax rules which will be compatible for all query types.
However, this is not a problem because there are other
characteristics of query types which separate them out.

[1] firstdesc([what|X],01).
[2] firstdesc([does|X],02).
[3] firstdesc([does|X],03).

[1a] secdesc([does|X],01).
[2b] secdesc([do|X],02).
[3c] secdesc([heeg|X],03).

[4] desc([what, happens, with|X]).
[5] desc([result|X]).

[6] desc([results|X]).

[7] desc([uses, of|X]).

[8] desc([effect, of|X]).

Determining query meaning (MeanCon)

The function of the MeanCon component of OSCON is to
determine query meaning. This isvidius for most query
types except for what-is-command queries. These queries
involve complex phrasings of English to describe the
effects which the user wishes ta@eeute. The MeanCon
component of OSCON has the function of determining the
occurrence of objects in user queries. There avense
types of object searched for: (1) command name, (2)
option name, (3) verb reference, (4) object, (5) object
modifier, (6) object location, and (7) concept.

MeanCon has a predicate callidcmd which searches

for command names. The mention of command name is a
good indicator of the type of query being @edk Ifa com-
mand name is present this indicates that the query is prob-
ably about (1) command preconditions, (2) command
effects, or (3) command syntax. MeanCon also has a
predicate calledindopt which searches for mention of
option names in queries.

One of the most ditult types of user query to be under
stood by the system are what-is command for mentioned
effect queries. These are queries where the userwso
what he/she wishes to accomplish but does notvkhe
command to do that. In these cases the user will specify
in English, some process, ofesft, which he/she wants to
be eecuted. The processfett can be described with (1)

a primary verb and (2) a secondargria The user will use

a primary verb to describe the main action/command in
guestion. Asecondary verb may be used to describe a
restriction on the main action/command. This restriction
could be a definition of some option specification for the
major command.

Therefore, MeanCon has algorithms which check for (i)
Primary Verb, (ii) Primary ¥rb Object, (iii) Object Modi-
fiers, and () Locations. There are also algorithms which
search for (i) Secondary Verb, and (ii) Secondary Objects
which usually describe option effects.

In checking for what-is-command queries the user will
usually specify some action with @na This will be fol-
lowed by the mention of an object such asfige™ or
“directory’. There may be a modifier of the object such
as ‘contents’. The location of the object may also be
specified such as “printéior ‘‘screen’ or ‘‘directory”.

Theres a pedicate in MeanCon callefindverb which
searches for verbs in user queries. When a verb is located
this will determine the major category of action/command.
Therefore, the word'delete’ will reference remang,
“see” will reference displaying and so on. MeanCon uses
the stored verb-action structures in kut@on to find erbs

in queries and their related action representations.

Another predicate calleihdobj searches for the object of
a erh Say, for example, the user had askeéHow do |

see a file?then the findverb predicate will locate therly
“see’. The query is split up so that the phrase after the
verb is checked for an object. The objetite’’ is located
and marked.

More comple queries may include modifiers and loca-
tions. Take the query“How do | see my file contents on

the screen?’In this case, the phrase “|..file contents on
the screen?’is dhecled for an object by findobj. Then,
“]..contents on the screenf® checled for modifier by
findmod. Findmod locates “contentsas a nodifier.

A predicate calledindloc checks for locations in queries.
Locations include ‘Screen’, ‘‘printer” and “directory”.
In our xample, “|..on the screen® checled for location

and “screeni’is uncovered.

MeanCon has a predicate calfgtticon which checks for
concepts in user queriesor example, the existence for
the concept, ‘a4da” will denote a query asking about,
“ ada”.

RULES FOR SOLVING (SolveCon)

Now that we hge defined the datavailable to OSCON
before the system begins to process a query wee rao

to describe the rules which match user queries to database
information. SoleCon determines the answer for a query
by (1) building an uninstantiatecbfmal Query from the
query (2) matching this structure to the DataCon
database, (3) retrieving data from the database, and (4)
using the data to build an instantiatextriial Query which

is passed back to the GenCon natural language generator
We dhall describe the answering process i seps: (1)

the algorithm used by Sa@Con to specify the query and

to retrieve cata from the database, and (2) the structure of
instantiated Brmal Queries returned by SolveCon to the
GenCon generator.

The solving algorithm

The Soler basically searches queries for three types of
information: (1) Command Names, (2) English Descrip-
tions of command effects, and (3) Concepts. The search
process in conducted in the following order.

[1] SolveCon checks to see if a command name is men-
tioned in the queryThen, (a) SolveCon checks if an
option (e.g. -l) is mentioned. If (a) fails then (b) SxBion
checks if the query is which-option. This check is done by
having ParseCon check the syntax of the quéaying
MeanCon check for an English Description of an option
effect. If either (a) or (b) are satisfied Seon will
retrieve from the database Option Preconditions, Option
Effect, Option Syntax, and Option Name.

If (8) and (b) hae both failed then (c) SolveCon checks if
the query is a what-is-precondition, what-is-effect or
what-is-syntax queryHere, SolveCon checks the syntax
acpin using RrseCon. If(c) fails, then (d) SokCon
checks the query for what-is-mentioned-command query
PaseCon is imolved here too.If either (c) or (d) are sat-
isfied SolveCon will retriee Command Preconditions,
Command Effect, Command Syntax, and Command
Name from the database. If (dailE then SoleCon
moves on to $ep [2].

[2] SolveCon checks the query semantics. In this case the
user must hae asked an English query with no command

names. (i)SolveCon has &seCon check the syntax of
the query (ii) Then, SoheCon calls MeanCon to check
for a Primary ¥rb, Verb Object, Modifierand Location.
SolveCon will retri’e Gommand Preconditions, Com-
mand Efect, Command Syntax, and Command Name
from the databaseNext, (iii) SolveCon has MeanCon
check for a Secondary Verb (option action), and Sec-
ondary \érb Object. SolveCon will retrize from the
database Option Preconditions, Option Effect, and Option
Syntax. Ifstep [2] fails then SoRCon goes on to step [3].

[3] SolveCon checks the query semantics. In this case the
user must hae asked an English query wolving no com-
mand names.Also, the query must be about command
combinations, or pipes, otherwise step [2puld hae
passed. SokCon checks for the existence of a command
combination in the user quergolveCon has MeanCon
check for the existence of a sentence connecta lik
“and’. If this occurs then is it possible that the query
involves command combinatiorSolveCon then calls the
SolveCon algorithm again for (1) the piece of the query
before the connectpand (2) the piece of the query after
the connector The data returned from (1) and (2) is inte-
grated. If[3] fails then SolveCon tries step [4].

[4] SolveCon checks query syntax throughrdeCon.
Then MeanCon searches for concepts mentioned in the
qguery Examples of such concepts at@da’ and “protec-
tion”.

Structures returned

The step of SokeCon which succeeds will return an
instantiated Formal Query to the generatior gep [1], if
cases (a) or (b) succeed, an instantiated Formal Query will
be returned containing the folling: (1) Option Precondi-
tions, (2) Option Hect, (3) Option Syntax, (4) Option
Name, and (5) Queryype. Instep [1], if cases (c) or (d)
succeed, the instantiatedrmal Query contains: (1) Com-
mand Preconditions, (2) Command Effect, (3) Command
Syntax, (4) Command Name, and (5) Query Type.

In step [2] the Brmal Query returned will contain slots
for: (1) Command Preconditions, (2) Commantk&f, (3)
Command Syntax, (4) Option Preconditions, (5) Option
Effect, (6) Option Syntax, and (7) Querype. Thecom-
plete structure will be instantiated when step [2pives
options. Havever, only parts (1),(2),(3), and (7) are
instantiated when there is no mention of options.

With step [3] a list containing twinstantiated érmal
Queries is returned. Each formal query will contain: (1)
Command Preconditions, (2) CommandeEf, (3) Com-
mand Syntax, (4) Command Name, and (5) Query Type.

In step [4] a Formal Query with three pieces of informa-
tion is returned.The structure contains (1) the Concept
Name, (2) Concept Description, and (3) Query Type.

NATURAL LANGUAGE GENERATION (GenCon)

The final phase of the OSCON program is to map an
instantiated formal representation into an English answer
There are tw types of answer which may be returned to
the user: (1) Stored English sentences describing some
concept which are contained in the DataConvkadge
base, and (2) English sentences mapped out from instanti-
ated Formal Queries.

The natural language generator for the OSCON system is
used to map instantiated formal queries into English
answers. The generator hasfiwvimary components:
[1] psyntax: gives the syntax for a command
[2] peffect: gives the effect of some command
[3] pexample:gives an &le on the use
of some command

[4] ppre: gives the preconditions for some command
[5] ppipe: gives the commands wmlved in some

piping example and an example of the piping

For each of the major query typegnous configurations
of printing components are used. There are three types of
what-is-attritute query: (1) what-is-precondition, (2)
what-is-efect, and (3) what-is-syntaxin these cases the
components [1], [2], [3] and [4] are combined in order
Printing out the syntax for some command igiafi The
syntax is already stored in the DataConwleage base.
This is just returned to the usePrinting out precondi-
tions is quite trial too as all GenCon has to do is to print
those preconditions retkied from the DataCon precondi-
tion information.

Generation for what-is-Bfct queries is more comple
GenCon will print command fefcts by (1) checking to see

if the output should be in plan/pipe form, and if it is, then
generating the answer in plan/pipe form; (2) generating
the (a) Command Syntax, (b) Effect and (c) Preconditions
for the command. The f&fct is generated from the instan-
tiated Formal Query produced by Seon which con-
tains action, object, object modifier and object location.
The latter information is generated in sentence form.
Some interleaving information such as the output of
prepositions between object modifier and location are han-
dled too.

For what-is-command for effect queries the latter algo-
rithm is used. For what-is-mentioned command compo-
nents [1], [2], [3] and [4] are usedror what-is mentioned
concept, the answer is output from a stored piecexof te
Often users ask queries about commands as conceps.
generation of these is simple as the definitions of such
concepts are just stored as English descriptions in the first
place. Thereforeall GenCon has to do is to map the
stored sentences into English answers. Mewritten a
simple algorithm which maps the Englisktténto pretty
format on the screen.

AN EXAMPLE

In this section we shwo an example of hav the query
“How do | :2e my files with numbered lines%’s under-
stood and answered by OSCON. First, SolveCon attempts
to find out the type of query being ask Initially, Solve-
Con tries step [1] to match the query as one mentioning a

command and there is no match. Then step [2] is tried
and a match occurs. The query is a semantic ocae. P
seCon is called forth and a syntactic match is found.
“How do I” matches the syntactic form [Wwp do, i] for
what-command queries.

Next, SolveCon calls MeanCon which analyzes the mean-
ing of the sentence. (i) Findverb checks for a verb and gets
“see’. From KnowCon, ‘display” is marked as the
action. Then(ii) findobj checks ‘How do I" and “my

files with numbered linesf or objects. ‘Files” is matched

as an object.Data from the query (i.isplay(file,con-
tents,*)) is matched against the DataCon databa$ecEf
and a match is found witllisplay(file,contents,screen)
This efect match from the query data to DataCon will
allow SolveCon to retriee (1) Command Preconditions
(ffile]), () Command Hect (display(file,con-
tents,screen)), (3) Command Syntax (cat -n <filename>),
and (4) Command Name (cat).

Next, the query is chedd for existence of a secondary
action. The finderb predicate retnes “numbered’ as a
secondary action and its object is retegk as ‘lines”.

This representation is matchedaagst the option database
and number(lines) from the query matches number(lines)
in the Option Effect definition in the databaskhe Data-
Con database is referenced and (1) Option Preconditions,
(2) Option Efect, and (3) Option Name are returnéche
data retriged is integrated to form an instantiate@ifal
Query which is passed to the generatbhe representa-
tion for this query is as shown belo

% Command Effect
% Option Effect
% Syntax
% Preconditions
% Command Name
% Option Name

cquery(display(file,contents,sceen),
"with numbered lines",
[cat -n <filename>],
[file]),
cat),
-n).

The GenCon generator takes tharal Query and maps
it into an English answe() psyntax will print out “cat -n
<filename>", (ii) peffect will display “will display file
contents on the screén.and (iii) popeffect will display
“with numbered lines. T herefore, the complete answer
generated for this query is:

‘cat -n <filename>’ will display file contents
on the screen with numbered lines.

CURRENT STATE OF THE IMPLEMENTATION

The OSCON program can wanswer @er 1000 English
gueries. Themaximum time for a query answer is 2.5
seconds when the Sun computer is at load. OSCON
answers four major types of query (1) what-is-attebof
mentioned command, (2) what-is mentioned command,
(3) what-is-command for mentioned effect, and (4) what-
is-mentioned concept. There are three cases of type (1):
(1) what-is-precondition (2) what-isfett, and (3) what-
is-syntax. In real terms this brings the query typesrea

up to six. The system answers the latter three query types
with options and will soon answer the other types with

options. OSCON database contains information on 40
UNIX and 40 MS-DOS commands with their respezti
preconditions, effects, syntax and command names.
OSCON has 20 grammar rules for understanding thesw
that users ask queries about categories of commands.
OSCON also contains 10 plan sets for possible combina-
tions of commands.

COMPARISON TO OTHER SYSTEMS

There are basically twother natural language consultants
for Operating SystemsThese are the Unix Consultant
(UC), and the Sinix Consultant (SC).

The Unix Consultant (UC) (see ildhsky et d. 1984,
1986, 1988; Chin 1988) is a natural language consultation
system for UNIX, and is in mgnways similar in scope
and intent to OSCONHowever, there are someely df-
ferences: (1) While OSCON is a specialized system with
the sole goal of providing detailed expert help, UC has the
broader goal of studying knowledge representation and
planning (as well as natural language understanding) at a
basic leel. As such, UC taks a fundamentally dérent
approach to kneledge representation, in that employs a
much more general kadedge representation and plan-
ning mechanism, with a sombat cognitve flava. UC
contains only one knowledge base of Operating System
concepts which must seroth the understanding and the
solving phases of query resolution, while OSCON incor
porates specialized representations for each function.
Hence, UC must sacrifice some of the specializatiol b
into OSCON.

(2) Not unapectedly an ekamination of the examples pre-
sented in Wensky et d. (1986) suggests that UC will
have © perform far more ®ensve pocedures to sotva
given query, and that it may not be able to answer some of
the \ery detailed queries that OSCON will address; (3)
UC is not intended to be a consultant which will help
users migrating from one system to anathie is a ©n-
sultant for the UNIX Operating System.eWdo rot claim

that the UC system could not act as a consultant on other
Operating SystemsWe daim that the Ber&ley team hae

not concerned themsels with putting information from
more than one Operating System in their program; (4) It is
a characteristic of computer Operating Systems that com-
mands can be combined in various waysxecete com-
plex processes. IWilensky et d. (1986, p. 6-10) there
are a number of examples of the queries which the UC
system handles. These examples are intended o thleo
kinds and scope of requests answered by the system. None
of the kamples inolve cmommand compositions but oper
ations of single command&’he UC system has no capa-
bility for answering compbe natural language queries
which involve ammmand sequencing; UC and OSCON are
not truly competitors, but rather systems withfediént
emphases.

The Sinix Consultant (SC) (seesitike 1986, 1987; Heck-

ing et al., 1988) is a broad-based UNIX help system It is
similar to OSCON in that it is designed from the start to
be an Operating System consultant rather than a more
general system into which a UNIX model is embedded.

Although SC contains a rich kemtedge base, which
reflects the technical aspects of the domain as well as the
users viev of the system, the focus of SC,dilJC, is to
provide help on the use of individual commands, rather
than the interconnection of\aeal. Our knowledge repre-
sentation of plans has more emphasis on answering com-
plex queries. Therés no mechanism whereby the SC sys-
tem will understand comptecommand sequences. Wo

evea, the authors do predict in Hecking et al. (1988) that
future deelopment of the SINIX Knwledge Base will
include ‘combinators’ f or I/O-redirection and pipelining.
The SC system has a dialogue modeling component, for
(1) handling elliptical queries, and (2) anaphora.

There are seeral other consultation systems for Operating
Systems, including CMS-HELP ddoped by Yin (1984),
TVX by Billmers & Garifo (1985), Wizard (see Shrager &
Finin 1982; Finin 1983), and USCSH by Matthews &
Pharr (1987).However, dl of these systems appear to be
either fr less ambitious in scope than OSCON, or else
have a btally different emphasis. In particujal appear

to emply rather simple surface models of UNIX.

CONCLUSION AND FURTHER WORK

It is concluded that it is possible toildl a computer pro-
gram which will answer natural language user queries
about Operating Systems.eWhave shovn how this is
done by the OSCON systemlThe OSCON program
answers wer 1000 English queries in English. Each query
is answered within seconds.

The deelopment of ay program likk OSCON is
enhanced if the program is built in a modular form where
each module has a distinct function. This has been done
for OSCON which is dided up into six distinct modules.
This methodology allws for easy update of the program
and also will allev the possibility of mapping the program
over to a rew domain.

In comparing OSCON to the other three systevaiiable
today OSCON turns out to Y a dfferent emphasis. The
OSCON system is more concerned with the detail of
Operating Systems and natural language processing rather
than an experiment on cognii nodeling. Also, OSCON

is the only system which answers queriagliving com-
mand combinations.

There are three areas of furtherorv proposed for
OSCON which are all part of a dialogue interface to be
added to the system. These are: (1) cdrd®rage mecha-
nisms, (2) reference determination algorithms, and (3)
user modeling capabilities (see Chin, 198®)jialogue
management is important and it will permit the user to ask
gueries without having to spell the queries out in elaborate
English. Initialthoughts on this research are reported in
Ball et al. (1989).

ACKNOWLEDGEMENTS

We would like to thank Zhaoxin Pan for programming
parts of OSCON. Also, Hans Brunné&ndy Parng and

Scott Wlff of the Intelligent Customer Assistance Project
at U SWESTAdvanced Technologies are thanked for

consultations on this research.

REFERENCES

Ball, Jerry John A. Barnden, Sylvia Candelaria de Ram,
David Farwell, Louise Guthrie, Cheng-Ming
Guo, Stephen Helmreich, Paul Me@Wtt, Liu
Min (1989) The need for belief modelling in
natural languaye pocessing In Proc. of the
International Conference on Cross-Cultural
Communication (ICC-CC-89), rihity Univer-
sity, San Antonio, Exas, March.

Billmers, Meyer A. & Michael G. Carifio (198%uilding
knowledg-based operating system consul-
tants Proceedings of the Second Conference
on Atrtificial Intelligence Applications, pp.
449-454, Miami Beach, December.

Chin, David (1988) “Exploiting userxgertise in answer
expression’ In Proceedings of the Senth
National American Conference on Artificial
Intelligence (AAAI-88), St. Paul, Minnesota,
Vol. 2, 756-760, August.

Douglass, R. & Hgner Stephen J. (1982)An expert
consultant for the UNIX operating system:
Bridging the g@p between the user and com-
mand language semanticsin Proceedings of
the CSCSI/SCIEO, Conference 1982, Saska-
toon, Saskatchean, 92-96, May.

Finin, Timothy W. (1983) Providing help and advice in
task oriented systemsProceedings of the
Eighth International Joint Conference on Atrti-
ficial Intelligence (IJCAI-83), Karlsruhe, >
Germa, pp. 176-178.

Hecking, M. C. kemke, E. Nessen, D. Dengjevl. Gut-
mann & G. Hector (1988) “The SINIX consul-
tant —a progress repdrtMemo Nr 28, Uni-
versitat des Saarlandes, FB 10 Informatik 1V
Im Stanvald 15, D — 6600 Saarbrucken 11,
Fed. Rep. of GermanAugust.

Hegner Stephen J. (1988Repesentations of command
language kehavior for an operating system
expert consultation facility In “Intelligent
Help Systems for UNIX — Case Studies in
Artificial Intelligence’ Peter Norvig, Vlfgang
Wahlster & Robert Wensky (Eds.), Heidel-
bery: SpringetVerlag Symbolic Computation
Series.

Hegner Stephen J. & Douglass, Robert J. (1984)owl-
edge base design for an operating system
expert consultant Proc. of the Fifth National
Conference of the Canadian Society for Com-
putational Studies of Intelligence (CSCSI),
London, Ontario, Decemhel59-161.

Kemke, Christel (1986 The SINIX Consultant — ReqgHr
ments, Design, and Implementation of an intel-
ligent Help System for a UNIX Derivative
Universitat des Saarlandes, Kl-Labor (SC-

Project), Bericht Nr11, October

Kemke, Christel (1987Repesentation of domain knowl-
edee in an ntelligent help systemin Human-
Computer Interaction — INTERACT 87, H.J.
Bullinger and B. Shakel (Eds.), pp. 215-220.
Amsterdam: Elsder Science Publications B.V
(North-Holland).

Matthevs, Manton & Walter Pharr (1987Knowledge
acquisition for active assistancePreprints of
the First International Workshop on Kab
edge representation in the UNIX help domain,
University of California, Berkley, California,
December.

Mc Kevitt, Paul (1986)ormalization in an English inter
face to a UNIX database Memoranda in
Computer and Cognite Sience,
MCCS-86-73, Computing Research Labora-
tory, Dept. 3CRL, Box 30001, Ne Mexco
State Unversity, Las Cruces, NM 88003-0001.

Mc Kevitt, Paul (1988)Rules of infeznce in an opeting
system consultantln Proc. of the First Irish
National Conference on Artificial Intelligence
and Cognitie Sience (Al/CS-88), ®l. 1, Uni-
versity Industry Center University College
Dublin, Dublin, Eire (Republic of Ireland),
September.

Mc Kevitt, Paul & Yorick Wilks (1987)Transfer Seman-
tics in an Opeating System Consultant: the
formalization of actions involving objecttrs-
fer. In Proceedings of the Tenth International
Joint Conference on Atrtificial Intelligence
(IJCAI-87), Vol. 1, 569-575, Milan, Italy
August.

Selfridge, Peter G. (1988How to print a file: An epert
system approach to software knowledge repre-
sentatior’ In Proceedings of the 8enth
National American Conference on Artificial
Intelligence (AAAI-88), St. Paul, Minnesota,
Vol. 2, 380-385, August.

Shrager Jeff & Tim Finin (1982)An expert system that
voluntees advice Proceedings National Con-
ference on Artificial Intelligence (AAAI-82),
pp. 339-340

Robert; Arens, Ygal & Chin, David (1984)
Talking to UNIX in English: An eerviev of
UC. Communications of the ACM, Vol. 27,
No. 6, June, 574-593.

Wilensky, Robert; Mayfield, Jim; Albert, Anthony; Chin,
David; Cox, Charles; Luria, Marc; Martin,
James and Wu, Dekai (1988 — a pogress
report. Report No. UCB/CSD 87/303, Com-
puter Science Division (EECS), Wersity of
California, Berkelg, California 94720, July.

Wilensky, Robert; David N. Chin, Marc Luria, James Mar
tin, James Mayfield and DekaiiN1988) The
Berkelg UNIX Consultant poject

Wilensky,

Computational Linguistics, Vol. 14, No. 4,
35-84, December.

Yun, David Y & David Loeb (1984)The CMS-HELP
expert system Proceedings International Con-
ference on Data Engineering, IEEE Computer
Society 459-466, Los Angeles.

APPENDIX A

This appendix contains a list of some of the queries which
OSCONJ1.2] currently answers. The maximum time
taken to answer anquery is 2.5 seconds. The query sets
have teen dvided into four major types (1) what-is-
attribute of mentioned command, (2) what-is mentioned
command, (3) what-is-command for mentioned effect, and
(4) what-is mentioned concept.

| ?- cscon.

OSCON Program 1.0 (Sun-3, Sun Unix 4.2)

Copyright (C) 1988, Computing Research Laboratory.

All rights reserved.

Dept. 3CRL, Box 30001, NMSU, Las Cruces, NM (505) 646-5466
U S WEST Advances Technology

Please input your question ending with with a ‘?’

Write ‘quit’ when you are finished

--> what does Is do?
‘Is <directoryname>’ will display directory contents on the screen.

--> what happens with rm?
‘rm <filename>’ will remae a fle from your current directory.

--> what is the effect of date?
‘date’ will display a date on the screen.

-->what does more -c do?
‘more -c’ will display each page after clearing the screen.

--> what is the syntax of rm?
It has the syntax ‘rm <filename>'.

--> How do i use cp?
It has the syntax ‘cp <filel> <file2>'.

--> how does he use more?
It has the syntax ‘more <filename>’.

-->what is Is?

‘Is’ is a command.

It has the syntax ‘Is <directoryname>’.

‘Is <directoryname>’" will display directory contents on the screen.

--> what is more?

‘more’ is a command.

It has the syntax ‘more <filename>’.

‘more <filename>’ will display file contents on the screen.
‘more’ only takes the argument ‘file’

--> how do i see my file?
‘more <filename>’ will display file contents on the screen.

--> haw do i see my file on the screen?
‘more <filename>’ will display file contents on the screen.

--> how do i see my file on the printer?
‘Ipr <filename>’ will display file contents on the printer.

--> how do i see all my files?
‘more <filename>’ will display file contents on the screen.

‘Is <directoryname>’" will display directory contents on the screen.

--> how do i see this file?
‘more <filename>’ will display file contents on the screen.

--> how do i e that file?
‘more <filename>’ will display file contents on the screen.

--> how do i see his files?
‘more <filename>’ will display file contents on the screen.
‘Is <directoryname>’ will display directory contents on the screen.

--> how do i read my files?
‘more <filename>’ will display file contents on the screen.
‘Is <directoryname>’ will display directory contents on the screen.

--> how do i list my files and print my files?

‘more <filename>’ will display file contents on the screen.

‘Ipr <filename>’ will display file contents on the printer.

To dsplay file contents on the printer use ‘more <filename> | Ipr’

--> what are aliases?
alias is the ability to establish shorthand names
for frequently used but long-winded commands.

--> quit.
over

yes
|

