Natural language meaning representations
of
queries about operating systems

Paul Mc Keuvitt

Computing Research Laboratary
Dept. 3CRL, Box 30001
New Mexico State Uniersity
Las Cruces, NM 88003-0001, USA.
CSNET paul@nmsu.edu [(505) 646-5942/5466]

ABSTRACT

An essential component ofyanatural language consultant program is a mechanism that
constructs good meaning representations of user qu&kieen people ask queries about
computer operating systems yheften refer to interrelated actions and objecthese
temporal interrelations should be recognized and captured within semantic structures.
Actions or commands, and relations between them, can be described by embedded action
representations. Embeddadtion representations are constructed from deep case struc-
tures. A theory of embedding enables efficient parsing of queries about operating sys-
tems. Theaheory is applied in an operating system consultant cAIg2DN.

(orhe Computing Research Laboratory is partially funded by the Ne
Mexico State Legislature administered by its Science amchriology
Commission as part of the Rio Grande Research Corridor.



0. Introduction

When people ask queries about computer operating systeynsftire refer to inter
related actions and objects. It is possible to build a computer program which will answer
natural language queries about computer operating systems. An essential comporyent of an
such program is a mechanism which constructs good meaning representations of user
queries. Such representations will enable the correct understanding, by the program, of
what the user is asking about.

A good way to understand the requirements of a natural language understander for
operating systems is to build a theory about the way people use English to ask questions on
these systemskor example people ask queries likéH1ow do | print a file on the Xerox
with pageheaders?”, ofHow do | ell a file and then a the mistakes printed on the
Imagen?’T he former query has one action, thapahting, and the latter has twactions,
that offinding-mistakeandprinting-on-Imayens. Of course, some queries\ero actions
at all. These are queries éikKWhat is a file?" or *‘What is a pipe?’ Such queries are
static and imolve answers which are descripéi rather than dynamic. Therefore, operating
system queries are about the dynamics of the system, i.e., queries about actions such as
printing, removing or deleting; or about the statics of the system, i.e., queries about static
objects such as files, file-structure, pipes, and sdHagner (1987) has termed the former
dynamic querieand the latteconcept description queriedt is necessary to delop some
mechanism whereby meaning representations for multiple action queries cargtseadte
in a sensible mannéerhat is what this paper is about.

1. The Operating System CONsultant

At the Computing Research Laboratory we aneeldping a natural language uneer
stander for an operating system consultant called OSCTBLCON is being programmed
in Kyoto Common Lisp. The system is intended to help novice and expert users learn oper
ating system concepts. It is hoped that OSCON will answer user queries propaasi-
ing systems, although we are focusing on UNIXther computer operating systems of
interest are TOPS-201, VMST and VM/CMSH.

OSCON has a two-module architecturgoiming a natural language understander
and a knowledge base. The natural language understander has the function of understand-
ing and answering English queries. Query responses will be in English too. Wiedg®
base is detailed and formal and functions as a solving or answering matiel&navl-
edge base is being constructed at thev&dsity of Vermont by DrSteve Hegner. Work on
the knowledge base is discussa&teasvely in Douglass & Hgner (1982), Hegner & Dou-
glass (1984) and Hegner (1987). The two-module architecture is one of the principle
design features of OSCON. As pointed out by Hegner (see Hegner 1987, p. 1p-the tw
module architectureatilitates an important principle on the separation of understanding
and solving.

OUNIX is a trademark of AT&T Bell Laboratories.
T TOPS-20 and VMS are trademarks of Digital Equipment Corporation.
¥ VM/CMS is a trademark of International Business Machines Corporation.



2. A theory of embedding

We @an assume that ymuery about operating systems includes a number of actions
(which may be zero) and objects manipulated by those actioysmaaning representa-
tion of a query must contain, in some semantic form, the actions and objectsaiine $®
are related together.

Dynamic queries containing more than one action are more difficult to deal with.
There needs to be someayvof relating actions togethetet’s look at some morexam-
ples. In ‘How do | £nd a troffile to the Imagen?there are tw actionstroffing-a-fileg and
thensending-it-to-the-Imgen. In the query“How do | remove a fle printing on the Ima-
gen? there are also twactions. Those arprinting-a-file and therremoving-it What do
we notice about the actions in each query? Each action is related temporally to other
actions. Onection is &ecuted before another and the ordering is important.

To understand queries about operating systems we need to be able to recognize
actions and objects in the inpub d@o hat we need to represent actions and objects in the
system. V& reed to represent the meaning of words if the system is to determine whether
words in input sentences are actions or objects.

3. The components of a meaning representation

To determine whether ards in the input are objects or actions we need to represent
the meaning of words in the system. Therefore we neddtianary of words which tells
us the type of eachard. So,print will be represented as an action and so eeleteand
move Filesanddirectorieswill be typed as objects. &iuild a dictionary with entries lik
(file location object) (print action), (directory location objectand (user actor) Notice
thatfile anddirectoryare marked as being specific types of objects — locations.

The next problem we mustomry about is hey to define allavable operations of
actions. V& should build some structures which represent various actions andhley
relate to objects. Such structure®uld recognize incorrect operations of actions.
database of patterns is defined to represgat &tion operations. Patterns are semantic
templates for expecteddd actions. W\ oonstruct a pattern database with entrieg lik
(observe-obj <actor> <object>) This entry tells us that add sentence could include
actors observing object§ hus the query*How do | see a file?’would match this pattern.
We @an call the patterraction templates

To huild meaning representations for sentences, we need to be able to link action
templates together by some meaifie.do that there needs to be some precise definition of
what each action template means. Each action template sheeldhasociated meaning
structure. Such meaning structures should include actions, objects related to actions, types
of those objects, and actord/e all such meaning structuregep case structasand one
is shown in Figure 1.

Figure 1 is a case structure which tells us that to obsamuiject there can be an
observeran dject of observation, and a location for the observation to oEach entity
may hae sme descriptiontagged to it. The case structure also referencesfriames.
These are the action frames in the system that represent domain speuwifedigeocabout
operating systems. The structure and content of action frames is discussed in detail in Mc



(observe-obj ((actor _[)
(description ))
((object )
(description ))
((location )
(description _))
(framesprint list))

Figure 1 Case structure for observing objects.

Kevitt & Wilks (1987). For this example the frames are print and list which specify print-
ing-objects and listing-objects respgely. Already we note that domain specific informa-
tion will be selected if this case structure is referenddowever, the frame references in
case structures for action frames are notveakehere, although tlyeare useful in other
aspects of the OSCON system.

4. Embedded action representations

As already mentioned, user queries about operating system commands contain
embeddings of actions. It should be possible to create representations of nested or embed-
ded deep case structures to describe interrelated actidmsan call such representations
embedded action representations (ERER3perating system commands are related to
each other in specific ways. When users ask questions about such actiams#tly get
these relations correct. Therefore, if we build EREPs from user queries, the EREPs should
be a good approximation of the relations. This means that domain-specific structures pro-
duced from EREPs should often be correct. In fact, if the domain-specific structures are not
correct, the input query also contains relations which are incorrect.

Examples of typical actions which can occur in EREPs are printing, listing and delet-
ing. People can ask questions about UNIX such'ldew do | print a listing of my direc-
tory?”, or “I need to print a fil€. 1 n the former example weuild an EREP where the con-
ceptlisting is embedded inside the concepint and in the latter cagerint is embedded
insideneed These are examples of double embedding. Yet, triple embeddings result from
gueries such asHow do | delete a listing of my directoyyrinting on the Imageh.We
will now go on to siow how EREPs can be used to understand natural language queries.

OWe wse the symbol “_"to denote an unfilled slot in a case frame.



5. Null embedded queries ({A;}i=1)

If a query ivolves no actions, or just one action, then there will be no embedding at
all. If we useA, to represent the number of actions in a query then null embedded queries
are denoted byA,}i-o;. Concept description queries are simple questions about objects
with no presence of operating system actions. Therefore, concept description queries will
always exhibit null embeddingA typical example of a concept description query is the
sentence, “What is read protectionThe action templatée <object>)is used in deci-
phering this queryProtectionis defined under the category object from its dictionary entry
i.e., (protection object) The case structure for the action template is instantiated togi
the structure in Figure 2.

(be ((object PROTECTIOND
(description READ))
(frames protection))

Figure 2 Instantiated case structure for ‘be’.

Dynamic English queries illustrate null embedding when only one action is men-
tioned. For example, the queryHow do | delete a file?’has a representation with no
embedded actions at all. The query is parsed into the structure shown in Figure 3.

6. Positively embedded queries ({Ai}is»)

There are mantypes of embedding present in meaning representations resulting
from dynamic queries. @havealready seen that dynamic queries exhibit null embedding.
However they also exhibit positte enbedding, which means that the query includes more
than one actionWe all queries with tw or more actions positely embedded queries and
they are denoted by{A;}s,. Such queries hae & least one posite anbedding with one
action inside anotherAlso, we hae dscovered that there are mwartypes of positie
embedding and there are different ways of recognizing and processing these.

6.1. Explicit embedding

Explicit embedding occurs in representations for querigsivimg two or nore
actions. For example, the meaning representation for the ddery tlo | print a listing of

OIn the folloving case structure diagrams capitalized items indicate values filled in
from dictionary entries.



(delete-obj (actor USER)
((object FILE)
(description quantity ONE))
(framesremove))

Figure 3 Instantiated case structure for ‘delete-obj’.

my directory?”, has the concept of listing embedded inside the concept of printing. In pro-
cessing this quergn observe-patase structure is instantiated teegHgure 4.

(observe-pat (actor USER)
(case (observe-obj (actor )
((object DIRECTORY)
(description quantity ONE)
(description owner USER))
(frames print list)))
(frames print list))

Figure 4 Meaning representation exhibiting explicit embedding.

Figure 4 shows that deep case representation for listing is nested inside the represen-
tation for printing. The actor slot in the outer case representation is instantiated to be
USER. Thenner case structure contains directory as an object because the actor is asking
about listing directoriesIn Figure 4 we note that the actor slot in the inner case structure is
not instantiated However, this information would be determined from the outer case struc-
ture and promoted inwards.



6.2. Implicit embedding

Some vord in a user query may indicate implicitly the existence of another action
although this action is not mentioned directBay, for example, the system isvgn the
guery “How do | delete mail files?’ Naively, the system wuld believe that the user just
wants to delete an object calléite with descriptionmail. The system wouldwerlook the
fact that another action (in this cas®il) has created the object. In deriving a meaning
representation for this example a first step would be to construct the structure in Figure 5.

(delete-obj (actor USER)
((object FILE)
(description quantity MORE-THAN-ONE)
(description type MAIL))
(framesremove))

Figure 5 Implicit embedding I.

Now, to solve the problem of not recognizing implicit embedding, each object could
be checked wery time a representation is produced to establish whether that object or
action refers to another action template.this casemail is recognized as possibly refer
encing another actionindeed,mail (a description on the objetite) references the action
templatesendand its respecte ase structure. After some processing the EREP in Figure 6
is computed.It is noted that in Figure 6 the conceggindis embedded inside the concept
remove The actor as user is expressed inside each case structure. The send case structure
represents the fact that the user wishes to venmmore than one file by the quantity
descriptor.

6.3. Shadowed embedding

Often actions such asanting or needingcan shade the UNIX action which is
more important for the system to locate. Although we are primarily concerned with locat-
ing UNIX concepts, we do realize the importance of shadowing actions. Such actions are
very useful in detecting the goals of the user (sélesky et d. 1984, p. 589). The direc-
tion of reading the input query is important because stiadomay occur while reading a
sentence in one direction although it does not in the.otheamples of shadowing exist in
sentences li& “I would like to celete a file”, and “I need to print a fife’ On reading the
latter query from left to righheedshadowsprint. Howeva, if the query is read right to left
we get ‘A file, to print, | need?’ I n this caseprint is not shadewed. Yet, OSCON reads

-6-



(remove (actor USER)
(case (send (actor USER)
((object FILE)
(description quantity MORE-THAN-ONE))
(frames MAIL)))
(framesremove))

Figure 6. Implicit embedding II.

sentences left to right and therefore it needs tavkaimout shadwing. Thereare action
templates for shadowing verbs in the pattern database such as, (s-verb <actor> <pattern>).
For the query“l need to print a file?’the meaning representation shoin Figure 7 is
formed.

(sverb (need) (actor USER)
(case (observe-obj (actor USER)
((object FILE)
(description quantity ONE))
(framesprint list))))

Figure 7. Shadowed embedding.

We rote that the sarb case structure has only one case slot otheraittan called case

The actual shadowing verb used in the sentence is tagged onto the EREP as it may be use-
ful in later processing. As already mentioned, such information would be useful for-disco
ering the intention of the user.



6.4. Theintricacy of redundant embedding

Representations with redundant embedding are more a characteristic of the parsing
stratgy than a characteristic of Engliskor example, while parsing the queriHow do |
use print to print a file?’'the case structure for observing objects would become embedded
within itself. This happens because of implicit embedding rules. In effect, (1) the user has
mentioned printing files, and (2) the user has also mentioned the operation for doing so i.e.,
print. It would certainly be a mistaktio enbed in @amples such as this and OSCON must
have gratggies to recognize redundant embeddingy. fhis example the system produces
the case structure in Figure 8.

(sverb (use) (actor USER)
(object PRINT)
(case (observe-pat observe-obj) (actor ) ...)
(frames FRAME (object)))

Figure 8 Redundant embedding I.

From the previous example of implicit embedding we notice that the systerd Wnd

PRINT and beliee there should be another embedding of dbserve-obgase structure.

Yet, this is wrong because the case structure for observing objects already exists. There
must be another rule which recognizes that implicit embedding is not carried out if there
appears to be redundgnd@herefore, a counter rule will dictate that PRINT does not call up
another case structur&et, we must be careful in applying the counter rule too. kame

ple, “How do | print listed files?’invdves an embedding afbserve-objnside observe-

obj. The inner case structure for listing is referencediragpy implicit embedding tech-
niques and the problem here is that we really do wish to embed. There seems no way out of
all this. But, look again at thexample of redundant embeddingeWbtice that the query
contains the shadowingerbuseand that is what the system needs to look for while apply-

ing the counter rule. The system will correctly represent the qlkéoy‘do | use print to

print a file?” as Hgure 9. It is noted in Figure 9 that objectsvealeen promoted inards

from the query The clause “...to print a filei nstantiates objects in the inner case struc-
ture. Noframes are called forward by FRAME (object) because of the counverade

for redundang. Note havever, that in a query lig “How do | use print?’ FRAME (object)

would call forward these frames as yhare not referenced in gnnner embedded case
structure.



(sverb (use) (actor USER)
(object PRINT)
(case (observe-obj (actor USER)
((object FILE)
(description quantity ONE))
(frames print list))))
(framesNIL))

Figure 9 Redundant embedding II.

7. Other work on meaning representations

There has been much work on building meaning representations of natural language
utterances and we can not claim to do justice to all of those Warehall begin with rep-
resentations of natural language utterances on operating systems andwhen taarore
general approaches to meaning representation.

The theory of hev to represent natural language queries in the Unix Consultant (see
Wilensky et d., 1986) has wlved osrer a number of years.Initially, the system used a
phrasal analyzer called PHRAN (see Arens, 198ensky et a., 1984) which read sen-
tences in English and produced representations to decode their meanings. PHRAN con-
tained a knowledge base of pattern-concept pairs where patterns were descriptions of literal
utterances that had maulifferent levels of abstraction. Forxample,<person> <give>
<person> <object>is a phrasal pattern. Each pattern had an associated conceptual tem-
plate which is a piece of meaning representation. For example, associated with the phrasal
pattern<nationality> restaurantis a conceptual template denoting a restaurant thaéserv
<nationality> type food.PHRAN's use of patterns and concepts is similar to our use of
action templates and case structuresvéer PHRAN is a general parser and not specifi-
cally geared twards operating systems. There was no theory of embedding to contend with
our avn. Therefore,although PHRAN was a good general mechanism for producing
meaning representations of English it was not very efficient as a parser of queries about
operating systems.

The latest Unix Consultant implementation (sedeWgky et d., 1986) irvolves a
new parser called ALAM (Augmentable LANguage Analyzer) vioped by Cox (1986).
ALANA is an atension of the PHRAN parser described\sbhdlthough ALANA is a
more advanced parser than PHRAN there is no descriptiorwotHeparser may handle
multiple action queries. Andiscussion of ALAM shows only hav single action queries

-9-



are handled Again, there is no description of an altermatheory that competes with ours
of embedding.

Douglass & Hegner (1982) used case frames in the front end for the Unix Computer
Consultant (UCC) system. Case frames were templates representing the main action of a
clause and the constituents of the action, such as the actor and recipient of the action. The
case frames corresponded to logical operations in an operating system, and therefore
formed the main link between English-language operating system concepts and the formal
semantic definitions of specific UNIX commands. The problem with these case frames w
that theg were too &r remwed from natural language input to be useful and also thase w
no great theory of lvo to combine case frames together to formulate good meaning repre-
sentations of compkequeries.

The SINIX consultant volves a natural language interface which produces meaning
representations of English sentences. Although the SINIX parser ésele K986, Section
2.6.3) uses case structures to build up sentence case frames we find little description of a
theory on hw case structures may be combined efficiently.

Fillmore (1968, 1977) discussesvhoatural language sentences can be understood
using knavledge in a form of case structures. Case structures are frames into etiish v
may be parsedFillmore concerns himself more with the syntax of verbs than their seman-
tics. Different verbs may link to a number offdiient frames and he explains whicrhs
are constrained to which cases in which frames. Although Fillmees gi god descrip-
tion of different verbs and their properties he does not concern himself with the semantic
guestions of verbs l&print affecting objects lik files or directories. He does not describe
ary theory of embedding where different structures for various verbs can ke link
togetherHe is largely concerned with single action sentences. Fillmore helps us in defining
properties of verbs but not\Wwasuch verbs are inggated in an operating system consultant.

Schank (1975) hasarked on a deep representation of natural language sentences
called conceptual dependencySchank intends aery deep representation because he
wishes to hee a hnguage free form. His representation is similar to our deep case struc-
tures. Schank’ theory entails a reduction of all utterances to combinations of pramiti
predicateschosen from a set of twehactionsplus state and change of state, together with
the primitve causation and seen role relations oconceptual casesSchank sets up case
frames for primitve acts as opposed to Fillmosetoncentration on the surfacens of
English.

Wilks (1975a, 1975b, 1976, 1978a, 1978h)elped a natural language understand-
ing program which parsed English text into deep meaning representaliblks. parser
constructed a meaning representation made ugeraplates having the basic form of
agent-action-objectwhich are integrated by the usepafraplatesandinference rules The
templatesare built up fromformulaswhich represent individual evd senses. In the discus-
sion of meaning representations abdhere is no discussion of semantic formulas because
information about such word sensesuld already be maintained in the parser that ana-
lyzes English input. Our deep case structures aeeWHks’ templates as thyecontain
actions, objects and agent®Vilks’ idea of building paraplates from templates parallels
ours of building EREPs from case structurékwever Wilks would hae dfferent tem-
plates for different clauses whereas we onlyehdfferent templates for differentevbs.

-10-



Also Wilks talks of linking paraplates with cases, whereas we talk of linking case structures
by embedding them inside each other to denote temporal relations. In otdst we are

talking at a more pragmaticvi@ than a semantic one. Of course the semantic structures do
exist in the parser that analyzes inpétnother difference between our EREPs anitkV
paraplates is that the action representations are constructed on the fly whereas Wilks’ para-
plates already exist in the system.

8. Embedded representations ar e useful

Embedded action representations are a precise means of formalizing meaning rela-
tions between UNIX actionsEnglish queries wolving interrelated actions can be under
stood efectively using these action representations. The most significant feature of EREPs
is that because thigmaintain an implicit notion of time, or ordering of actions, there is no
need to represent temporal orderings themselves. These are already inhereidiyl iy
the representation itself.

There is much work yet to be done on our meaning representaionexample we
believe that ngaion can be handled as a type of embedding. The quiergn’ not delete
my file?” can be interpreted as an embeddingleletinginside not with the s-erb can
We havenot defined the rules for matching case structures to output from a, panger
moting objects form one embedded action to anotlibere has been no discussion of the
mechanisms wolved in rejecting incorrect action relations occurring in user queries. This
would happen if a user query did not match one of the action templabesxample a
PRINT action could nex be rested inside a DELETE action whenyttapply to the same
file because if a file is deleted it is not possible to print the Alléot of work needs to be
done on determining what to do when such errors are detected. Early detection of such
pragmatic user errors will increase the efficieatthe operating system consultant.

-11-



References

Arens, Ygal (1986) CLUSTER: An apmad to mntextual languge wnderstanding.
Report No. UCB/CSD 86/293, Computer Science Division (EECS)yetsiiy of
California, Berkelg, California 94720, April.

Cox, Charles A. (1986ALANA Augmentable LANgue Aalyzer Report No. UCB/CSD
86/283, Computer Science Division (EECS), \drsity of California, Berkley, Cal-
ifornia 94720, January.

Douglass, Robert J. & Stephen J. Hegner (1282¢xpert consultant for the UNIX opér
ing system: Bridging the gap between the user and command gmantics
In Proc. Fourth National Conference of the Canadian Society for Computational
Studies of Intelligence (CSCSI)/SCIEO Conference, Saskatoon, Saskaichup.
119-127, May.

Fillmore, C.J. (1968 he case for caseln Universals in Linguistic TheoryE. Bach and
R. Harms (Eds.), pp. 1-90. Werork: Holt, Rinehart and Winston.

Fillmore, C.J. (1977The case for caseopened In Syntax and Semantics, Peter Cole and
Jerrold M. Sadock (Eds.), pp. 59-81.viN€ork: Academic Press.

Hegner Stephen J. & Robert J. Douglass (1984jowled@ base design for an opating
system expert consultantn Proc. of the Fifth National Conference of the Canadian
Society for Computational Studies of Intelligence (CSCSI), pp. 159-161, London,
Ontario, December.

Hegner Stephen J. (1987Repesentations of command langeakehavior for an opeat-
ing system expert consultation facilityTechnical Report CS/TR87-02, CS/EE
Department, Unersity of Vermont, Burlington, Vermont, USA.

Kemke, Christel (1986Yhe SINIX Consultant — Requirements, Design, and Implementa-
tion of an intelligent Help System for a UNIX DerivativéJniversitat des Saarlan-
des, Kl-Labor (SC-Project), Bericht N1, October

Mc Keuwitt, Paul & Yorick Wilks (1987)Transfer Semantics in an O@ging System Con-
sultant: The formalization of actions involving objeansfer, In Proceedings of
The Tenth International Joint Conference on Atrtificial Intelligence (IJCAI-83), V
1, pp. 569-575, Milano, Ita\August.

Schank, R.C. (197%)onceptual information processingAmsterdam: North-Holland.

Wilensky, Robert, Mgal Arens & David Chin (1984Yaking to UNIX in English: An
overview of UC. Communications of the ACM, Vol. 27, No. 6, June, pp. 574-593.

Wilensky, Robert, Jim Mayfield, AnthonAlbert, David Chin, Charles Cox, Marc Luria,
James Martin and Dekai W(1986)UC — a pogress eport Report No. UCB/CSD
87/303, Computer Science Division (EECS), \drsity of California, Berkley, Cal-
ifornia 94720, July.

Wilks, Yorick (1975a)An intelligent analyser and understander of Englistommunica-
tions of the Association of Computing Machinery (ACM), Vol. 18, pp. 264-274.

-12-



Wilks, Yorick (1975b)A preferential, pattern-seekingsemantics for natural languge
inference Atrtificial Intelligence, Vol. 6, No. 1, pp. 53-74.

Wilks, Yorick (1976)Processing case Technical Report, Department of Artificial Intelli-
gence, Uniersity of Edinturgh, Edinlurgh, Scotland, United Kingdom. Also in
American Journal of Computational Linguistics, microfiche 56.

Wilks, Yorick (1978a)Good and bad gjuments about semantic primitive€ommunica-
tion and Cognition, Vol 10., No. 3/4, pp. 181-221.

Wilks, Yorick (1978bMaking pefeences mag active Artificial intelligence, Vl. 11, pp.
197-223.

Wilks, Yorick; Xiuming Huang and Dan Fass (198)ntax, Semantics and Right Attac
ment In Proceedings of the Ninth International Joint Conference on Atrtificial Intel-
ligence (IJCAI-85), pp. 779-784, Los Angeles, California.

Wilks, Yorick (1986)Projects at CRL in Natal Languaye Rocessing Memoranda in
Computer and Cognite Sience, Memorandum MCCS-86-58, Rio Grande Research
Corridor, Computing Research Laboratpiept. 3CRL, Box 30001, Ne Mexco
State Unversity, Las Cruces, NM 88003-0001.

Wilks, Yorick; Dan fss, Cheng-Ming Guo, James E. McDonatdyTPlate & Brian M.
Slator (1987 tractable machine dictionary as asouce for computational seman-
tics. Memoranda in Computer and CogwitiSience, Memorandum MCCS-87-105,
Rio Grande Research Corrid@omputing Research Laboratpiyept. 3CRL, Box
30001, N&v Mexico State Unuersity, Las Cruces, NM 88003-0001.

13-



