
Natural language meaning representations
of

queries about operating systems

Paul Mc Kevitt

Computing Research Laboratory∗
Dept. 3CRL, Box 30001

New Mexico State University
Las Cruces, NM 88003-0001, USA.

CSNET: paul@nmsu.edu [(505) 646-5942/5466]

ABSTRACT

An essential component of any natural language consultant program is a mechanism that
constructs good meaning representations of user queries.When people ask queries about
computer operating systems they often refer to interrelated actions and objects.These
temporal interrelations should be recognized and captured within semantic structures.
Actions or commands, and relations between them, can be described by embedded action
representations. Embeddedaction representations are constructed from deep case struc-
tures. A theory of embedding enables efficient parsing of queries about operating sys-
tems. Thetheory is applied in an operating system consultant calledOSCON.

∗ The Computing Research Laboratory is partially funded by the New
Mexico State Legislature administered by its Science and Technology
Commission as part of the Rio Grande Research Corridor.

0. Introduction

When people ask queries about computer operating systems they often refer to inter-
related actions and objects. It is possible to build a computer program which will answer
natural language queries about computer operating systems. An essential component of any
such program is a mechanism which constructs good meaning representations of user
queries. Such representations will enable the correct understanding, by the program, of
what the user is asking about.

A good way to understand the requirements of a natural language understander for
operating systems is to build a theory about the way people use English to ask questions on
these systems.For example people ask queries like, ‘‘How do I print a file on the Xerox
with pageheaders?’’, or ‘‘How do I spell a file and then have the mistakes printed on the
Imagen?’’ The former query has one action, that ofprinting, and the latter has two actions,
that offinding-mistakesandprinting-on-Imagens. Of course, some queries have no actions
at all. These are queries like ‘‘What is a file?’’ or ‘ ‘What is a pipe?’’ Such queries are
static and involve answers which are descriptive rather than dynamic. Therefore, operating
system queries are about the dynamics of the system, i.e., queries about actions such as
printing, removing or deleting; or about the statics of the system, i.e., queries about static
objects such as files, file-structure, pipes, and so on.Hegner (1987) has termed the former
dynamic queriesand the latterconcept description queries. It is necessary to develop some
mechanism whereby meaning representations for multiple action queries can be integrated
in a sensible manner. That is what this paper is about.

1. The Operating System CONsultant

At the Computing Research Laboratory we are developing a natural language under-
stander for an operating system consultant called OSCON.OSCON is being programmed
in Kyoto Common Lisp. The system is intended to help novice and expert users learn oper-
ating system concepts. It is hoped that OSCON will answer user queries on many operat-
ing systems, although we are focusing on UNIX∗ . Other computer operating systems of
interest are TOPS-20†, VMS† and VM/CMS‡.

OSCON has a two-module architecture involving a natural language understander
and a knowledge base. The natural language understander has the function of understand-
ing and answering English queries. Query responses will be in English too. The knowledge
base is detailed and formal and functions as a solving or answering module.The knowl-
edge base is being constructed at the University of Vermont by Dr. Steve Hegner. Work on
the knowledge base is discussed extensively in Douglass & Hegner (1982), Hegner & Dou-
glass (1984) and Hegner (1987). The two-module architecture is one of the principle
design features of OSCON. As pointed out by Hegner (see Hegner 1987, p. 1) the two-
module architecture facilitates an important principle on the separation of understanding
and solving.

∗ UNIX is a trademark of AT&T Bell Laboratories.

† TOPS-20 and VMS are trademarks of Digital Equipment Corporation.

‡ VM/CMS is a trademark of International Business Machines Corporation.

-1-

2. A theory of embedding

We can assume that any query about operating systems includes a number of actions
(which may be zero) and objects manipulated by those actions. Any meaning representa-
tion of a query must contain, in some semantic form, the actions and objects and how these
are related together.

Dynamic queries containing more than one action are more difficult to deal with.
There needs to be some way of relating actions together. Let’s look at some more exam-
ples. In ‘‘How do I send a troff fi le to the Imagen?’’ there are two actionstroffing-a-file, and
thensending-it-to-the-Imagen. In the query, ‘‘How do I remove a file printing on the Ima-
gen?’’ there are also two actions. Those areprinting-a-file and thenremoving-it. What do
we notice about the actions in each query? Each action is related temporally to other
actions. Oneaction is executed before another and the ordering is important.

To understand queries about operating systems we need to be able to recognize
actions and objects in the input. To do that we need to represent actions and objects in the
system. We need to represent the meaning of words if the system is to determine whether
words in input sentences are actions or objects.

3. The components of a meaning representation

To determine whether words in the input are objects or actions we need to represent
the meaning of words in the system. Therefore we need adictionary of words which tells
us the type of each word. So,print will be represented as an action and so willdeleteand
move. Filesanddirectorieswill be typed as objects. We build a dictionary with entries like
(file location object), (print action), (directory location object)and (user actor). Notice
thatfile anddirectoryare marked as being specific types of objects — locations.

The next problem we must worry about is how to define allowable operations of
actions. We should build some structures which represent various actions and how they
relate to objects. Such structures would recognize incorrect operations of actions.A
database of patterns is defined to represent legal action operations. Patterns are semantic
templates for expected legal actions. We construct a pattern database with entries like
(observe-obj <actor> <object>). This entry tells us that a legal sentence could include
actors observing objects.Thus the query, ‘‘How do I see a file?’’ would match this pattern.
We can call the patternsaction templates.

To build meaning representations for sentences, we need to be able to link action
templates together by some means.To do that there needs to be some precise definition of
what each action template means. Each action template should have an associated meaning
structure. Such meaning structures should include actions, objects related to actions, types
of those objects, and actors.We call such meaning structuresdeep case structuresand one
is shown in Figure 1.

Figure 1 is a case structure which tells us that to observe an object there can be an
observer, an object of observation, and a location for the observation to occur. Each entity
may have some descriptiontagged to it. The case structure also references two frames.
These are the action frames in the system that represent domain specific knowledge about
operating systems. The structure and content of action frames is discussed in detail in Mc

-2-

(observe-obj ((actor _∗)
(description _))
((object _)
(description _))
((location _)
(description _))
(frames print list))

Figure 1. Case structure for observing objects.

Kevitt & Wilks (1987). For this example the frames are print and list which specify print-
ing-objects and listing-objects respectively. Already we note that domain specific informa-
tion will be selected if this case structure is referenced.However, the frame references in
case structures for action frames are not relevant here, although they are useful in other
aspects of the OSCON system.

4. Embedded action representations

As already mentioned, user queries about operating system commands contain
embeddings of actions. It should be possible to create representations of nested or embed-
ded deep case structures to describe interrelated actions.We can call such representations
embedded action representations (EREPs).Operating system commands are related to
each other in specific ways. When users ask questions about such actions they usually get
these relations correct. Therefore, if we build EREPs from user queries, the EREPs should
be a good approximation of the relations. This means that domain-specific structures pro-
duced from EREPs should often be correct. In fact, if the domain-specific structures are not
correct, the input query also contains relations which are incorrect.

Examples of typical actions which can occur in EREPs are printing, listing and delet-
ing. People can ask questions about UNIX such as, ‘‘How do I print a listing of my direc-
tory?’’, or ‘‘I need to print a file.’’ I n the former example we build an EREP where the con-
cept listing is embedded inside the conceptprint and in the latter caseprint is embedded
insideneed. These are examples of double embedding. Yet, triple embeddings result from
queries such as ‘‘How do I delete a listing of my directory, printing on the Imagen.’’ We
will now go on to show how EREPs can be used to understand natural language queries.

∗ We use the symbol ‘‘_’’ to denote an unfilled slot in a case frame.

-3-

5. Null embedded queries ({Ai } i=0,1)

If a query involves no actions, or just one action, then there will be no embedding at
all. If we useAi to represent the number of actions in a query then null embedded queries
are denoted by{Ai } i=0,1. Concept description queries are simple questions about objects
with no presence of operating system actions. Therefore, concept description queries will
always exhibit null embedding.A typical example of a concept description query is the
sentence, ‘‘What is read protection?’’ The action template(be <object>) is used in deci-
phering this query. Protectionis defined under the category object from its dictionary entry
i.e., (protection object). The case structure for thebeaction template is instantiated to give
the structure in Figure 2.

(be ((object PROTECTION∗)
(description READ))
(frames protection))

Figure 2. Instantiated case structure for ‘be’.

Dynamic English queries illustrate null embedding when only one action is men-
tioned. For example, the query ‘‘How do I delete a file?’’ has a representation with no
embedded actions at all. The query is parsed into the structure shown in Figure 3.

6. Positively embedded queries ({Ai } i≥2)

There are many types of embedding present in meaning representations resulting
from dynamic queries. We hav ealready seen that dynamic queries exhibit null embedding.
However they also exhibit positive embedding, which means that the query includes more
than one action.We call queries with two or more actions positively embedded queries and
they are denoted by{Ai } i≥2. Such queries have at least one positive embedding with one
action inside another. Also, we have discovered that there are many types of positive
embedding and there are different ways of recognizing and processing these.

6.1. Explicit embedding

Explicit embedding occurs in representations for queries involving two or more
actions. For example, the meaning representation for the query ‘‘How do I print a listing of

∗ In the following case structure diagrams capitalized items indicate values filled in
from dictionary entries.

-4-

(delete-obj (actor USER)
((object FILE)
(description quantity ONE))
(frames remove))

Figure 3. Instantiated case structure for ‘delete-obj’.

my directory?’’, has the concept of listing embedded inside the concept of printing. In pro-
cessing this query, an observe-patcase structure is instantiated to give Figure 4.

(observe-pat (actor USER)
(case (observe-obj (actor _)

((object DIRECTORY)
(description quantity ONE)
(description owner USER))
(frames print list)))

(frames print list))

Figure 4. Meaning representation exhibiting explicit embedding.

Figure 4 shows that deep case representation for listing is nested inside the represen-
tation for printing. The actor slot in the outer case representation is instantiated to be
USER. Theinner case structure contains directory as an object because the actor is asking
about listing directories.In Figure 4 we note that the actor slot in the inner case structure is
not instantiated.However, this information would be determined from the outer case struc-
ture and promoted inwards.

-5-

6.2. Implicit embedding

Some word in a user query may indicate implicitly the existence of another action
although this action is not mentioned directly. Say, for example, the system is given the
query, ‘‘How do I delete mail files?’’ Naively, the system would believe that the user just
wants to delete an object calledfile with descriptionmail. The system would overlook the
fact that another action (in this casemail) has created the object. In deriving a meaning
representation for this example a first step would be to construct the structure in Figure 5.

(delete-obj (actor USER)
((object FILE)
(description quantity MORE-THAN-ONE)
(description type MAIL))
(frames remove))

Figure 5. Implicit embedding I.

Now, to solve the problem of not recognizing implicit embedding, each object could
be checked every time a representation is produced to establish whether that object or
action refers to another action template.In this case,mail is recognized as possibly refer-
encing another action.Indeed,mail (a description on the objectfile) references the action
templatesendand its respective case structure. After some processing the EREP in Figure 6
is computed.It is noted that in Figure 6 the conceptsendis embedded inside the concept
remove. The actor as user is expressed inside each case structure. The send case structure
represents the fact that the user wishes to remove more than one file by the quantity
descriptor.

6.3. Shadowed embedding

Often actions such aswanting or needingcan shadow the UNIX action which is
more important for the system to locate. Although we are primarily concerned with locat-
ing UNIX concepts, we do realize the importance of shadowing actions. Such actions are
very useful in detecting the goals of the user (see Wilensky et al. 1984, p. 589). The direc-
tion of reading the input query is important because shadowing may occur while reading a
sentence in one direction although it does not in the other. Examples of shadowing exist in
sentences like ‘‘I would like to delete a file’’, and ‘‘I need to print a file’’. On reading the
latter query from left to rightneedshadowsprint. Howev er, if the query is read right to left
we get ‘‘A fi le, to print, I need?’’ I n this caseprint is not shadowed. Yet, OSCON reads

-6-

(remove (actor USER)
(case (send (actor USER)

((object FILE)
(description quantity MORE-THAN-ONE))
(frames MAIL)))

(frames remove))

Figure 6. Implicit embedding II.

sentences left to right and therefore it needs to know about shadowing. Thereare action
templates for shadowing verbs in the pattern database such as, (s-verb <actor> <pattern>).
For the query, ‘‘I need to print a file?’’ the meaning representation shown in Figure 7 is
formed.

(s-verb (need) (actor USER)
(case (observe-obj (actor USER)

((object FILE)
(description quantity ONE))
(frames print list))))

Figure 7. Shadowed embedding.

We note that the s-verb case structure has only one case slot other thanactor, called case.
The actual shadowing verb used in the sentence is tagged onto the EREP as it may be use-
ful in later processing. As already mentioned, such information would be useful for discov-
ering the intention of the user.

-7-

6.4. The intricacy of redundant embedding

Representations with redundant embedding are more a characteristic of the parsing
strategy than a characteristic of English.For example, while parsing the query ‘‘How do I
use print to print a file?’’, the case structure for observing objects would become embedded
within itself. This happens because of implicit embedding rules. In effect, (1) the user has
mentioned printing files, and (2) the user has also mentioned the operation for doing so i.e.,
print. It would certainly be a mistake to embed in examples such as this and OSCON must
have strategies to recognize redundant embedding. For this example the system produces
the case structure in Figure 8.

(s-verb (use) (actor USER)
(object PRINT)
(case (observe-pat observe-obj) (actor _) ...)
(frames FRAME (object)))

Figure 8. Redundant embedding I.

From the previous example of implicit embedding we notice that the system would find
PRINT and believe there should be another embedding of theobserve-objcase structure.
Yet, this is wrong because the case structure for observing objects already exists. There
must be another rule which recognizes that implicit embedding is not carried out if there
appears to be redundancy. Therefore, a counter rule will dictate that PRINT does not call up
another case structure.Yet, we must be careful in applying the counter rule too. For exam-
ple, ‘‘How do I print listed files?’’ i nv olves an embedding ofobserve-objinsideobserve-
obj. The inner case structure for listing is referenced again by implicit embedding tech-
niques and the problem here is that we really do wish to embed. There seems no way out of
all this. But, look again at the example of redundant embedding. We notice that the query
contains the shadowing verbuseand that is what the system needs to look for while apply-
ing the counter rule. The system will correctly represent the query ‘‘How do I use print to
print a file?’’ as Figure 9. It is noted in Figure 9 that objects have been promoted inwards
from the query. The clause ‘‘...to print a file’’ i nstantiates objects in the inner case struc-
ture. Noframes are called forward by FRAME (object) because of the counteractive rule
for redundancy. Note however, that in a query like ‘‘How do I use print?’’ FRAME (object)
would call forward these frames as they are not referenced in any inner embedded case
structure.

-8-

(s-verb (use) (actor USER)
(object PRINT)
(case (observe-obj (actor USER)

((object FILE)
(description quantity ONE))
(frames print list))))

(frames NIL))

Figure 9. Redundant embedding II.

7. Other work on meaning representations

There has been much work on building meaning representations of natural language
utterances and we can not claim to do justice to all of those here.We shall begin with rep-
resentations of natural language utterances on operating systems and then move on to more
general approaches to meaning representation.

The theory of how to represent natural language queries in the Unix Consultant (see
Wilensky et al., 1986) has evolved over a number of years.Initially, the system used a
phrasal analyzer called PHRAN (see Arens, 1986; Wilensky et al., 1984) which read sen-
tences in English and produced representations to decode their meanings. PHRAN con-
tained a knowledge base of pattern-concept pairs where patterns were descriptions of literal
utterances that had many different levels of abstraction. For example,<person> <give>
<person> <object> is a phrasal pattern. Each pattern had an associated conceptual tem-
plate which is a piece of meaning representation. For example, associated with the phrasal
pattern<nationality> restaurantis a conceptual template denoting a restaurant that serves
<nationality> type food.PHRAN’s use of patterns and concepts is similar to our use of
action templates and case structures. However PHRAN is a general parser and not specifi-
cally geared towards operating systems. There was no theory of embedding to contend with
our own. Therefore,although PHRAN was a good general mechanism for producing
meaning representations of English it was not very efficient as a parser of queries about
operating systems.

The latest Unix Consultant implementation (see Wilensky et al., 1986) involves a
new parser called ALANA (Augmentable LANguage Analyzer) developed by Cox (1986).
ALANA is an extension of the PHRAN parser described above. Although ALANA is a
more advanced parser than PHRAN there is no description of how the parser may handle
multiple action queries. Any discussion of ALANA shows only how single action queries

-9-

are handled.Again, there is no description of an alternative theory that competes with ours
of embedding.

Douglass & Hegner (1982) used case frames in the front end for the Unix Computer
Consultant (UCC) system. Case frames were templates representing the main action of a
clause and the constituents of the action, such as the actor and recipient of the action. The
case frames corresponded to logical operations in an operating system, and therefore
formed the main link between English-language operating system concepts and the formal
semantic definitions of specific UNIX commands. The problem with these case frames was
that they were too far removed from natural language input to be useful and also there was
no great theory of how to combine case frames together to formulate good meaning repre-
sentations of complex queries.

The SINIX consultant involves a natural language interface which produces meaning
representations of English sentences. Although the SINIX parser (see Kemke 1986, Section
2.6.3) uses case structures to build up sentence case frames we find little description of a
theory on how case structures may be combined efficiently.

Fillmore (1968, 1977) discusses how natural language sentences can be understood
using knowledge in a form of case structures. Case structures are frames into which verbs
may be parsed.Fillmore concerns himself more with the syntax of verbs than their seman-
tics. Different verbs may link to a number of different frames and he explains which verbs
are constrained to which cases in which frames. Although Fillmore gives a good descrip-
tion of different verbs and their properties he does not concern himself with the semantic
questions of verbs like print affecting objects like filesor directories. He does not describe
any theory of embedding where different structures for various verbs can be linked
together. He is largely concerned with single action sentences. Fillmore helps us in defining
properties of verbs but not how such verbs are integrated in an operating system consultant.

Schank (1975) has worked on a deep representation of natural language sentences
called conceptual dependency. Schank intends a very deep representation because he
wishes to have a language free form. His representation is similar to our deep case struc-
tures. Schank’s theory entails a reduction of all utterances to combinations of primitive
predicateschosen from a set of twelve actionsplus state and change of state, together with
the primitive causation, and seven role relations orconceptual cases. Schank sets up case
frames for primitive acts as opposed to Fillmore’s concentration on the surface verbs of
English.

Wilks (1975a, 1975b, 1976, 1978a, 1978b) developed a natural language understand-
ing program which parsed English text into deep meaning representations.Wilks’ parser
constructed a meaning representation made up oftemplates, having the basic form of
agent-action-objectwhich are integrated by the use ofparaplatesandinference rules. The
templatesare built up fromformulaswhich represent individual word senses. In the discus-
sion of meaning representations above there is no discussion of semantic formulas because
information about such word senses would already be maintained in the parser that ana-
lyzes English input. Our deep case structures are like Wilks’ templates as they contain
actions, objects and agents.Wilks’ idea of building paraplates from templates parallels
ours of building EREPs from case structures.However Wilks would have different tem-
plates for different clauses whereas we only have different templates for different verbs.

-10-

Also Wilks talks of linking paraplates with cases, whereas we talk of linking case structures
by embedding them inside each other to denote temporal relations. In other words, we are
talking at a more pragmatic level than a semantic one. Of course the semantic structures do
exist in the parser that analyzes input.Another difference between our EREPs and Wilks’
paraplates is that the action representations are constructed on the fly whereas Wilks’ para-
plates already exist in the system.

8. Embedded representations are useful

Embedded action representations are a precise means of formalizing meaning rela-
tions between UNIX actions.English queries involving interrelated actions can be under-
stood effectively using these action representations. The most significant feature of EREPs
is that because they maintain an implicit notion of time, or ordering of actions, there is no
need to represent temporal orderings themselves. These are already inherently provided by
the representation itself.

There is much work yet to be done on our meaning representations.For example we
believe that negation can be handled as a type of embedding. The query ‘‘I can not delete
my file?’’ can be interpreted as an embedding ofdeletinginsidenot with the s-verb can.
We hav enot defined the rules for matching case structures to output from a parser, or pro-
moting objects form one embedded action to another. There has been no discussion of the
mechanisms involved in rejecting incorrect action relations occurring in user queries. This
would happen if a user query did not match one of the action templates.For example a
PRINT action could never be nested inside a DELETE action when they apply to the same
file because if a file is deleted it is not possible to print the file.A lot of work needs to be
done on determining what to do when such errors are detected. Early detection of such
pragmatic user errors will increase the efficiency of the operating system consultant.

-11-

References

Arens, Yigal (1986) CLUSTER: An approach to contextual language understanding.
Report No. UCB/CSD 86/293, Computer Science Division (EECS), University of
California, Berkeley, California 94720, April.

Cox, Charles A. (1986)ALANA Augmentable LANguage Analyzer. Report No. UCB/CSD
86/283, Computer Science Division (EECS), University of California, Berkeley, Cal-
ifornia 94720, January.

Douglass, Robert J. & Stephen J. Hegner (1982)An expert consultant for the UNIX operat-
ing system: Bridging the gap between the user and command language semantics.
In Proc. Fourth National Conference of the Canadian Society for Computational
Studies of Intelligence (CSCSI)/SCIEO Conference, Saskatoon, Saskatchewan, pp.
119-127, May.

Fillmore, C.J. (1968)The case for case. In Universals in Linguistic Theory, E. Bach and
R. Harms (Eds.), pp. 1-90. New York: Holt, Rinehart and Winston.

Fillmore, C.J. (1977)The case for case reopened. In Syntax and Semantics, Peter Cole and
Jerrold M. Sadock (Eds.), pp. 59-81. New York: Academic Press.

Hegner, Stephen J. & Robert J. Douglass (1984)Knowledge base design for an operating
system expert consultant. In Proc. of the Fifth National Conference of the Canadian
Society for Computational Studies of Intelligence (CSCSI), pp. 159-161, London,
Ontario, December.

Hegner, Stephen J. (1987)Representations of command language behavior for an operat-
ing system expert consultation facility. Technical Report CS/TR87-02, CS/EE
Department, University of Vermont, Burlington, Vermont, USA.

Kemke, Christel (1986)The SINIX Consultant — Requirements, Design, and Implementa-
tion of an intelligent Help System for a UNIX Derivative. Universitat des Saarlan-
des, KI-Labor (SC-Project), Bericht Nr. 11, October.

Mc Kevitt, Paul & Yorick Wilks (1987)Tr ansfer Semantics in an Operating System Con-
sultant: The formalization of actions involving object transfer, In Proceedings of
The Tenth International Joint Conference on Artificial Intelligence (IJCAI-87), Vol.
1, pp. 569-575, Milano, Italy, August.

Schank, R.C. (1975)Conceptual information processing. Amsterdam: North-Holland.

Wilensky, Robert, Yigal Arens & David Chin (1984)Talking to UNIX in English: An
overview of UC. Communications of the ACM, Vol. 27, No. 6, June, pp. 574-593.

Wilensky, Robert, Jim Mayfield, Anthony Albert, David Chin, Charles Cox, Marc Luria,
James Martin and Dekai Wu (1986)UC — a progress report. Report No. UCB/CSD
87/303, Computer Science Division (EECS), University of California, Berkeley, Cal-
ifornia 94720, July.

Wilks, Yorick (1975a)An intelligent analyser and understander of English. Communica-
tions of the Association of Computing Machinery (ACM), Vol. 18, pp. 264-274.

-12-

Wilks, Yorick (1975b)A preferential, pattern-seeking, semantics for natural language
inference. Artificial Intelligence, Vol. 6, No. 1, pp. 53-74.

Wilks, Yorick (1976)Processing case. Technical Report, Department of Artificial Intelli-
gence, University of Edinburgh, Edinburgh, Scotland, United Kingdom. Also in
American Journal of Computational Linguistics, microfiche 56.

Wilks, Yorick (1978a)Good and bad arguments about semantic primitives. Communica-
tion and Cognition, Vol 10., No. 3/4, pp. 181-221.

Wilks, Yorick (1978b)Making preferences more active. Artificial intelligence, Vol. 11, pp.
197-223.

Wilks, Yorick; Xiuming Huang and Dan Fass (1985)Syntax, Semantics and Right Attach-
ment. In Proceedings of the Ninth International Joint Conference on Artificial Intel-
ligence (IJCAI-85), pp. 779-784, Los Angeles, California.

Wilks, Yorick (1986)Projects at CRL in Natural Language Processing. Memoranda in
Computer and Cognitive Science, Memorandum MCCS-86-58, Rio Grande Research
Corridor, Computing Research Laboratory, Dept. 3CRL, Box 30001, New Mexico
State University, Las Cruces, NM 88003-0001.

Wilks, Yorick; Dan Fass, Cheng-Ming Guo, James E. McDonald Tony Plate & Brian M.
Slator (1987)A tractable machine dictionary as a resource for computational seman-
tics. Memoranda in Computer and Cognitive Science, Memorandum MCCS-87-105,
Rio Grande Research Corridor, Computing Research Laboratory, Dept. 3CRL, Box
30001, New Mexico State University, Las Cruces, NM 88003-0001.

-13-

