Proceedings of AICS 2011 31 Aug - 2 Sep

Organising web links semantically with Boek

'Rakesh Paul, ?Paul Mc Kevitt, *John Macrae

12 School of Computing & Intelligent Systems, University of Ulster, Magee,
Derry/Londonderry BT48 J7L, Northern Ireland
3 Office of Innovation, University of Ulster, Jordanstown,
Newtownabbey BT37 0QB, Northern Ireland
Paul-r2@email.ulster.ac.uk

Abstract. The World Wide Web serves as the primary source of many informa-
tion requirements. The Semantic Web and related technologies provide an in-
frastructure to organise data based on its semantics. Since the web has grown
exponentially, it is difficult to keep track of all individual preferences. The sys-
tem proposed here, Boek, enables users to organise semantically a subset of
web data. Boek can store links to web pages and retrieve them later based on
semantic information. Boek also holds reserved space for its users to store their
favourite data semantically. The individual data models can then be combined
to form a universal data store which can then act as a knowledge base for eve-
ryone. Future work will involve extending Boek to address a number of do-
mains such as business, medicine, education and the creative industries.

Keywords. Boek, Semantic Web, Ontologies, Knowledge Management, User
Interface, Metadata, Ontology learning, RDF, Java, Jena

1 Introduction

The World Wide Web is an invaluable resource for information search and web
browsers act as the platform for access. However, storing the information collected
from various sites according to user preferences and meaning is not always given a
priority. Users must depend on search engines to locate web pages of their interest. As
an aside, one might consider whether users are reliably given accurate information
when they 'search’ the Internet using a particular search engine. The user may be
forced to repeat the searching process again and again to retrieve the same data over a
period. Bookmarks within web browsers enable users to store links they prefer. How-
ever, normally bookmarks don’t provide the ability to group related information based
on its contents. Bookmarks are stored locally confining their global use. Then there
are websites like Digg and Delicious which enable bookmark synchronisation with
search and web search based on bookmarks created by users. However, these sites
usually don’t provide information organisation based on semantics.

This paper discusses Boek (German for ‘book’), an online bookmark storage system
developed on Semantic Web [1] technology. Boek enables users to enhance their

University of Ulster 361 ISSN:2041-6407

Proceedings of AICS 2011 31 Aug - 2 Sep

information base with favourite links and lookup for links based on titles, subjects,
authors and URLs. Boek utilises some of the latest graphical user design techniques
and open source tools for accessing Semantic Web capabilities. Boek’s open source
framework implementation can be used to develop any semantic web based applica-
tions. This paper explores requirements analysis, architectural design, implementation
and evaluation of Boek. The paper is organised as follows: Section 2 discusses back-
ground and literature review; Section 3 discusses Design and implementation of
Boek; Section 4 discusses testing and evaluation of Boek and Section 5 relates Boek
to other work. Finally, Section 6 discusses conclusions and future work that can ex-
tend Boek’s architecture, not just for bookmarks, but to any useful information con-
tent.

2 Background and Literature Review

In this section we discuss semantic web fundamentals and related work on applica-
tions for generating and storing data based on its semantics.

2.1 Semantic Web Fundamentals

The Semantic Web enables integration of diverse knowledge bases to a single point of
access. The following features of the Semantic Web can be utilised to organise and
group data.

2.1.1 Explicit metadata

Currently the web holds data that is more useful to humans than to computers. The
Semantic Web tackles this issue by introducing metadata [2], which is data about
data. In addition to containing formatting information aimed at humans, metadata can
also contain information about its content. Thus metadata captures part of the mean-
ing of data. The Semantic Web employs languages like RDF (Resource Description
Framework) [2] to define the syntax of metadata information. For example, the RDF
data for a health treatment centre is shown in Figure 1.

2.1.2 Ontologies

Ontologies [3] are vocabularies for expressing metadata. Typically, ontologies consist
of a finite list of terms, and relationships between these terms. The terms denote im-
portant concepts (classes of objects) of the domain. For example, in a university set-
ting, staff members, students, courses, lecture rooms and disciplines are some impor-
tant concepts. Relationships define how these concepts are interrelated to give a
meaning to the university setting. Ontologies provide shared understanding for a do-
main.

University of Ulster 362 ISSN:2041-6407

Proceedings of AICS 2011 31 Aug -2 Sep

The ontology vocabularies are defined using RDFS (Resource Description Frame-
work Schema) and OWL (Web Ontology Language) [4] description languages. RDF
Schema serves as the meta-language or vocabulary to define properties and classes of
RDF resources. OWL has a richer vocabulary which describes properties and classes,
relations between classes (e.g. disjointness), cardinality (e.g., “exactly one”), equality,
and characteristics of properties (e.g., symmetry).

<company>
<treatmentOffered>RAyurvedic Rejuvenation </treatmentoffered>
<companyName>Heritage of India</companyName>
<location>
<country>India</country>
<state>Kerala</state>
<city>Palagath</city>
</location>
</company>

Fig. 1. Encoding metadata information for a health treatment center

2.1.3 Logic and Proof

Logic [2] derives conclusions from a set of relations. Logic facilitates inference about
knowledge and derives explicit data from implicit data. In the Semantic Web context
logical reasoning establishes consistency and correctness of data sets. For instance,
consider the following example where the Semantic Web can infer some explicit data
from the available knowledge:

Flipper is a Dolphin (known relationship)
Every Dolphin is also a Mammal (known relationship)
Flipper is a Mammal (inferred relationship using logic)

The advantage of Logic is that it can explain how conclusions are derived. That is,
logic can retrace the entire procedure involved in deriving a conclusion. Proofs trace
or explain the steps of logical reasoning.

2.2 Semantic Web Applications

There are solutions like MIT lab’s Piggy Bank [5] which can facilitate generation and
storage of semantic data from existing web pages. Piggy Bank extracts information
from existing Web pages and stores it in RDF. Piggy Bank employs custom software
for screen scraping and storing extracted data locally. There is also an option for users
to publish this data to a Semantic Bank [5] (Server for storing semantic data) and use
it later on demand. The Semantic Bank can then be used by other users to find more
granular information on different topics. SemCards [6] are machine and human-
readable entities that allow non-experts to create and use semantic content with ease,
whilst allowing machines to participate in the knowledge organisation process.

University of Ulster 363 ISSN:2041-6407

Proceedings of AICS 2011 31 Aug -2 Sep

Wilks [7] discusses three distinct views on the Semantic Web, principally with refer-
ence to the issue of the relationship of natural language structure to knowledge repre-
sentation and asks the question, “what are its semantics?”. Mc Kevitt [8] discusses the
requirement for semantic representations to be multimodal.

3 Boek Design and Implementation

Our system, Boek, is a Rich Internet Application (RIA) aimed at providing an engag-
ing experience to its users. Boek integrates seamlessly the most recent advancements
in RIA and Semantic Web technologies with the ever popular Java and MySQL [9]
development environments. Figure 2 shows the architectures of Boek and Flex [10].
Boek’s user interface consists of Adobe Flex designed web pages. The middle tier
uses Cairngorm Model View Controller (MVC) [11] architecture and BlazeDS [12]
for remote messaging services. Jena API [13] forms the semantic web based database
tier. The semantically organised data is persisted to a MySQL database.

Brawsear
Flex RIA
Flash Flayer
Cairngorm MVC Architecture
BlazeDS | |
Data Data
Jena SDB ARQ i i 1 I &
— Wab Sarvar l
il Tomacat Application Server — 3
XMI%TTP Flex Data Services 2
- SOAP Wab Services lava EE Applicalion Server
| — —_
- MySQL DBMS
:f; Existing Applicatlons and Infrastructure
g
(@) (b)

Fig. 2. Boek (a) and Flex (b) architectures

3.1 Software Analysis

Software utilised in Boek includes Adobe Flex, Cairngorm, BlazeDS, RDF, Jena Se-
mantic Web Framework, SPARQL with Jena SDB and ARQ APIs.

Adobe® Flex® [10] is a Rich Internet application (RIA) offering a rich, engaging
experience that improves user satisfaction and increases productivity. It is an open
source framework for developing intuitive web applications by leveraging the
Adobe® Flash® Player and Adobe AIR® runtimes. RIA combines the best of desk-
top, web and communication technologies to provide better quality web applications.

University of Ulster 364 ISSN:2041-6407

Proceedings of AICS 2011 31 Aug - 2 Sep

Flex produces Flash player compatible files which can run in a flash player enabled
browser. Representational State Transfer (REST) is a style of software architecture
for distributed hypermedia systems such as the World Wide Web.

Cairngorm [11] is a framework used to deliver successful Flex projects in enterprise.
Cairngorm is an ActionScript library for building applications based on the Model-
View-Controller (MVC) design pattern. It is an approach for organising and partition-
ing code and packages, component functionality and roles. Cairngorm encourages
developers to identify, organise, and separate code based on its roles/responsibilities.
The Flex and Cairngorm micro architecture forms the client side logic of Boek.

BlazeDS [12] is a free open source server-based Java remoting and web messaging
technology that enables developers to easily connect to back-end distributed data and
push data in real-time to Adobe® Flex and Adobe AIR™ applications for more res-
ponsive RIA experiences. BlazeDS provides a set of services that helps a client-side
application to connect to server-side data, and pass data amongst multiple clients con-
nected to the server. BlazeDS implements real-time messaging between clients.

A BlazeDS application consists of two parts: (1) The client-side application: A Bla-
zeDS client application is typically an Adobe Flex or AIR application. Flex and AIR
applications use Flex components to communicate with the BlazeD Server; (2) The
BlazeDS server: The BlazeDS server runs in a web application on a J2EE application
server. BlazeDS includes three preconfigured web applications that can be used as the
basis of application development. Boek utilises the messaging application of the Bla-
zeDS.

Resource Description Framework (RDF) [2] plays the role of describing data and
meta-data. RDF is written in XML and is designed to be read and understood by
computers and is not designed for being displayed to end users. The fundamental
concepts of RDF are: (1) Resources is an object; a “thing” that is being defined. Re-
sources may be e.g. authors, books and publishers; (2) Properties are special kinds of
resources, and describe relations between resources, e.g. “written by”, “age” and
“title”; (3) Property Values can either be resources, or literals [atomic values

(strings)]. Figure 3 shows different RDF concepts.

RDF identifies concepts using Web identifiers (URIs), and describes resources with
properties and property values.

Statements assert the properties of a resource. A statement is an object-attribute-value
triple, consisting of: (1) Resource (2) Property (3) Property Value.

Consider the statement, “The author of http://www.something.com/rdf is someone”.
The subject of the above statement is: http://www.something.com/rdf, the predicate is:
author and the object is: Someone. Figure 4 shows the graphical representation of the
above mentioned RDF statement.

University of Ulster 365 ISSN:2041-6407

Proceedings of AICS 2011 31 Aug -2 Sep

Resource

<RDF»
{Description about="http://www. something. com/rdf">
<author>Someoge{/author>
<homepagerhttps//www.'something. com<,/homepage”
</Description>

</RDF>
Properties

Property values

Fig. 3. RDF resources, property and property values

http://www. something. com/rdf

I type:author

Someone

Fig. 4. RDF graph representation of a statement

Jena Semantic Web Framework [13] is a Java framework for building Semantic Web
applications. It provides a programming environment for RDF, RDFS (Resource De-
scription Framework Schema), OWL (Web Ontology Language), and SPARQL
(Query Language for RDF) and includes a rule-based inference engine. Jena can faci-
litate creating and manipulating RDF graphs like that shown in Figure 4. Jena has
object classes to represent graphs, resources, properties and literals. The interfaces
representing resources, properties and literals are called Resource, Property and Liter-
al respectively. In Jena, a graph is called a model and is represented by the Model
interface. The code to create the graph, or model, is shown in Figure 5.

SELECT ?x Zauthor
WHEEE 1
?x type:author Pauthor

Executing the query will give the following result

x author

http://www. something. com/rdf is someone” |Someone

Fig. 5. A sample SPARQL query for the RDF graph shown in Fig. 4

University of Ulster 366 ISSN:2041-6407

Proceedings of AICS 2011 31 Aug -2 Sep

SPARQL [14] is a query language and data access protocol for the Semantic Web.
Data access means reading information, not writing (updates). SPARQL is defined in
terms of a RDF data model and will work for any data source that can be mapped into
RDF. SPARQL can be used to retrieve information from a RDF graph. SPARQL can
also construct information dynamically from the existing graphs.

SDB [15] is a Jena component for storage and querying, specifically for the SPARQL
language. The RDF model is created in a database rather than in files enabling mas-
sive RDF data storage. Most of the popular databases are supported by SDB. Boek
uses MySQL as its database management system for storing the RDF data. The gen-
eral syntax for creating a model with SDB is shown below in Figure 6. Though SDB
provides an inbuilt querying API, Boek utilises the more powerful Jena ARQ API for
SPARQL querying.

'/ Create database connection to the desired databasze
Connection connection = DriverManager. getConnection("database url”);

"/ Create a SDB database connection using the above connection
DEConnection dbConnection = new DBConnection(connection, Mysql)
" My=ql being the dbms type

'/Create RDF model in the db
Model model = ModelRDE. createModel (dbConnection, "modelname”);

Fig. 6. Code for creating RDF model using SDB

ARQ [16] is a query engine for Jena that supports the SPARQL RDF Query language.
ARQ provides java classes and interfaces that will facilitate constructing and execut-
ing queries. ARQ also provides functionalities to parse the results of query execution
against a RDF data store. Sample code for querying Boek’s knowledge base is shown
below in Figure 7.

MySQL [9] is a relational database management system (RDBMS). MySQL provides
a resource for consistent, reliable and scalable RDF storage for Boek.

3.2 Boek Implemenation

Implementation of Boek includes the front end (graphical user interface) design using
Adobe Flex and middle tier design using the Adobe Cairngorm framework. Boek
utilises the BlazeDS messaging service to interact with its backend database. Once a
request for semantic lookup reaches the backend server, Jena and ARQ API’s interact
with semantic web data stored using SDB to retrieve necessary information. The re-
sults are then parsed and send back to the front end.

Appendixes A shows screen shorts of the Boek interface. Figure 8 shows the
‘Find/Search’ user interface of Boek. Users can search for bookmarks based on dif-

University of Ulster 367 ISSN:2041-6407

Proceedings of AICS 2011 31 Aug -2 Sep

ferent properties of a stored bookmark such as title, author, URL and description.
They can also search using multiple keywords as shown in Figure 9. Figure 10 shows
the result of adding a new bookmark to Boek. Figure 13 shows the SPARQL query
with multiple search values for obtaining the results shown in Figure 10.

" Sparqgl query string
String queryString = "SELECT ?x 7Tauthor” WHERE {?x type:author 7author!”

" Creating a Query Object from the query string
Query query = QuervFactory.create(queryString);

" Creating Query execution for
QueryExecution gexec = QueryExecutionFactory. create (query, model};
" model being an RDF graph

'/ Executing the guery against the model
rs = gexec. execSelect ()

" Iterate the result of gquery executicn
while (rs.hasNext())

" Get the query solution for parsing
QuerySolution gs = rs.nextSolution();

" parse the query =clution for individual result
parse(qs) ;

Fig. 7. Jena ARQ code for querying SPARQL

4 Testing and Evaluation of Boek

The testing process applied to Boek falls under the following categories: (1) Develop-
er Testing; (2) Integration Testing; (3) Graphical User Interface (GUI) Testing and (4)
User Acceptance Testing (UAT).

Developer testing was performed at different development phases to ensure Boek
satisfied the requirements specified at the beginning of that phase. Each module de-
veloped was tested to check it was performing according to the requirements. Both
the user interface and backend Java code were subjected to this process. Java modules
were tested by creating standalone applications and passing test data to the methods
from the standalone applications. Once the method passed this test, it was then inte-
grated within Boek. Integration testing helped to identify problems that occurred
when independently developed modules were added to Boek. This was particularly
helpful to spot errors when standalone Java applications were integrated to Boek.

University of Ulster 368 ISSN:2041-6407

Proceedings of AICS 2011 31 Aug - 2 Sep

Graphical User Interface (GUI) testing was performed to ensure the accessibility,
responsiveness and efficiency of Boek. Accessibility testing checked whether users
can enter, navigate and exit from the different views of Boek with ease. Responsive-
ness of Boek analysed whether users were receiving appropriate response messages
for their actions. Finally, efficiency of Boek defined the pace of responsiveness. Since
Boek utilises RIA capabilities this testing was critical. User Acceptance testing was
performed to analyse the usefulness of Boek. The suggestions received were then
updated within the initial requirements for Boek.

Boek was primarily designed to evaluate the capabilities of the semantic web to store
data semantically. Boek enables users to search bookmarks based on title, author,
description or URL. The information stored using Boek is limited to bookmarks.
However, utilising full capabilities of the semantic web requires the creation of ontol-
ogies [17]. Use of more powerful languages like RDFS and OWL is necessary to
provide information based on logic and inference. Ontology learning [18] is essential
for creating dynamic meaningful ontologies from existing data stored as RDF.

5 Relation to other work

Boek’s architecture is highly scalable by providing a clear isolation between the
user interface and the semantic web based backend. Boek was designed taking inspi-
ration from MIT PiggyBank [5] and SemCards [6] with a view to scale them to a
personal knowledge repository. Like in PiggyBank, a bookmark once stored can be
retrieved by any other user based on semantics. Users can also recommend links to
friends or colleagues. What distinguishes Boek from other social bookmarking web
sites like Digg and Delicious is its ability to store information about personal docu-
ments with slight modification.

6 Conclusion and future work

The World Wide Web facilitates universal collaboration of information spaces.
The openness of the web has come with a price. Web pages holding valuable informa-
tion are almost hidden from most expected users due to information overload. Seman-
tic Web technologies were proposed as a solution to add meaning to information on
the web. However, applying the Semantic Web to billions of existing web pages is
challenging. This can be achieved by enabling individual web users to create their
own semantic web content. The system Boek discussed here utilises capabilities of
Semantic Web technologies to provide a meaningful bookmarking technique. Boek is
driven by open source technologies such as Adobe Flex, Jena API and MySQL
DBMS resulting in a cost effective application with high scalability.

Future work on Boek includes replacing the Flex based GUI with a web browser
plug-in. Currently Boek only enables the addition of bookmarks based on semantics.

University of Ulster 369 ISSN:2041-6407

Proceedings of AICS 2011 31 Aug - 2 Sep

However, with little effort Boek can be enhanced to organise all individual informa-
tion requirements. Ontology learning extracts relevant domain terms from a different
link content and relates them to appropriate concepts in a general-purpose ontology
[19], [20], [21]. This will eliminate the requirement for users to add semantic infor-
mation about links. Furthermore, this can enable building clusters of domain data
which can be shared between different users. Also, facilities can be added to auto-
matically publish useful links and information from one user to others.

7 References

1. Berners-Lee, T., Hendler, J. and Lassila, O.: The semantic web - a new form of web con-
tent that is meaningful to computers will unleash a revolution of new possibilities. In
Scientific American 284. (2001) 3443, May

2. Passin, T. B.: Explorer's Guide to the Semantic Web. Greenwich, CT: Manning (2004)

3. van Harmelen, F.: Semantic Web Technologies as the Foundation of the Information In-
frastructure. In: P. van Oosterom, S. Zlatanove (eds.), Creating Spatial Information Infra-
structures: Towards the Spatial Semantic Web, 37-54. London: CRC Press (2008)

4. Janev, V., Vranes, S.: Semantic Web Technologies: Ready for Adoption?, IT Professional,
Vol. 11, No. 5. (2009) 8-16

5. Huynh, D., Mazzocchi, S., Karger, D.: Piggy Bank: Experience the Semantic Web Inside
Your Web Browser, Lecture Notes in Computer Science, Vol. 3729. (2005) 413-430

6. Thorisson, K.R., Spivack, N., Wissner, J.M.: SemCards: A New Representation for Realiz-
ing the Semantic Web. ICCCI-2009, Wroclaw, Poland, October 5-7. (2009) 425-436

7. Wilks, Y.: The Semantic Web: Apotheosis of Annotation, but What Are Its Semantics?,
Intelligent Systems, IEEE , Vol.23, No.3. (2008) 41-49, May-June

8. Mc Kevitt, P.: Advances in Intelligent MultiMedia: MultiModal semantic representation,
In Proceedings of the Pacific Rim International Conference on Computational Linguistics
(PACLING-05), Hiroshi Sakaki (Ed.), Meisei University (Hino Campus), Hino-shi, Tokyo
Japan. (2005) 2-13, August

9. MySQL: http://www.mysql.com/ (2011)

10. Adobe Flex: http://www.adobe.com/products/flex/ (2011)

11. Adobe Flex Cairngorm: http://opensource.adobe.com/wiki/display/cairngorm/Cairngorm
(2011)

12. Adobe Flex BlazeDS: http://opensource.adobe.com/wiki/display/blazeds/BlazeDS (2011)

13. Jena API: http://jena.sourceforge.net/ (2011)

14. SPARQL Query Language for RDF: http://www.w3.org/TR/rdf-sparql-query/ (2011)

15. Jena SDB database for Jena: http://openjena.org/SDB/ (2011)

16. Jena ARQ API: http://jena.sourceforge.net/ ARQ/app_api.html (2011)

17. Hepp, M.: Possible Ontologies: How Reality Constrains the Development of Relevant On-
tologies, , IEEE Internet Computing, Vol. 11, No. 1. (2007) 90-96

18. Maedche, A.; Staab, S.: Ontology learning for the Semantic Web, IEEE Intelligent Sys-
tems , Vol.16, No. 2. (2001) 72- 79, Mar-Apr

19. Alani, H., Hall, W., O'Hara, K., Shadbolt, N., Szomszor, M. & Chandler, P,: Building a
Pragmatic Semantic Web, IEEE Intelligent Systems, Vol. 23, No. 3. (2008) 61-68

20. Benjamins, V.R.: Near-Term Prospects for Semantic Technologies, IEEE Intelligent Sys-
tems, Vol. 23, No. 1. (2008) 76-88

University of Ulster 370 ISSN:2041-6407

Proceedings of AICS 2011 31 Aug -2 Sep

21. d'Aquin, M., Motta, E., Sabou, M., Angeletou, S., Gridinoc, L., Lopez, V. & Guidi, D.:
Toward a New Generation of Semantic Web Applications, IEEE Intelligent Systems, Vol.
23, No. 3. (2008) 20-28

Appendix A

12111 ——

Find something from Boek

Info s 1se| t [Title vJ

semantic web: Sesame APl by Open RDF

semantic web: A Semantic Web Primer by Grigaris Antonlow and Frank van Harmelen

Fig. 8. Search title

ZIET\1d ——

Find something from Boek

Info s |Jena, semantic | [Title vJ

Semantic Web: Jena API by Jena

semantic web: A Semantic Web Primer by Grigoris Antonlou and Frank van Harmelen

Fig. 9. Search using multiple terms

University of Ulster 371 ISSN:2041-6407

Proceedings of AICS 2011 31 Aug -2 Sep

¢ (27111 -A—

Return

Boek updated with new topic. Some matching topics

Semantic Web: Jena API by Jena

semantic web: Sesame API by Open RDF

semantic web: A Semantic Web Primer by Grigoris Antoniou and Frank van Harmelen
SPARQL, RDF; SPARQL Query Language for RDF by W3.org

SPARQL, Semantic Web: SPARQL reference card by Dave Beckett

ARQ, Jena, Semantic Web: ARQ query processor by Jena

Semantic Web, OWL: User manual for the OWL Ontolegy APL by w3.org

Semantic Web, Al! Scripting Intelligence by Mark Watson

Semantic Web, RDF: RDF Intreduction by w3 Schools

Fig. 10. Add data result showing matching topic on subject added

¢ 11111 - S

Enhance Boek Knowledge Base

Title 4 |SPARQL reference card
Subject % |SPARQL ‘
Author s |Dave Beckett ‘
URL # [ttp:/jwealirt.bris.ac.uk/people/cmdib/2005/04-spargl) |
=

Fig. 11. Invalid URL validation error

University of Ulster 372 ISSN:2041-6407

Proceedings of AICS 2011 31 Aug -2 Sep

(21T ——

Enhance Boek Knowledge Base

Title = |RDF Intreduction

Subject # |Semantic Web, RDF |

Author |w3 Schools |

URL s |http:ffmw.w3_nrngDF

Submit |l Reset

Fig. 12. Add data form without any errors

PREFIX Dboek: <http://www.traume.com/elements/1.0/>
SELECT 2author ?subject ?title ?topicOf

WHERE
{ ?x Dboek:author ?author ;
boek:subject ?subject ;
boek:title ?2title ;
boek:topicOf <?topicOf
FILTER (regex(?title, "jena"™, "i") || regex(?title,
"semantic", "i"))
}

Fig. 13. SPARQL query with multiple search values

University of Ulster 373 ISSN:2041-6407

