
Artificial Intelligence Review14: 89–119, 2000.
Stephen J. Hegner et al. (eds.), Intelligent help systems for UNIX.
© 2000Kluwer Academic Publishers. Printed in the Netherlands.

89

The OSCON Operating System Consultant*

PAUL MC KEVITT
Center for PersonKommunikation (CPK), Fredrik Bajers Vej 7-A5, Institute of Electronic
Systems (IES), Aalborg University, DK-9220, Aalborg, Denmark. E-mail: pmck@cpk.auc.dk

Abstract. OSCON (Operating System CONsultant) is an operating system consultant which
gives English answers to English queries about computer operating systems. The program
currently answers queries for over 40 commands from the UNIX1 and MS-DOS2 operating
systems. OSCON answers a wide variation of queries that users may wish to ask. OSCON is
intended to be a consultant for various types of users who may ask vague and detailed queries.
OSCON is programmed in Quintus Prolog and answers queries in less than 2.5 seconds.
An empirical study with the Wizard-of-Oz technique provides important data for the further
development of OSCON.

Keywords: intelligent help, Natural Language Processing (NLP), operating systems, UNIX

1. Introduction

This paper describes the OSCON (Operating System CONsultant) program
and its capabilities. OSCON is a natural language interface which answers
English queries about computer operating systems. Although a compre-
hensive description of OSCON is given here further details are found in Mc
Kevitt (1986, 1987, 1988), Mc Kevitt and Wilks (1987), Mc Kevitt and Pan
(1989), and Mc Kevitt and Ogden (1989a). The user enters English queries to
OSCON and the program answers them in English. The program is written
in Quintus Prolog, runs on a Sun-3/ME-4 computer, and the maximum time
taken to answer a given query is 2.5 seconds. OSCON answers queries for
over 40 commands from the UNIX and MS-DOS operating systems. OSCON
has been constructed to answer three basic types of query although recent
studies indicate that there are at least nine basic query types (see Mc Kevitt
and Ogden 1989a,b). OSCON will also answer queries about options on
UNIX commands and complex queries about command compositions. The
system is intended to be used by varying types of users with different levels of
expertise. The architecture of OSCON is modular so that it is easily updated
and can be easily mapped over to other domains.

90 PAUL MC KEVITT

2. Query Coverage of OSCON

The problem with building effective natural language interfaces is that there
are many ways of asking English queries. The system must attempt to capture
all the different possibilities. One way to do this is to try and capture the basic
types of queries that people ask. This gives the system the power of answering
a large number of queries when it caters for each type.

OSCON was designed to cater for three basic types of query. These
query types were decided a priori before any data analysis was conducted.
These query types are: (1)request for information(e.g. “What does rm
do?”), (2) request for explanation(e.g. “What is a pipe?”), and (3)request
for direction (e.g. “How do I see my file on the printer?”). Three cases
of type (1) are considered important: (1)request for information[effect]
(e.g. “What does rm do?”), (2)request for information[form](e.g. “What
is the syntax of cp?”), and (3)request for information[precondition](e.g.
“What is needed for rm?”). Two cases of type (2) were analyzed: (1)
request for explanation[command](e.g. “What is more?”), and (2)request
for explanation[concept](e.g. “What is a file?”),

Each of these basic query types can also be asked in terms of options in
the UNIX operating system. Examples are, “What option of ‘ls’ shows the
number of bytes in my files?” (request for information[option]), “What does
ls -l do?” (request for information[effect]), “How do I rename a file without
having reported errors?” (request for direction), “What are the options on
ls?” (request for information[options]), “What does the -i option normally
do?” (request for information[concept]). Users can also ask queries involving
command compositions. An example is, “How do I list my files and print
them on the printer?” This query involves a query about listing files (request
for direction) and then printing them on the printer (request for direction).

The OSCON program currently answers queries constituting (1) the three
basic query types, (2) queries about options, and (3) command composition
queries for both the UNIX and MS-DOS operating systems. The fact that
queries are of a given type aids in understanding and generating answers
to them. For example,request for informationqueries usually include a
command name. Therefore, the parser for OSCON could check for command
names and if it found them, this would be an indication that the query was
of type (1). Also, the generator would generate an answer, in a particular
format, depending on the type of query. Rules of thumb such as these also
speed up the time it takes OSCON to answer queries. Although one can add
such rules of thumb into the interface it does not reflect a short-cut to natural
language parsing. For example, there is no such short cut to understanding the
query, “How do I print a file on the Laserwriter with no page burst?” Under-
standing queries is a combination of both (1) filtering the query type, and then

THE OSCON OPERATING SYSTEM CONSULTANT 91

(2) understanding the query. Examples of queries answered by OSCON are
shown in Appendix A. These examples are listed by query type.

3. The Architecture of OSCON

The architecture of the OSCON system is defined as six distinct modules.
There are two arguments for modularizing any system: (1) it is much easier
to update the system at any point, and (2) it is easier to map the system over
to another domain. The six modules in OSCON are as follows: (1) ParseCon:
natural language syntactic grammar parser which detects query-type, (2)
MeanCon: a natural language semantic grammar which determines query
meaning, (3) KnowCon: a knowledge representation for understanding, (4)
DataCon: a knowledge representation for solving, (5) SolveCon: a solver for
resolving query representations against knowledge base representations, and
(6) GenCon: a natural language generator for generating answers in English.

ParseConconsists of a set of programs which read natural language input
and determine the type of query being asked by the user. We have described
the three basic types of query in section 2 above. For each type of query there
are tests for characteristic ways of asking that query.

MeanCon consists of programs which check queries for important
information. There are predicates which check for mentioned (1) command
names (e.g. “ls”, “more”), (2) command-effect specifications (e.g. “see a
file”), and (3) concepts (e.g. “file”, “directory”). In case (2) there are specific
types of information searched for: (1)verb specifying action (e.g. “see”,
“remove”), (2) object of action (e.g. “file”), (3) modifier of object (e.g.
“contents”), and (4)locationof object (e.g. “screen”). MeanCon also checks
for option verbs (e.g. “number”) and option verb objects (e.g. “lines”).
MeanCon contains a dictionary of English words that define categories such
as “person”, “modifier”, “article”, “quantifier” and “prepositions”.

KnowConconsists of a set of data files to represent the knowledge about
the domain language used for understanding English queries. Files contain
information about verbs which categorize types of command or action.
Examples of categories of action are: (1) creating, (2) screenlisting, (3)
printerlisting, (4) sending, (5) transferring, and (6) removing. KnowCon also
contains grammar rules for operating system objects like “date”, “file” and
“directory”. The grammar rules encode characteristic ways in which people
talk about the objects in English.

DataConconsists of a set of data files defining detailed information about
operating system commands. This information is stored for the UNIX and
MS-DOS operating systems. The data for UNIX is split among seven files:
(1) command preconditions, (2) command effects, (3) command syntax, (4)

92 PAUL MC KEVITT

command names, (5) command precondition options, (6) command effect
options, and (7) command name options. The first four files contain basic
data about commands while the last three contain data for options. For MS-
DOS, data is contained in just four files which are similar to the first four
here.

SolveConis a solver which constructs and matches representations of user
queries (called formal queries) against DataCon and produces an instantiated
formal query which serves as an answer for the query. SolveCon is the driver
of the OSCON program because it contains the information for mapping
English sentences into instantiated answers. It contains a set of complex rules
which call other OSCON modules to determine (1) query type, and (2) the
instantiated formal query for that query.

GenConis the natural language generator for OSCON and maps instan-
tiated information from SolveCon into English answers. Here, there are
algorithms for printing out (1) preconditions, (2) effects, and (3) syntax of
commands. Also, there are routines for printing out examples of the use of
commands and command compositions. The type of query asked by the user
determines the information mapped to the user.

4. Knowledge Representation in OSCON

One of the problems in building natural language interfaces is to organize the
knowledge of the domain in some form which will be effective. There are two
types of knowledge stored in OSCON: (1) knowledge about natural language,
and (2) knowledge about operating systems.

The knowledge about language stored includes words used to refer to
command actions. For example, a user may use the words “delete”, “remove”,
“get rid of”, “erase” and so on to ask a query about deleting files and direc-
tories. These words must be stored under the general category of delete. Also,
there are many ways in which people ask queries about actions. For example,
if you are asking about copying a file you will probably specify the file which
you wish to copy. If you are asking about “displaying” you will specify what
you wish to display and where you wish to display it. This type of know-
ledge is called “understanding knowledge” and is stored within a module of
OSCON called KnowCon.

More detailed knowledge about operating systems is contained in a
database called DataCon. This type of knowledge includes command precon-
ditions, command effects, command syntax, and the names of commands.
Also, stored here is (1) knowledge about options for commands, (2) English
descriptions of operating system concepts like “files” and “directories”, and
(3) knowledge about plans or possible command combinations (e.g. ‘ls’ can

THE OSCON OPERATING SYSTEM CONSULTANT 93

precede ‘lpr’ but the converse is not true). The knowledge stored here is for
the UNIX and MS-DOS operating systems. The distinction between the two
types of knowledge is that one is language oriented and the other is domain
oriented. One type of knowledge is used for understanding queries and the
other for solving queries. This is the principle of separation of understanding
and solving defined in Hegner (1988, 2000).

4.1. Knowledge for understanding (KnowCon)

There are two types of understanding knowledge stored in the KnowCon
module: (1) data on operating system action reference, and (2) data on
descriptions of operating system objects. The first type of knowledge includes
sets of words or phrases that may refer to some operating system action or
command. For example, the words, “print”, “print out”, and “get a copy”
would indicate that the user was referring to printing something on the printer.
Such words and phrases are stored as being associated with the general
concept of printing. The second type of knowledge is used for defining the
ways that users refer to operating system objects. For convenience the data
have been split up into two types (a) data on files and directories, and (b)
data on other operating system objects. In type (a) there are grammar rules
specifying how users refer to files and directories, and in type (b) there are
rules for how users refer to other operating system objects.

4.1.1. Referring to actions
In asking queries about operating systems users commonly use a well defined
set of verbs or verb phrases. For example, if a user wants to know about
removing files or directories he/she will use the following verbs and phrases:
“delete”, “remove”, “get rid of”, “erase” and so on. Queries about copying
may be referenced by: “copy”, “transfer”, and “move”. These phrases should
be captured by the OSCON program. Phrases and words are stored under
their categories in the KnowCon module of the program.

It is possible to divide the set of operating systems commands into
various categories. We have defined three major command categories and
each of these have various subdivisions. The three categories are “listing”,
“altering” and “compiling” commands. Listing commands are those which
display information about the state of files in an operating system. Altering
commands are used to alter the state of files in the system. Compiling
commands are used to compile files in the system rather than display/alter
them. There are two types of listing command, (1) screenlisting, and (2)
printerlisting. Screenlisting commands are those which allow the user to see
information on the screen and printerlisting will do the same for the printer.
There are three subtypes of screenlisting command, (1) display-file (e.g.

94 PAUL MC KEVITT

“more”, “nroff”, “cat”), (2) display-file/directory-information (e.g. “ls”), and
(3) display-system-information (e.g. “users”, “who”, “ps”, “jobs”). There is
only one subtype of printerlisting command (e.g. “lpr”, “runoff”,3 “itroff”).

Altering commands are of three types, (1) creating (e.g. “gemacs”, “vi”,
“mkdir”), (2) removing (e.g. “rm”, “rmdir”, “kill”), and (3) transferring (e.g.
“mv”, “cp”). Each of these can be applied to either files or directories. A
third type of command is compiling commands. These commands cannot be
categorized under altering commands as they are really utilities which do not
change files but use them. An example of such a command is “run”. It is
important to point out that certain commands apply to files which are not
directories and others only apply to files which are directories. For example,
“more” can only be used on files and not directories and “rmdir” can only be
used on directories and not files. Such information can be used to specify the
preconditions for commands and enables the system to detect errors in user
queries and inform the user about such errors. For example, if a user asked,
“How do I use “more” to display a directory?” the system could locate that
the precondition for “more” is that it only works over files. Then the system
could tell the user this information.

The rules listed below are examples of typical action rules in KnowCon
(bracketed items indicate input strings to be matched with). Rules [1] and [2]
show typical verb phrasings used to reference the action of screenlisting. Rule
[3] is for printerlisting and rules [4] and [5] for creating.

[1] screenlist → [see].
[2] screenlist → [look, at].
[3] printerlist → [print].
[4] create → [edit].
[5] create → [produce].

4.1.2. Referring to objects
Queries about operating systems often include reference to operating system
objects like files and directories. Typically, users will refer to the object
which is operated over by some command. The phrasing of the English
query will dictate the object present. KnowCon has objects separated into
two categories: (1) file/directory object specifications, and (2) other operating
system object specifications.

The rules listed below are examples of file/directory object specifications
(bracketed items indicate input strings to be matched with and non brac-
keted items indicate non-terminals in the grammar). File object specifications
include grammar rule definitions for files and directories. The first rule defini-
tion below [1] specifies that a file can be mentioned in a query by the word

THE OSCON OPERATING SYSTEM CONSULTANT 95

“file” preceded by three modifiers. The first modifier can be (1) a quantifier
(e.g. “all”, “some of”), and the second (2) a possessive (e.g. “my”, “our”).
Thenfilemodcan be a modifier of type of file. Examples are “mail”, “device”,
“plain”, “executable” and so on. This grammar rule will capture most of the
ways that a user might refer to a file.

The second rule [2] shows that a directory may have two modifiers and
then the word referring to directory itself. Rule [3] shows that a file or
directory could be in reference. This happens because it is ambiguous as to
whether the intended referent is file or directory. The user, by using the plural
of file may intend directory4 rather than the plural for file.

Rule [4] defines location to be a triple: (1) preposition (prep), (2) modifier
(mod), and (3) directory (dir). Phrases like “. . . in my directory”, “. . . in our
directory”, and “. . . in the directory” will match here. There are more specific
definitions of location for where the location is. Rule [5] is a definition of
screen location in terms of (1) preposition (prep), (2) modifier (mod), and
(3) screen-output (soutput). Preposition and modifier are self explanatory and
output is the location of output. This could be “terminal” or “screen”. Rule
[6] is the equivalent definition for a printer location. The output specification
here is for a printer. Then poutput can be (1) “printer”, (2) “imagen” or (3)
“laser writer”.

[1] file → mod, mod, filemod, [file].
[2] directory → mod, mod, [directory].
[3] fileordir → mod, mod, filemod, [files].
[4] location → prep, mod, dir.
[5] slocation → prep, mod, soutput.
[6] plocation → prep, mod, poutput.

The second type of object definitions include objects other than those to do
with files and directories. Some examples are shown below. Rule [1] shows
the definition of a queue in terms of (1) a modifier, followed by (2) [printer,
queue]. There are definitions of users by rules [2] and [3]. Rules [4] and [5]
define names. The definitions of objects are simply definitions of the various
ways which users refer to the objects.

[1] queue → mod, [printer, queue].
[2] users → names, mod, [users], prep, mod, [system].
[3] users → names, [system, users].
[4] names → mod, [names, of].
[5] names → [].

96 PAUL MC KEVITT

4.2. Knowledge for solving (DataCon)

The knowledge for solving in OSCON consists of files of data that describe
detailed information about operating systems. There are four types of know-
ledge stored here (1) basic command representation, (2) option representa-
tion, (3) concept representation, and (4) plan representation.

4.2.1. Basic command representation
There are basically four types of information about any command held
in the database. These are (1) preconditions, (2) effects or postconditions,
(3) syntax, and (4) command names. Preconditions are lists of objects that
are necessary for a command to be executed. Here are some examples of
preconditions for commands from UNIX. Facts [1] and [2] show that “more”
and “cat” have the precondition, “file”. The command, “mkdir” has the
precondition “directory” and “cp” has no precondition.

[1] precon(more, [file]).
[2] precon(cat, [file]).
[3] precon(mkdir, [directory]).
[4] precon(cp, []).

Effects, or postconditions, are definitions of the outcome of commands.
The effect is defined by a predicate which has a name and three arguments.
The predicate name is the action and the arguments are (1) object, (2) object
modifier, and (3) location. The facts below show some effects for UNIX
commands (‘@’ acts as a slot filler where an extra slot is not required in
some cases). Fact [1] shows the effect for the command “more”. The object
for “more” is “file” and its modifier “contents”. The location of output of
“more” is the “screen”. One case of the “cat” command [2] has the same
effect as “more”. The other effect case of “cat” [3] is defined as concatenate
and describes the concatenation of files together. The command “ls” will
either display directory contents [4], or file information [5] on the screen.
The displaying-information command “users” will display usernames on the
screen. Fact [7] describes the “gemacs” command which creates files, and
fact [8] the “rm” command which deletes them.

[1] comm(more, display(file, contents, screen)).
[2] comm(cat, display(file, contents, screen)).
[3] comm(cat, concat(file1, file2, file3)).
[4] comm(ls, display(directory, contents, screen)).
[5] comm(ls, display(file, info, screen)).
[6] comm(users, display(usernames, @, screen)).

THE OSCON OPERATING SYSTEM CONSULTANT 97

[7] comm(gemacs, create(file, @, loc)).
[8] comm(rm, remove(directory, @, loc)).

The syntax of commands is defined as a structure which contains the name
of some command and then its syntactic definition of use. Shown below are
some examples of the syntax for UNIX commands. The syntax facts are three
place lists containing (1) Command name, (2) Optionname (filled in from
context), and (3) Syntax description.

[1] syn(more, Optionname, ‘‘[more <filename>]’’).
[2] syn(cat, Optionname, ‘‘[cat <filename>]’’).
[3] syn(ls, Optionname, ‘‘[ls <directoryname>]’’).
[4] syn(users, Optionname, ‘‘[users]’’).
[5] syn(gemacs, Optionname, ‘‘[gemacs <filename>]’’).

4.2.2. Option representation
DataCon also contains information for option specifications of commands.
DataCon has files for (1) Option Preconditions, (2) Option Effects, (3) Option
Names. There is no distinction for option syntax as this is practically the same
for commands with options or not.

Option preconditions are defined as three-place lists with the (1)
Command Name, (2) Option Name, and (3) Precondition List. Shown below
are a set of options for the various commands. The Precondition List contains
the objects which must be present for the command to be executed. Facts [1],
[2] and [3] show that each option for “cat” has “file” as precondition. Facts
[4] and [5] show that for one option of “cp” (i) there is no precondition, and
for the other option (r), “directory” is the precondition. Facts [6] and [7] show
the preconditions for “ls”.

[1] opprecon(cat, n, [file])
[2] opprecon(cat, s, [file])
[3] opprecon(cat, v, [file])
[4] opprecon(cp, i, [])
[5] opprecon(cp, r, [directory])
[6] opprecon(ls, f, [directory])
[7] opprecon(ls, l, [])

The definition of the Option Effects are also stored as strings of English
words. This is merely a convenience for generation. The definitions will
enable the generator to give more detail about the specific effect of some
option. Each fact here contains (1) Command Name, (2) Option Name, and
(3) Option Effect with an English description.

98 PAUL MC KEVITT

[1] opeffect(more, #,
‘‘set the window size to # lines’’).

[2] opeffect(more, c,
‘‘display each page after cleaning screen’’).

[3] opeffect(more, d,
‘‘prompt to hit space to continue at each screen’’).

[4] opeffect(cp, i,
‘‘prompt file name when overwriting’’).

[5] opeffect(cp, p,
‘‘preserve the modification information from the
source’’).

[6] opeffect(cp, r,
‘‘copy each subtree rooted at that directory’’).

Option Name definitions are similar in spirit to the Command Effect
specifications defined in section 4.2.1 above. However, the definitions here
are for specific options. The option definitions have three arguments: (1)
Option Effect defined as an action (object) specification, (2) the Command
Name, and (3) Option Name. The first three facts [1], [2] and [3] show the
option variations on “cat”. The various options allow the displaying of file
contents in a specific manner. We also show the options for “ls” (facts [4]–
[10]) and for “cp” (facts [11]–[13]). Note that a characteristic of options is
that sometimes they have the same action as the main action (e.g. display
and display(non-printing-characters)) while other times they have a different
action (e.g. display and squeeze(blanklines)).

[1] opcomm(number(lines), cat, n).
[2] opcomm(squeeze(blank-lines), cat, s).
[3] opcomm(display(non-printing-characters), cat, v).

[4] opcomm(include(hidden-files), ls, a).
[5] opcomm(display(directory-name), ls, d).
[6] opcomm(display(directory-content), ls, f).
[7] opcomm(display(group-ownership), ls, g).
[8] opcomm(display(long-listing), ls, l).
[9] opcomm(sort(file-ages), ls, t).
[10] opcomm(display(subdirectories), ls, R).

[11] opcomm(prompt(overwriting), cp, i).
[12] opcomm(preserve(modification-information), cp, p).
[13] opcomm(copy(subdirectories), cp, r).

THE OSCON OPERATING SYSTEM CONSULTANT 99

4.2.3. Concept representation
DataCon also contains a set of definitions of the possible concepts which
a user may wish to ask about. Such concepts are considered to be operating
system objects like files and directories, and concepts like piping and filtering.
Concept representations are three place lists with (1) Concept name, (2)
Concept name pluralized, and (3) English description of concept. We show
the definitions for, “ada”, “working directory” and “unix” here.

[1] con([ada],[ada],
‘‘Ada is developed on behalf of the U.S. Department
of Defense for use in embedded systems. Ada is the
first practical language to bring together important
features such as data abstraction, multitasking,
exception handling, encapsulation and generics.’’).

[2] con([working, directory],[working, directories],
‘‘The directory you are working in.’’).

[3] con([unix],[unix],
‘‘UNIX Operating System manages the resources of
your computer system to perform useful work on your
behalf. It is composed of three major parts: the
kernel, the file system, and the shell.’’).

4.2.4. Plan representation
DataCon contains a list of possible Plans for command sequences which users
may ask about. These command sequences are defined in terms of predicates
which have five arguments. The first three arguments represent (1) an action,
(2) an object, and (3) location of output. The last two arguments define the
second action and its output location. We show two example rules below. Fact
[1] represents displaying directories on the screen and then on the printer and
fact [2] likewise for files.

[1] plan(display,directory,screen,display,printer).
[2] plan(display,file,screen,display,printer).

5. Natural Language Understanding

The most important part of any program which acts as a natural language
interface is the natural language understander. There must be some means of

100 PAUL MC KEVITT

mapping a user query into a good meaning representation of that query. The
problem, of course, is that there are very many ways of specifying queries in
English. The first job of the natural language interface is to use some type of
syntactic filtering which determines the type of query being asked. The filter
will check queries for certain objects or phases and works as a fast mechanism
for determining query type. The second job is that of determining the meaning
of a query, or its content, once the type of query is determined. Let’s take a
look at the two components of OSCON which tackle these two problems.

5.1. Parsing natural language queries (ParseCon)

The parser called ParseCon has the job of determining the type of query
present. There are characteristic ways of asking certain types of queries
and the parser checks for these. The parser checks for the three basic types
of query described in section 2. The ParseCon module has lists of the
characteristic ways which people use to ask queries about particular query
types.

One of the query types checked for isrequest for explanation. There are
a number of characteristic phrases which are used. Some of these are listed
below. The first set of facts [1–4] and facts [1a–1e] define the syntax of what
would come before and after some concept respectively. The second set of
facts [6–11] only define possible uses of syntax before the concept but do not
reflect any after-concept syntax.

[1] firstphrase([what, does|X], o1).
[2] firstphrase([what, a|X],o2).
[3] firstphrase([what|X],o3).
[4] firstphrase([what|X],o4).

[1a] secphrase([mean|X],o1).
[2b] secphrase([is|X],o2).
[3c] secphrase([is|X],o3).
[4d] secphrase([are|X],o3).
[5e] secphrase([means|X],o4).

[6] wphrase([what, is, a]).
[7] wphrase([what, are]).
[8] wphrase([what, is]).
[9] wphrase([explain]).
[10] wphrase([describe]).
[11] wphrase([]).

THE OSCON OPERATING SYSTEM CONSULTANT 101

Another query type checked for isrequest for information[effect]. Here,
again there are a number of possible characteristic phrases. We list some here
[1–8]. Similarly, there are facts for (i)request for information[precondition],
(ii) request for information[form], (iii) request for direction, (iv) request for
explanation[command], and (v)request for explanation[concept]queries. Of
course, there are syntax facts which will be compatible for all query types.
However, this is not a problem because there are other characteristics of query
types which separate them out.

[1] firstdesc([what|X],o1).
[2] firstdesc([does|X],o2).
[3] firstdesc([does|X],o3).

[1a] secdesc([does|X],o1).
[2b] secdesc([do|X],o2).
[3c] secdesc([have|X],o3).

[4] desc([what, happens, with|X]).
[5] desc([result|X]).
[6] desc([results|X]).
[7] desc([uses, of|X]).
[8] desc([effect, of|X]).

5.2. Determining query meaning (MeanCon)

The function of the MeanCon component of OSCON is to determine query
meaning. This is less of a problem for most query types than forrequest
for direction queries. These queries involve complex phrasings of English
to describe the effects which the user wishes to execute. The MeanCon
component of OSCON has the function of determining the occurrence of
objects in user queries. There are seven types of object searched for: (1)
command name, (2) option name, (3) verb reference, (4) object, (5) object
modifier, (6) object location, and (7) concept.

MeanCon has a predicate calledfindcmdwhich searches for command
names. The mention of command name is a good indicator of the type of
query being asked. If a command name is present this indicates that the
query is probably about (1) command preconditions, (2) command effects,
or (3) command syntax. MeanCon also has a predicate calledfindoptwhich
searches for mention of option names in queries.

One of the most difficult types of user query to be understood by the
system isrequest for directionqueries. These are queries where the user

102 PAUL MC KEVITT

knows what he/she wishes to accomplish but does not know the command
to do that. In these cases the user will specify, in English, some process, or
effect, which he/she wants to be executed. The process/effect can be described
with (1) a primary verb and (2) a secondary verb. The user will use a primary
verb to describe the main action/command in question. A secondary verb may
be used to describe a restriction on the main action/command. This restriction
could be a definition of some option specification for the major command.

Therefore, MeanCon has algorithms which check for (i) Primary Verb, (ii)
Primary Verb Object, (iii) Object Modifiers, and (iv) Locations. There are also
algorithms which search for (i) Secondary Verb, and (ii) Secondary Objects
which usually describe option effects.

In checking forrequest for directionqueries the user will usually specify
some action with a verb. This will be followed by the mention of an object
such as a “file” or “directory”. There may be a modifier of the object such as
“contents”. The location of the object may also be specified such as “printer”
or “screen” or “directory”.

There’s a predicate in MeanCon calledfindverbwhich searches for verbs
in user queries. When a verb is located this will determine the major category
of action/command. Therefore, the word “delete” will reference removing,
“see” will reference displaying and so on. MeanCon uses the stored verb-
action structures in KnowCon to find verbs in queries and their related action
representations.

Another predicate calledfindobjsearches for the object of a verb. Say, for
example, the user had asked, “How do I see a file?” then the findverb predicate
will locate the verb “see”. The query is split up so that the phrase after the
verb is checked for an object. The object “file” is located and marked.

More complex queries may include modifiers and locations. Take the
query, “How do I see my file contents on the screen?” In this case, the phrase
“ |. . . file contents on the screen?” is checked for an object byfindobj. Then,
“ |. . . contents on the screen?” is checked for modifier byfindmod. Findmod
locates “contents” as a modifier.

A predicate calledfindloc checks for locations in queries. Locations
include “screen”, “printer” and “directory”. In our example, “|. . . on the
screen?” is checked for location and “screen” is uncovered.

MeanCon has a predicate calledfindconwhich checks for concepts in user
queries. For example, the existence for the concept, “ada” will denote a query
asking about, “ada”.

THE OSCON OPERATING SYSTEM CONSULTANT 103

6. Rules for Solving (SolveCon)

Now that we have defined the data available to OSCON before the system
begins to process a query we move on to describe the rules which match
user queries to database information. SolveCon determines the answer for
a query by (1) building an uninstantiated formal query from the query, (2)
matching this structure to the DataCon database, (3) retrieving data from the
database, and (4) using the data to build an instantiated formal query which is
passed back to the GenCon natural language generator. We shall describe the
answering process in two steps: (1) the algorithm used by SolveCon to specify
the query and to retrieve data from the database, and (2) the structure of
instantiated Formal Queries returned by SolveCon to the GenCon generator.

6.1. The solving algorithm

The Solver basically searches queries for three types of information: (1)
Command Names, (2) English Descriptions of command effects, and (3)
Concepts. The search process in conducted in the following order.

[1] SolveCon checks to see if a command name is mentioned in the query.
Then, (a) SolveCon checks if an option (e.g. -l) is mentioned. If (a) fails then
(b) SolveCon checks if the query isrequest for direction[option]. This check
is done by having ParseCon check the syntax of the query, having MeanCon
check for an English Description of an option effect. If either (a) or (b)
are satisfied SolveCon will retrieve from the database Option Preconditions,
Option Effect, Option Syntax, and Option Name.

If (a) and (b) have both failed then (c) SolveCon checks if the query
is a request for information[precondition], request for information[effect]
or request for information[form]query. Here, SolveCon checks the syntax
again using ParseCon. If (c) fails, then (d) SolveCon checks the query for
request for explanation [command]query. ParseCon is involved here too. If
either (c) or (d) are satisfied SolveCon will retrieve Command Preconditions,
Command Effect, Command Syntax, and Command Name from the database.
If (d) fails then SolveCon moves on to step [2].

[2] SolveCon checks the query semantics. In this case the user must have
asked an English query with no command names. (i) SolveCon has ParseCon
check the syntax of the query. (ii) Then, SolveCon calls MeanCon to check
for a Primary Verb, Verb Object, Modifier, and Location. SolveCon will
retrieve Command Preconditions, Command Effect, Command Syntax, and
Command Name from the database. Next, (iii) SolveCon has MeanCon check
for a Secondary Verb (option action), and Secondary Verb Object. SolveCon
will retrieve from the database Option Preconditions, Option Effect, and
Option Syntax. If step [2] fails then SolveCon goes on to step [3]).

104 PAUL MC KEVITT

[3] SolveCon checks the query semantics. In this case the user must have
asked an English query involving no command names. Also, the query must
be about command combinations, or pipes, otherwise step [2] would have
passed. SolveCon checks for the existence of a command combination in the
user query. SolveCon has MeanCon check for the existence of a sentence
connector like “and”. If this occurs then is it possible that the query involves
command combination. SolveCon then calls the SolveCon algorithm again
for (1) the piece of the query before the connector, and (2) the piece of the
query after the connector. The data returned from (1) and (2) is integrated. If
[3] fails then SolveCon tries step [4].

[4] SolveCon checks query syntax through ParseCon. Then MeanCon
searches for concepts mentioned in the query. Examples of such concepts
are “ada” and “protection”.

6.2. Structures returned

The step of SolveCon which succeeds will return an instantiated formal query
to the generator. In step [1], if cases (a) or (b) succeed, an instantiated formal
query will be returned containing the following: (1) Option Preconditions, (2)
Option Effect, (3) Option Syntax, (4) Option Name, and (5) Query Type. In
step [1], if cases (c) or (d) succeed, the instantiated formal query contains:
(1) Command Preconditions, (2) Command Effect, (3) Command Syntax, (4)
Command Name, and (5) Query Type.

In step [2] the formal query returned will contain slots for: (1) Command
Preconditions, (2) Command Effect, (3) Command Syntax, (4) Option
Preconditions, (5) Option Effect, (6) Option Syntax, and (7) Query Type.
The complete structure will be instantiated when step [2] involves options.
However, only parts (1), (2), (3), and (7) are instantiated when there is no
mention of options.

With step [3] a list containing two instantiated Formal Queries is returned.
Each formal query will contain: (1) Command Preconditions, (2) Command
Effect, (3) Command Syntax, (4) Command Name, and (5) Query Type.

In step [4] a formal query with three pieces of information is returned.
The structure contains (1) the Concept Name, (2) Concept Description, and
(3) Query Type.

7. Natural Language Generation (GenCon)

The final phase of the OSCON program is to map an instantiated formal
representation into an English answer. There are two types of answer which
may be returned to the user: (1) Stored English sentences describing some

THE OSCON OPERATING SYSTEM CONSULTANT 105

concept which are contained in the DataCon knowledge base, and (2) English
sentences mapped out from instantiated Formal Queries.

The natural language generator for the OSCON system is used to map
instantiated formal queries into English answers. The generator has five
primary components:

[1] psyntax: gives the syntax for a command
[2] peffect: gives the effect of some command
[3] pexample: gives an example on the use of some

command
[4] ppre: gives the preconditions for some command
[5] ppipe: gives the commands involved in some piping

example and an example of the piping

For each of the major query types various configurations of printing
components are used. There are three types ofrequest for informationquery:
(1) request for information[precondition], (2) request for information[effect],
and (3)request for information[form]. In these cases the components [1], [2],
[3] and [4] are combined in order. Printing out the syntax for some command
is trivial. The syntax is already stored in the DataCon knowledge base. This
is just returned to the user. Printing out preconditions is quite trivial too as all
GenCon has to do is to print those preconditions retrieved from the DataCon
precondition information.

Generation forrequest for information[effect]queries is more complex.
GenCon will print command effects by (1) checking to see if the output
should be in plan/pipe form, and if it is, then generating the answer in
plan/pipe form; (2) generating the (a) Command Syntax, (b) Effect and (c)
Preconditions for the command. The Effect is generated from the instantiated
Formal Query produced by SolveCon which contains action, object, object
modifier and object location. The latter information is generated in sentence
form. Some interleaving information such as the output of prepositions
between object modifier and location are handled too.

For request for directionthe latter algorithm is used. Forrequest for
explanation[command]components [1], [2], [3] and [4] are used. Forrequest
for explanation[concept], the answer is output from a stored piece of text.
Often users ask queries about commands as concepts. The generation of
these is simple as the definitions of such concepts are just stored as English
descriptions in the first place. Therefore, all GenCon has to do is to map the
stored sentences into English answers. We have written a simple algorithm
which maps the English text into pretty format on the screen.

106 PAUL MC KEVITT

8. An Example

In this section we show an example of how the query “How do I see
my files with numbered lines?” is understood and answered by OSCON.
First, SolveCon attempts to find out the type of query being asked. Initially,
SolveCon tries step [1] to match the query as one mentioning a command and
there is no match. Then step [2] is tried and a match occurs. The query is a
semantic one. ParseCon is called forth and a syntactic match is found. “How
do I” matches the syntactic form [how, do, i] forrequest for directionqueries.

Next, SolveCon calls MeanCon which analyzes the meaning of the
sentence. (i) Findverb checks for a verb and gets “see”. From KnowCon,
“display” is marked as the action. Then, (ii) findobj checks “How do I” and
“my files with numbered lines” for objects. “Files” is matched as an object.
Data from the query, i.e.

display(file,contents,*)

is matched against the DataCon database Effects and a match is found with

display(file,contents,screen)

This effect match from the query data to DataCon will allow SolveCon to
retrieve (1) Command Preconditions ([file]), (2) Command Effect (display
(file, contents, screen)), (3) Command Syntax (cat -n<filename>), and (4)
Command Name (cat).

Next, the query is checked for existence of a secondary action. The find-
verb predicate retrieves “numbered” as a secondary action and its object is
retrieved as “lines”. This representation is matched against the option data-
base and number(lines) from the query matches number(lines) in the Option
Effect definition in the database. The DataCon database is referenced and (1)
Option Preconditions, (2) Option Effect, and (3) Option Name are returned.
The data retrieved are integrated to form an instantiated formal query which is
passed to the generator. The representation for this query is as shown below.

cquery(display(file,contents,screen), Command Effect
‘‘with numbered lines’’, Option Effect
[cat -n <filename>], Syntax
[file]), Preconditions
cat), Command Name
-n). Option Name

The GenCon generator takes the formal query and maps it into an English
answer: (i) psyntax will print out “cat -n<filename>”, (ii) peffect will

THE OSCON OPERATING SYSTEM CONSULTANT 107

display “will display file contents on the screen.”, and (iii) popeffect will
display “with numbered lines.” Therefore, the complete answer generated for
this query is:

‘cat -n <filename>’ will display file contents on
the screen with numbered lines.

9. Current State of the Implementation

The OSCON program can answer three major query types and replies to
each in seconds: (1)request for information, (2) request for explanation,
and (3)request for direction. There are three cases of type (1):request for
information[precondition] request for information[effect], and (3) request
for information[form] and two cases of type (2):request for explana-
tion[command], request for explanation[concept]. In real terms this brings
the query types covered up to six. The system answers the three query types
with options in the case of UNIX. OSCON’s database contains information
on 40 UNIX and MS-DOS commands with their respective preconditions,
effects, syntax and command names. OSCON has 20 grammar rules for
understanding the ways that users ask queries about categories of commands.
OSCON also contains 10 plan sets for possible combinations of commands.

10. Comparison to Other Systems

There are basically three other natural language consultants for operating
systems. These are the Unix Consultant (UC), the Sinix Consultant (SC), and
UCC/Yucca.

The Unix Consultant (UC) (see Chin 1988; Wilensky et al. 1984, 1986,
1988) is a natural language consultation system for UNIX, and is in many
ways similar in scope and intent to OSCON. However, there are some key
differences. While OSCON is a specialized system with the sole goal of
providing detailed expert help, UC has the broader goal of studying know-
ledge representation and planning (as well as natural language understanding)
at a basic level. As such, UC takes a fundamentally different approach to
knowledge representation, in that employs a much more general knowledge
representation and planning mechanism, with a somewhat cognitive flavor.
UC contains only one knowledge base of operating system concepts which
must serve both the understanding and the solving phases of query resolution,
while OSCON incorporates specialized representations for each function.
Hence, UC must sacrifice some of the specialization built into OSCON.

108 PAUL MC KEVITT

Not unexpectedly, an examination of the examples presented in Wilensky
et al. (1986) suggests that UC will have to perform far more extensive proce-
dures to solve a given query, and that it may not be able to answer some of
the very detailed queries that OSCON will address. UC is not intended to
be a consultant which will help users migrating from one system to another.
UC is a consultant for the UNIX operating system. We do not claim that
the UC system could not act as a consultant on other operating systems. We
claim that the Berkeley team has not concerned itself with putting information
from more than one operating system in their program. It is a characteristic of
computer operating systems that commands can be combined in various ways
to execute complex processes. In Wilensky et al. (1986) (pp. 6–10) there are
a number of examples of the queries which the UC system handles. These
examples are intended to show the kinds and scope of requests answered by
the system. None of the examples involve command compositions but opera-
tions of single commands. UC has no demonstrated ability for answering
complex natural language queries which involve command sequencing. UC
and OSCON are not truly competitors, but rather systems with different
emphases.

UCC is another natural language UNIX help system (see Douglass and
Hegner 1982) UCC was a prototype system, implemented in Franz Lisp on a
VAX-11/780. It used a simple natural language front end based on augmented
transition networks. The development of a knowledge base and query solver
were not advanced enough so that they could be linked with the front end.
UCC generated answers to queries directly from concept case frames rather
than from any particular formal language. There were two major problems
with UCC: (1) as the front end included a relatively simple knowledge base it
was unable to answer sophisticated queries with many constraints involving
command options, and (2) the simple augmented transition network method
of parsing was not sufficient enough to handle the types of queries posed by
many users. A program called Yucca (Hegner and Douglass 1984) was an
attempt to augment the UCC system in two ways. Yucca incorporated a much
more sophisticated formal knowledge base and an improved natural language
front end. OSCON’s design is based very much on principles from UCC and
Yucca.

The Sinix Consultant (SC) (see Hecking et al. 1988; Kemke 1986; and
Kemke 1987) is a broad-based UNIX help system. It is similar to OSCON in
that it is designed for the operating systems domain. Although SC contains
a rich knowledge base, which reflects the technical aspects of the domain
as well as the users view of the system, the focus of SC, like UC, is to
provide help on the use of individual commands, rather than any interconnec-
tion of several. There appears to be no mechanism whereby the SC system

THE OSCON OPERATING SYSTEM CONSULTANT 109

will understand complex command sequences. However, it is predicted in
Hecking et al. (1988) that future development of the SINIX Knowledge Base
will include “combinators” for I/O-redirection and pipelining.

There are several other consultation systems for operating systems,
including CMS-HELP developed by Yun and Loeb (1984), TVX by Billmers
and Carifio (1985), Wizard (see Shrager and Finin 1982; and Finin 1983),
and USCSH by Matthews et al. (2000). Selfridge (1988) takes an expert
system approach to knowledge representation. However, all of these systems
appear to be either far less ambitious in scope than OSCON, or else have a
totally different emphasis. In particular, all appear to employ simpler models
of UNIX.

11. Conclusion and Further Work

It is concluded that it is possible to build a computer program which will
answer natural language user queries about operating systems. We have
shown how this is done by the OSCON system. The OSCON program
answers English queries for over 40 commands. Each query is answered
within seconds.

The development of any program like OSCON is enhanced if the program
is built in a modular form where each module has a distinct function. This
has been done for OSCON which is divided up into six distinct modules.
This methodology allows for easy update of the program and also will allow
the possibility of mapping the program over to a new domain.

In comparing OSCON to the other two most related systems available
today (UC, SC) OSCON turns out to have a different emphasis. The OSCON
system is more concerned with the detail of operating systems and natural
language processing rather than an experiment on cognitive modeling. Also,
OSCON answers queries involving command combinations.

Recently, some Wizard-of-Oz studies have been completed for the oper-
ating systems domain (see Mc Kevitt and Ogden 1989a). The Wizard-of-Oz
technique is one where subjects interact with a computer through typed
dialogue and are told that they are conversing with the computer. Subjects
utterances are sent to another monitor where a “Wizard” sends back a reply
to the subject monitor. Data were collected for 14 subjects who were naive
UNIX users. Initial analyses of results look interesting. Seven types of queries
have been discovered as opposed to the three types that were defined above
a priori. Also, it has been noted that query type is strongly related to levels
of user expertise. These data show that certain query types which were not
decided a priori would not be handled by OSCON. Also, these query types
would cause a major breakdown in communication in the natural language

110 PAUL MC KEVITT

dialogue. Further analyses of this data will be done to help determine the
relationship between dialogue models and user models.

There are three areas of further work proposed for OSCON which are all
part of a dialogue interface to be added to the system. These are: (1) context
storage mechanisms, (2) reference determination algorithms, and (3) user
modeling capabilities (see Chin 1988). Dialogue management is important
and it will permit the user to ask queries without having to spell the queries
out in elaborate English. Initial thoughts on this research are reported in Ball
et al. (1989).

12. Recent Developments

There have been a number of developments with respect to the OSCON
system since 1987. Analysis of Wizard-of-Oz data (see Mc Kevitt 1991;
Mc Kevitt and Ogden 1989a,b) from natural language dialogues on UNIX
gave nine query/intention5 types (see Table 1 below). The example UNIX
queries in Table 1 are shown as they were actually typed by users.

Our Wizard-of-Oz empirical data showed that expert subjects have mainly
information and description intentions whereas less expert subjects have
much more of the other intentions such aselaboration, explanationand
repetition. Also, the data showed that there were statistically significant
differences in the frequencies of intention types between expert and non-
expert subjects. Based on this grouping of intentions, and the fact that some
intention sequences indicate less satisfaction than others, we proposed a
weighted formula for a measure ofsatisfactionas follows (where [X→ Y]
represents the frequency of intention pairs from intentionX to intentionY; ‘I’
denotes information intentions, ‘De’ denotes description intentions, etc.):

3([I → I])+ [I → De] + [I → El] + [I → Ex] + [I → Re]
+[De→ I] + [El→ I] + [Ex → I] + [Re→ I]

+3([De→ De])+ [De→ El] + [De→ Ex] + [De→ Re]
+[El → De] + [Ex → De] + [Re→ De]

Relative dissatisfaction can be calculated by summing dissatisfaction
intention pairs. The formula for a measure ofdissatisfactionis:

3([El → El] + [Ex → Ex] + [Re→ Re])
+2([Ex → El] + [Re→ El] + [Re→ Ex] + [El→ Ex]

+[El→ Re] + [Ex → Re])
Two new components have been added to OSCON to include the capab-

ility of dialogue modelling and user modelling:DialConandUCon. DialCon

THE OSCON OPERATING SYSTEM CONSULTANT 111

Table 1. Definitions of principal intentions for the consultancy domain

Intention General definition UNIX domain definition

Information An intention requesting a PLAN to
achieve a specific GOAL where the
GOAL is described.* E.g. “How do I
cook this dish?”

An intention requesting a UNIX
command to achieve a UNIX operation
where the operation is described. E.g.
“How do I print a file?”

Description An intention requesting a description
of an object or concept. E.g. “What is
Persia?”

An intention requesting the descrip-
tion of UNIX concepts, objects, or
commands. E.g. “what is UNIX?”

Instruction An intention acting as an instruction to
achieve a GOAL rather than the PLAN
to achieve that GOAL. E.g. “Can you
find out how many foreign nationals
now live in Kuwait?”

An intention requesting the execution
of a UNIX command. E.g. “has oscon
been printed?”

Elaboration An intention requesting more informa-
tion on a PLAN or GOAL. E.g.
“Could you tell me more about Iraq?”
following “Where is Iraq?”

An intention requesting more informa-
tion on UNIX commands, or UNIX
itself. E.g. “how do i use more?”
following “how do i see my file?”

Confirmation An intention requesting confirmation of
a belief or some PLAN believed to
execute some GOAL. E.g. “Will sanc-
tions stop Saddam Hussain?”

An intention requesting confirmation
of a belief about the function of
commands in UNIX, or the function
of UNIX itself. E.g. “can i remove a
directory with files in it?”

Explanation An intention requesting explanation or
clarification of an item which occurred
during the execution of a PLAN for a
GOAL. E.g. “Could you tell me what
you mean by U.N. resolution 611?”

An intention requesting explanation of
a response from the UNIX shell. E.g.
“What does cp -r mean?”

Guidance An intention requesting a PLAN for a
GOAL where there is no explicit GOAL
expressed. E.g. “What do I do next?”

An intention requesting help with
UNIX operations, or UNIX, where
there is no operation described. E.g. “I
don’t understand what i’m supposed to
do.”

Repetition An intention which is a repeated
request. E.g. “How many people live in
the Gulf?” followed by “What number
of people live in the Gulf?”

An intention repeating another inten-
tion. E.g. “How do I print a file”
followed by “How do I get a print out
of my file?”

Nointention An intention which is not immediately
relevant to the domain or not under-
stood by the hearer as being relevant to
the domain. E.g. “Where does Strider
live?” in the domain of Economics.

An intention not understood by the
system. E.g. “How do I eat a file?”

* A PLAN is defined as a set of actions to achieve some GOAL. AGOAL is defined as an
operation a speaker wishes to achieve.

112 PAUL MC KEVITT

is a dialogue modelling component which uses to track query/intention
sequences in dialogue. It updates an intention matrix by locating the relevant
cell in the matrix representing a given intention sequence and increasing
its count. DialCon indexes the cell in the matrix by pairing the current
query/intention type with the previous.

UCon is a user modelling component which computes the level of user
satisfaction from the intention matrix and provides information for context
sensitive and user sensitive natural language generation.UCon derives a
binary measure of user expertise,expertand novice. UCon applies a user-
modelling function, based on the weighted formulas above, to the intention
matrix to determine levels of usersatisfactionanddissatisfaction. Initially,
the user is assumed to be an expert. Subsequent changes in the levels of satis-
faction and dissatisfaction will result in changes in the level of user expertise.
Such information is used by GenCon to generate context-sensitive and user-
sensitive natural language responses. OSCON’s capability of dialogue and
user modelling is demonstrated in Appendix B.

Also, we have developed a version of OSCON which acts as a command
interface where after a user asks a given query then the system asks if he/she
would like the resultant UNIX command executed (see Lim 1994). If the user
replies “y” then the results of the execution of the command are reported.

Acknowledgements

Acknowledgements are due to Louise Guthrie and Zhaoxin Pan for program-
ming parts of OSCON. Stephen Hegner is thanked for many stimulating
discussions. Yorick Wilks and the natural language processing team at the
Computing Research Laboratory (CRL), New Mexico State University, USA
are thanked for numerous comments on this work. Hans Brunner, Andy Parng
and Scott Wolff of the Intelligent Customer Assistance Project at U SWEST
Advanced Technologies are thanked for consultations on this research. This
research was funded in part by U SWESTAdvanced Technologies, Denver,
Colorado under their Sponsored Research Program. Peter Norvig, Wolfgang
Wahlster, and Robert Wilensky are thanked for comments on an earlier draft
of this paper and Stephen Hegner for comments on a later draft.

Notes

* This paper is effectively that already published as “Principles and practice in an operating
system consultant”, in “Artificial Intelligence and Software Engineering (Vol. 1)”, Section on
“AI Mechanisms and techniques in practical software”, Derek Partridge (Ed.), 1991, 439–462.

THE OSCON OPERATING SYSTEM CONSULTANT 113

New York: Ablex Publishing Corporation. Copyright ©1991 Intellect Books (originally to
Ablex Publishing Corporation).
1 UNIX is a trademark of X/Open, Inc.
2 MS-DOS is a trademark of Microsoft Corporation.
3 “Runoff” is a command defined at the Computing Research Laboratory, New Mexico State
University, USA to load text formatting packages for word processing a text file.
4 A directory is a set of files.
5 We have reclassified query types into nine more general intention types.

Appendix A

This appendix contains a list of some of the queries which OSCON currently
answers. The maximum time taken to answer any query is 2.5 seconds.
The query sets have been divided into three major types (1)request for
information, (2) request for explanation, and (3)request for direction.

| ?- oscon.
OSCON Program 1.0 (Sun-3, Sun Unix 4.2)
Copyright (C) 1988, Computing Research Laboratory.
All rights reserved.
Dept. 3CRL, Box 30001, NMSU, Las Cruces, NM (505) 646--5466
U S WEST Advances Technology
Please input your question ending with with a ‘?’
Write ‘quit.’ when you are finished

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; request-for-information[effect]

→ what does ls do?
‘ls <$directoryname>’ will display directory contents on the
screen.

→ what happens with rm?
‘rm <filename>’ will remove a file from your current directory.

→ what is the effect of date?
‘date’ will display a date on the screen.

→ what does more -c do?
‘more -c’ will display each page after clearing the screen.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; request-for-information[form]

→ what is the syntax of rm?
It has the syntax ‘rm <filename>’.

114 PAUL MC KEVITT

→ How do i use cp?
It has the syntax ‘cp <file1> <file2>’.

→ how does he use more?
It has the syntax ‘more <filename>’.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; request-for-explanation[command]

→ what is ls?
‘ls’ is a command.
It has the syntax ‘ls <directoryname>’.
‘ls <$directoryname>’ will display directory contents on the
screen.

→ what is more?
‘more’ is a command.
It has the syntax ‘more <filename>’.
‘more <filename>’ will display file contents on the screen.
‘more’ only takes the argument ‘file’

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; request-for-explanation[concept]

→ what are aliases?
alias is the ability to establish shorthand names
for frequently used but long-winded commands.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; request-for-direction

→ how do i see my file?
‘more <filename>’ will display file contents on the screen.

→ how do i see my file on the screen?
‘more <filename>’ will display file contents on the screen.

→ how do i see my file on the printer?
‘lpr <filename>’ will display file contents on the printer.

→ how do i see all my files?
‘more <filename>’ will display file contents on the screen.

‘ls <directoryname>’ will display directory contents on the screen.

→ how do i see this file?
‘more <filename>’ will display file contents on the screen.

THE OSCON OPERATING SYSTEM CONSULTANT 115

→ how do i see that file?
‘more <filename>’ will display file contents on the screen.

→ how do i see his files?
‘more <filename>’ will display file contents on the screen.
‘ls <directoryname>’ will display directory contents on the screen.

→ how do i read my files?
‘more <filename>’ will display file contents on the screen.
‘ls <directoryname>’ will display directory contents on the screen.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; request-for-direction

→ how do i list my files and print my files?
‘more <filename>’ will display file contents on the screen.
‘lpr <filename>’ will display file contents on the printer.
To display file contents on the printer use ‘more <filename> | lpr’

→ quit.
over
yes
| ?-

Appendix B

This Appendix demonstrates that the OSCON system modifys its natural
language responses dynamically based on the types of utterances, and hence
intention, that appear in the input.

| ?- oscon.
OSCON Program 1.0 (Sun-4, SunOS Release 4.1)
Copyright (C) 1988, Computing Research Laboratory. All rights
reserved.
Dept. 3CRL, Box 30001, NMSU, Las Cruces, NM (505) 646-5466, USA.

U S WEST Advances Technology

Please input your question ending with with a ‘?’
Write ‘quit.’ when you are finished
OSCON can answer queries for UNIX or MSDOS.
Type one of these to the prompt.
Do you want answers for UNIX or MSDOS?
The default is UNIX [unix]: unix

116 PAUL MC KEVITT

How can I help you?

→ what does ls do?

‘ls <directoryname>’ will display directory contents on the screen.

information : 0 0 0 0 0 0 = 0
description : 0 0 0 0 0 0 = 0
elaboration : 0 0 0 0 0 0 = 0 Satisfaction = 0
explanation : 0 0 0 0 0 0 = 0 Dissatisfaction = 0
repetition : 0 0 0 0 0 0 = 0

nointention : 0 0 0 0 0 0 = 0

== 0

OSCON displays the ‘intention matrix’ and levels of
‘satisfaction’ and ‘dissatisfaction’. Note that OSCON caters
for 5 ‘real’ types of intention, and nointentions. The ‘intention
matrix’ is a 2-dimensional, 6 X 6 matrix. The ‘intention
matrix’ shows all intention-sequence counts to be 0 as only
one intention has been entered into the program. Totals
for each intention type are also shown. ‘Satisfaction’ and
‘dissatisfaction’ levels, computed from the matrix, using the
user modelling function, are also 0.

→ how do i see my file?

‘more <filename>’ will display file contents on the screen.

information : 0 0 0 1 0 0 = 1
description : 0 0 0 0 0 0 = 0
elaboration : 0 0 0 0 0 0 = 0 Satisfaction = 1
explanation : 0 0 0 0 0 0 = 0 Dissatisfaction = 0
repetition : 0 0 0 0 0 0 = 0

nointention : 0 0 0 0 0 0 = 0

== 1

This ‘intention matrix’ shows a total intention sequence count
of 1, and the intention count for the sequence ‘explanation →
information’ is set to 1. ‘Satisfaction’ also totals to 1.

THE OSCON OPERATING SYSTEM CONSULTANT 117

→ how does he see my file?

‘more <filename>’ will display file contents on the screen.

information : 0 0 0 1 0 0 = 1
description : 0 0 0 0 0 0 = 0
elaboration : 0 0 0 0 0 0 = 0 Satisfaction = 2
explanation : 0 0 0 0 0 0 = 0 Dissatisfaction = 0
repetition : 1 0 0 0 0 0 = 1

nointention : 0 0 0 0 0 0 = 0

== 2

This ‘intention matrix’ shows a total sequence count of 2. Now,
a ‘information → repetition’ sequence has occurred. Note that
the syntax of this query does not have to be exactly the same
as the previous query to denote a repetition. ‘Satisfaction’
increases to 2.

→ how do they see my file?

‘more’ is a command.
It has the syntax ‘more <filename>’.
‘more <filename>’ will display file contents on the screen.
‘more’ only takes the argument ‘file’.

information : 0 0 0 1 0 0 = 1
description : 0 0 0 0 0 0 = 0
elaboration : 0 0 0 0 0 0 = 0 Satisfaction = 2
explanation : 0 0 0 0 0 0 = 0 Dissatisfaction = 3
repetition : 1 0 0 0 1 0 = 2

nointention : 0 0 0 0 0 0 = 0

== 3

A ‘repetition → repetition’ intention loop has occurred tilting
the level of ‘dissatisfaction’ higher than ‘satisfaction’. As
a reaction, more information is returned to the user. Remember
that the user modelling function gives intention repetitions
which are along diagonals a weight of 3.

118 PAUL MC KEVITT

References

Ball, Jerry, Barnden, John A., de Ram, Sylvia Candelaria, Farwell, David, Guthrie, Louise,
Guo, Cheng-Ming, Helmreich, Stephen, Mc Kevitt, Paul & Liu, Min (1989). The Need
for Belief Modelling in Natural Language Processing. InProc. of the International
Conference on Cross-Cultural Communication (ICC-CC-89). San Antonio, Texas: Trinity
University, March.

Billmers, Meyer A. & Carifio, Michael G. (1985). Building Knowledge-based Operating
System Consultants. InProceedings of the Second Conference on Artificial Intelligence
Applications, 449–454. Miami Beach, December.

Chin, David (1988). Exploiting User Expertise in Answer Expression. InProceedings of the
Seventh National American Conference on Artificial Intelligence (AAAI-88), Vol. 2, 756–
760. Minnesota: St. Paul, August.

Douglass, R. & Hegner, Stephen J. (1982). An Expert Consultant for the UNIX Operating
System: Bridging the Gap between the User and Command Language Semantics. InProc.
of the Fourth National Conference of the Canadian Society for Computational Studies of
Intelligence (CSCSI/SCEIO), 119–127. Saskatchewan, Saskatoon, May.

Finin, Timothy W. (1983). Providing Help and Advice in Task Oriented Systems. InProceed-
ings of the Eighth International Joint Conference on Artificial Intelligence (IJCAI-83),
176–178. Germany: Karlsruhe.

Hecking, M. C., Nessen, Kemke, E., Dengler, D., Gutmann, M. & Hector, G. (1988).The
SINIX Consultant – A Progress Report. Memo Nr. 28, Universitat des Saarlandes, FB 10
Informatik IV, Im Stanwald 15, D-6600 Saarbrucken 11, Germany, August.

Hegner, Stephen J. (1988). Representation of Command Language Behavior for an Oper-
ating System Consultation Facility. InProc. of the Fourth IEEE Conference on Artificial
Intelligence Applications, 50–55. San Diego, CA: IEEE Computer Society.

Hegner, Stephen J. (1998). Plan Realization for Complex Command Intercation in the UNIX
Help Domain. In Hegner, Stephen, Mc Kevitt, Paul, Norvig, Peter & Wilensky, Robert
(eds.)Intelligent Help Systems for UNIX. Dordrecht, The Netherlands: Kluwer Academic
Publishers (this volume).

Hegner, Stephen J. & Douglass, Robert J. (1984). Knowledge Base Design for an Operating
System Expert Consultant. InProc. of the Fifth National Conference of the Canadian
Society for Computational Studies of Intelligence (CSCSI/SCEIO), 159–161. London,
Ontario, May.

Kemke, Christel (1986).The SINIX Consultant – Requirements, Design, and Implementation
of an Intelligent Help System for a UNIX Derivative. Universitat des Saarlandes, KI-Labor
(SC-Project), Bericht Nr. 11, October.

Kemke, Christel (1987). Representation of Domain Knowledge in an Intelligent Help System.
In Bullinger, H. J. and Shakel, B. (eds.)Human-Computer Interaction – INTERACT ’87,
215–220. Amsterdam: Elsevier Science Publications B.V. (North-Holland).

Lim, Hun Keong (1994).Translation of OSCON into a Command Interface. Master’s Thesis,
Department of Computer Science, University of Sheffield, Sheffield, England.

Matthews, M., Pharr, W., Biswas. G. & Neelakandan, H. (2000). USCSH: An Active Intelli-
gent Assistance System. In Hegner, S., Mc Kevitt, P., Norvig, P. & Wilensky, R. (eds.)
Intelligent Helps Systems for UNIX. Dordrecht, The Netherlands: Kluwer Academic
Publishers (this volume).

Mc Kevitt, Paul (1986).Formalization in an English Interface to a UNIX Database. Memor-
anda in Computer and Cognitive Science, MCCS-86-73, Computing Research Laboratory,
Dept. 3CRL, Box 30001, New Mexico State University, Las Cruces, NM 88003-0001, US.

THE OSCON OPERATING SYSTEM CONSULTANT 119

Mc Kevitt, Paul (1987).Artificial Communicators: An Operating System Consultant. Master’s
Thesis, Computer Science Department, Dept. 3CU, Box 30001, New Mexico State
University, Las Cruces, New Mexico 88003-0001, US.

Mc Kevitt, Paul (1988). Rules of Inference in an Operating System Consultant. InProc.
of the First Irish National Conference on Artificial Intelligence and Cognitive Science
(AI/CS-88), Vol. 1. Dublin, Ireland: University Industry Center, University College Dublin,
September.

Mc Kevitt, Paul (1991).Analysing Coherence of Intention in Natural Language Dialogue.
Ph.D. Thesis, Department of Computer Science, University of Exeter, GB – EX4 4PT,
England.

Mc Kevitt, Paul & Wilks, Yorick (1987). Transfer Semantics in an Operating System
Consultant: The Formalization of Actions Involving Object Transfer. InProceedings of
the Tenth International Joint Conference on Artificial Intelligence (IJCAI-87), Vol. 1,
569–575. Italy: Milan, August.

Mc Kevitt, Paul & Pan, Zhaoxin (1989). A General Effect Representation for Operating
System Commands. InProc. of the Second Irish National Conference on Artificial Intelli-
gence and Cognitive Science (AI/CS-89), pp. 50–65. Dublin, Ireland: School of Computer
Applications, Dublin City University, September. Also in, Smeaton, Alan and McDermott,
Gabriel (eds.),AI and Cognitive Science ’89, Springer-Verlag British Computer Society
Workshop Series, 68–85. Heidelberg, Germany: Springer-Verlag.

Mc Kevitt, Paul & Ogden, William C. (1989a).Wizard-of-Oz Dialogues for Help on Operating
Systems. Memoranda in Computer and Cognitive Science, MCCS-89-167, Computing
Research Laboratory, Dept. 3CRL, Box 30001, New Mexico State University, Las Cruces,
NM 88003-0001, US.

Mc Kevitt, Paul & Ogden, William C. (1989b).OSWIZ II: Wizard-of-Oz Dialogues in the
Computer Operating Systems Domain. Memorandum in Computer and Cognitive Science,
MCCS-90-181, Computing Research Laboratory, Dept. 3CRL, Box 30001, New Mexico
State University, Las Cruces, NM 88003-0001, US.

Selfridge, Peter G. (1988). How to Print a File: An Expert System Approach to Software
Knowledge Representation. InProceedings of the Seventh National American Conference
on Artificial Intelligence (AAAI-88), Vol. 2, 380–385. Minnesota: St. Paul, August.

Shrager, Jeff & Finin, Tim (1982). An Expert System that Volunteers Advice. InProceedings
of the National Conference on Artificial Intelligence (AAAI-82), 339–340.

Wilensky, Robert, Arens, Yigal & Chin, David (1984). Talking to UNIX in English: An
Overview of UC.Communications of the ACM27(6): 574–593, June.

Wilensky, Robert, Mayfield, Jim, Albert, Anthony, Chin, David, Cox, Charles, Luria, Marc,
Martin, James & Wu, Dekai (1986).UC – A Progress Report. Report No. UCB/CSD
87/303, Computer Science Division (EECS), University of California, Berkeley, California
94720, US, July.

Wilensky, Robert, Chin, David N., Luria, Marc, Martin, James, Mayfield, James & Wu, Dekai
(1988). The Berkeley UNIX Consultant Project.Computational Linguistics14(4): 35–84,
December (also in this volume).

Yun, David Y & Loeb, David (1984). The CMS-HELP Expert System. InProceedings of the
International Conference on Data Engineering, 459–466, Los Angeles: IEEE Computer
Society.

