
Proceedings of the International Conference on 22nd-24th November
2005
Information Technology and Multimedia at UNITEN (ICIMU’05), Malaysia

Acquisition of Entity-Relationship Models from Natural Language
Specifications using Heuristics

Nazlia Omar1, Paul Hanna2 and Paul Mc Kevitt3

1 Department of Computer Science, Faculty of Information Science and Technology, Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Email: no@ftsm.ukm.my

2 School of Computing and Mathematics, Faculty of Engineering, Jordanstown Campus, University of

Ulster, Newtownabbey BT37 0QB, Northern Ireland, UK

3 School of Computing and Intelligent Systems, Faculty of Engineering, Magee College, University of
Ulster, Derry/Londonderry BT48 7JL, Northern Ireland, UK

ABSTRACT

This paper describes a heuristics-based approach in the semi-automated generation of Entity-Relationship (ER) diagrams for
database modelling from natural language specifications and describes the implementation of such a system called ER-
Converter. Though this is a semi-automatic transformation process, ER-Converter aims to require minimal human
intervention during the process. ER-Converter has been evaluated in blind trials against a set of database problems. ER-
Converter has an average of 90% recall and 85% precision. In terms of user intervention, ER-Converter requires very little
human assistance with only 1.6% in the test dataset. The evaluation results are discussed and demonstrate that ER-Converter
could be used, for example, within the domain model of a multimedia intelligent tutoring system, designed to assist in the
learning and teaching of databases.

Keywords: heuristics, entity-relationship, natural language processing

INTRODUCTION

Entity-relationship modelling can be a daunting task to
both students and designers alike due to its abstract nature
and technicality. Much research has attempted to apply
natural language processing in extracting knowledge from
requirements specifications with the aim to design
databases. However, research on the formation and use of
heuristics to aid the construction of logical databases from
natural language has been scarce.

This paper describes the development of a tool, ER-

Converter, which transforms a natural language text input
into an ER model. This is a heuristics-based tool which
employs syntactic heuristics during the transformation. In
order to achieve the desired result, new and existing
heuristics are applied during the process. Though this is a
semi-automatic transformation process, the tool aims to
provide minimal human intervention during the process.

BACKGROUND AND PREVIOUS WORK

This section provides a brief summary on data modelling
which introduces the concept of ER Model and reviews

the previous work that applies natural language
processing to Databases. The existing tools, techniques
and limitations are discussed. Some of the work like
DMG[10] provides a basis for the development of new
heuristics applied in ER-Converter.

Overview of Data Modelling

The first step in designing a database application is to
understand what information the database must store. This
step is known as requirements analysis. The information
gathered in this step is used to develop a high-level
description of the data to be stored in the database. This
step is referred to as conceptual design, and it is often
carried out using the ER model. ER models are built
around the basic concepts of entities, attributes,
relationships and cardinality. An entity is an object that
exists in the real world and is distinguishable from other
objects. These are typically derived from nouns.
Examples of entities include the following: a “student”, an
“employee” and a “book”. A collection of similar entities
is called an entity set. An entity is described using a set of
attributes. The attributes of an entity reflect the level of
detail at which we wish to represent information about

entities. Attributes may be derived from adjectives and
adverbs. For example, the “Student” entity set may have
“ID_number”, “Name”, “Address”, “Course” and “Year”
as its attributes. A relationship is an association among
two or more entities. Relationships can be typically
derived from verbs. For example, we may have a
relationship from this sentence: A student may “take”
many courses. “take” implies a relationship between the
entity “student” and “course”. Cardinality represents the
key constraint in a relationship. In the previous example,
the cardinality is said to be many-to-many, to indicate that
a student can take many courses and a course can be taken
by many students. In an ER diagram, an entity is normally
represented by a rectangle. An ellipse usually represents
an attribute meanwhile a diamond shape shows a
relationship. Cardinality is represented by 1 for the one-
sided and M for the many-sided.

Applying Natural Language Processing (NLP) to
Databases

Much work [2,5,6,10] has attempted to apply natural
language in extracting knowledge from requirements
specifications or dialogue sessions with designers with the
aim to design databases. Dialogue tool [2] is a
knowledge-based tool applied to the German language for
producing a skeleton diagram of an Enhanced Entity-
Relationship (EER) model. This tool is part of a larger
database design system known as RADD (Rapid
Application and Database Development) which consists
of other components that form a complex tool. In order to
obtain knowledge from the designer, a moderated
dialogue is established during the design process. The
transformation of the structure of natural language
sentences into EER model structures is a process which is
based on heuristic assumptions and pragmatic
interpretation. The aim of the pragmatic interpretation is
the mapping of the natural language input onto EER
model structures using the results of the syntactic and
semantic analyses. One major limitation in this system is
that the accuracy of the EER model produced depends on
the size and complexity of the grammar used and the
scope of lexicon.

ANNAPURNA [5] is project aimed to provide a

computerized environment for semi-automatic database
design from knowledge acquisition up to generating an
optimal database schema for a given database
management system. ANNAPURNA concentrated on the
phases concerned with acquiring the terminological rules.
The first step in acquisition of the terminological
knowledge involves extracting the knowledge from
queries and rules that have the form of natural language
expressions. The knowledge obtained would then be put
into the form of S-diagrams. An S-diagram is a graphical
data model which can be used to specify classes (for
example room and door), subclass connections between
classes (for example rooms and doors are physical
objects) and attributes. The limitation of the above work

is that the use of S-diagrams performs best when the
complexity is small.

DMG [10] is a rule based design tool which maintains

rules and heuristics in several knowledge bases. A parsing
algorithm which accesses information of a grammar and a
lexicon is designed to meet the requirements of the tool.
During the parsing phase, the sentence is parsed by
retrieving necessary information from the grammar,
represented by syntactic rules and the lexicon. The
parsing results are processed further on by rules and
heuristics which set up a relationship between linguistic
and design knowledge. The DMG has to interact with the
user if a word does not exist in the lexicon or the input of
the mapping rules is ambiguous. The linguistic structures
are then transformed by heuristics into EER concepts.
Though DMG proposed a large number of heuristics to be
used in the transformation from natural language to EER
models, the tool has not yet been developed into a
practical system.

E-R generator [6] is another rule-based system that

generates E-R models from natural language
specifications. The E-R generator consists of two kinds of
rules: specific rules linked to semantics of some words in
sentences, and generic rules that identify entities and
relationships on the basis of the logical form of the
sentence and on the basis of the entities and relationships
under construction. The knowledge representation
structures are constructed by a natural language
understander (NLU) system which uses a semantic
interpretation approach. There are situations in which the
system needs assistance from the user in order to resolve
ambiguities such as the attachment of attributes and
resolving anaphoric references.

CM-Builder [8] is a natural language based CASE tool

which aims at supporting the analysis stage of software
development in an object-oriented framework. The tool
uses natural language processing techniques to analyse
software requirements documents and produces initial
conceptual models represented in Unified Modelling
Language. The system uses discourse interpretation and
frequency analysis in producing the conceptual models.
CM-Builder still has some limitation in the linguistic
analysis. For example, attachment of postmodifiers such
as prepositional phrases and relative clauses is limited.
Other shortcomings include the state of the knowledge
bases which are static and not easily updateable nor
adaptive.

All the systems discussed here have user involvement

during processing. Because of the incomplete presentation
of knowledge, ambiguities and redundancies, full
automation of the design process is fundamentally
impossible [5]. As a consequence, the tools must be able
to interact with the designer, including ER-Converter. A
semi-automatic design process is far more economical
than an entirely manual process [5].

HEURISTICS TO IDENTIFY ER ELEMENTS

Heuristics represent an indefinite assumption [10], often
guided by common sense, to provide good but not
necessarily optimal solutions to difficult problems, easily
and quickly [11]. Research on the formation and use of
heuristics to aid the construction of logical database
structures from natural language has been scarce. The
only existing work that proposes a large number of
heuristics to be used in the transformation from natural
language to ER models is DMG [10]. However the work
has not been implemented. The authors of DMG proposed
both syntactic and semantic heuristics to be applied in
extracting knowledge from requirements specifications.
Although E-R Generator [6] and RADD [2] utilized
heuristics in their work, they do not detail a precise set of
heuristics in their approach. Chen [3] suggested that the
basic constructs of English sentences could be mapped
into ER schemas in a natural way and presented a set of
rules to put forward the ideas. Though the set is referred
to as “rules”, Chen mentioned that they are better viewed
as “guidelines” as it is possible to find counter examples
to them. Here we regard Chen’s “rules” as heuristics as
they are largely “rules-of-thumb” based on observations
rather than theoretically derived. Only heuristics for
language syntax are considered and proposed at this stage.

Here, a selection of the heuristics applied in the

transformation from database specifications to the data
modeling constructs is presented. These heuristics are
gathered from past work [3,9,10] and some are newly
formed. A total of 21 previously published and newly
proposed heuristics were identified. Some examples in
terms of sentences are provided to illustrate the
application of heuristics which are context dependent.

Heuristics to determine entities:

1. Heuristic HE2: A common noun may indicate an

entity type [3,10].
2. Heuristic HE3: A proper noun may indicate an entity

[3,10].
3. Heuristic HE7: If consecutive nouns are present,

check the last noun. If it is not one of the words in set
S where S={number, no, code, date, type, volume,
birth, id, address, name}, most likely it is an entity
type. Else it may indicate an attribute type.

4. Heuristic HE8: If a noun occurs before the verb ‘has’/

‘have’, it may indicate an entity type. For
relationships of the form A have/has B where A and
B are both nouns, the occurrence of A may indicate
that it is an entity. This is true in cases where the
relationship between A and B implies B instance-of
A or B component-of A. This is illustrated in the
following example:

“Each piece of equipment has an equipment number
and a description”.

In this example, “equipment” may suggest that it is an
entity type due to its occurrence prior to the “has”
verb phrase.

Heuristics to exclude non-potential entity types
candidates:

1. Heuristic HEX: A noun such as “record”, “database”,

“company”, “system”, “information” and
“organization” may not be a suitable candidate for an
entity type. For example, “company” may indicate
the business environment and should not be included
as part of the entity types. Examples:
a) “An insurance company wishes to create a

database to keep track of its operations.”
b) “An organization purchases items from a number

of suppliers.”

Heuristics to determine attributes:

1. Heuristic HA1: A noun which takes the general form
of TERM_SUFFIX such as noun_id, noun_no,
noun_type or noun_number may indicate an attribute
type [9]. A noun such as “person_id”, “group_no”,
“room_type” and “vehicle_number” may indicate an
attribute type. The TERM_SUFFIX representation is
often used in database problems’ specifications.

2. Heuristic HA6: Genitive case in the noun phrase may
indicate an attributive function [10].

3. Heuristic HA8: If a noun is followed directly by
another noun and the latter belongs to set S where
S={number, no, code, date, type, volume, birth, id,
address, name}, this may indicate that both words are
an attribute. Else it is most likely to be an entity.

Heuristics to determine relationships:

1. Heuristic HR1: An adverb can indicate an attribute
for relationship [3].

2. Heuristic HR2: A transitive verb can be a candidate
for relationship type [3].

3. Heuristic HR4: A verb followed by a preposition
such as “on”, “in”, “by” and “to” may indicate a
relationship type. For example: “Persons work on
projects.” Other examples include “assigned to” and
“managed by”.

Heuristics to determine cardinalities:

1. Heuristic HC2: The adjective “many” or “any” may

suggest a maximum cardinality. For example:
a) “A surgeon can perform many operations.”
b) “Each diet may be made of any number of

servings.”
2. Heuristic HC3: A comparative adjective “more”

followed by the preposition “than” and a cardinal
number may indicate the degree of the cardinality

between two entities. For example: “Each patient
could have more than one operation.”

Heuristics’ Weights

The heuristics’ weights are assigned according to the
confidence level that the event is true. For example, HE2
(one of the heuristics to determine entity type) states that
a common noun may indicate an entity type. It has been
given a weight of 0.5. This basically means that 50% of
the time this heuristic may produce the correct result, as
not all nouns are entity types. Though the assignment of
the weights is mainly based on intuition, these weights are
also compared and reflected against the results obtained
from training set.

Most of the values assigned lie between –1 and 1 with the
exception of HEX which is assigned a value of 100. This
value acts as a safe border that differentiates between an
entity type and a non-entity type. For example, there may
be much evidence occurring for a word indicating it is an
entity type. This is reflected in the total sum of the
weights of evidence found. As both entity types and non-
entity types have positive values, a value of 100 and over
may indicate strongly that a word may suggest a non-
entity type. For attributes, all of the weights are assigned
with negative values. The negative weights are assigned
such that if more than one heuristic from either the entity
or attribute type categories are applied to a word, this
would reduce the sum of the total weights. The sum of
weights can be outside of –1 and +1 range. Values
approaching zero are treated as “low confidence”. Two or
more “weak” pieces of evidence are combined to give the
weight an acceptable level of confidence. If this value
falls within a threshold of –0.2 and 0.4, user intervention
may be required to help identify its identity. The user will
be prompted to decide whether the noun is an entity or an
attribute. This is the only point where user intervention is
needed in the process of generating the ER modelling
concepts.

Training set

In order to test the newly developed heuristics, a manual
test was carried out prior to the implementation of ER-
Converter. This stage is seen as an important phase as the
heuristics’ contributions need to be ascertained before
proceeding to the implementation phase. Ten examples
were selected for the training dataset. These examples,
which are natural language requirements specifications,
were gathered mainly from database text books.

THE ER-CONVERTER TOOL

Figure 1 depicts the architecture of ER-Converter. ER-
Converter has been implemented using Practical
Extraction and Report Language (Perl). The natural
language processing involved in the process of translating

the database specifications into ER elements is purely
based on syntactic analysis.

FIGURE 1. ARCHITECTURE OF THE ER-CONVERTER TOOL

The process begins by reading a plain input text file

containing a requirements specification of a database
problem in English. For this purpose, a parser is required
to parse the English sentences to obtain their part-of-
speech (POS) tags before further processing. Part of
speech tagging assigns each word in an input sentence its
proper part of speech such as noun, verb and determiner
to reflect the word’s syntactic category [1]. The parser
used here is Memory-Based Shallow Parser (MBSP)
[4,12]. The parsed text is then be fed into ER-Converter to
identify suitable data modeling elements from the
specification. The task requires several steps to be carried
out in order to achieve the desired ER model from the
natural language input, each of which is listed as follows:

• Step 1: Part of speech tagging using Memory-based

Shallow Parser
• Step 2: Read natural language input text into system
• Step 3: Apply heuristics and assign weights

Natural
Language

Requirements
Specification

Memory-
based

shallow
Parser

Heuristics-
based ER
analysis

User
assistance

Entity
types

Attribute
types

Relationship
types

Cardinalities

ER-CONVERTER

= correct

key

N
Recall

N

correct

correct part _ correct undergenerated ask

N
Recall

N N N N
=

+ + +

overgenerated

correct part _ correct undergenerated ask

N
Overgenerated

N N N N
=

+ + +

undergenerated

correct part _ correct undergenerated ask

N
Undergenerated

N N N N
=

+ + +

ask

correct part _ correct undergenerated ask

N
Ask _ user

N N N N
=

+ + +

unattach

correct part _correct undergenerated ask

N
Unattached

N N N N
=

+ + +

wrongattach

correct part _ correct undergenerated ask

N
Wrongly attached

N N N N
=

+ + +

correct

correct incorrect

N
Pr ecision

N N
=

+

• Step 4: Human intervention
• Step5: Attachment of attributes to their corresponding

entity
• Step 6: Attachment of entities to their corresponding

relationship
• Step 7: Attachment of entities to their corresponding

cardinality
• Step 8: Produce final result

EVALUATION

The approach in this evaluation uses methods for
evaluating Information Extraction systems, primarily
Message Understanding Conferences (MUC) [7]
evaluations i.e. recall and precision. Recall is percentage
of all the possible correct answers produced by the
system. Precision is the percentage of answers that are
correctly identified by the system. In any system, both
precision and recall should be as close to 100% as
possible. However, in general, an increase in precision
tends to decrease recall and vice versa. In the context of
this research, the definition of recall and precision below
are adopted as used by CM-Builder [8] and new measures
are defined. Contrary to both precision and recall, all the
new measures introduced should be as close to 0% as
possible. The measures employed are as follows:

Recall

Recall is the measure of the percentage of information
available that is actually found. In this research context, it
refers to the amount of the correct information returned by
the system. The correct information is then compared with
those produced by human analysts or answer keys. The
following formula is used to calculate recall:

 (1)

The answer keys or N key is actually the amount of correct
information plus the number of missing ones. Thus, the
formula is refined as follows:

(2)

Overgenerated

Overgenerated measures how much extra correct
information in the system response that is not found in the
answer key [8]. This may arise from the use of synonyms
in the requirements specification. The following formula
is used to measure overgenerated:

(3)

Undergenerated

Undergenerated represents the number of missing correct
information that is found in the answer keys but not in the
system’s response. Thus, Nmissing below represents the
missing items. The following formula (4) is used to
calculate undergenerated items:

(4)

Ask_user

Ask_ user represents the number of user assistance
requests generated by the system. This user intervention is
requested when an item has a low value in its weight and
falls between two thresholds. Nask represents ask user and
the formulas are as follows:

(5)

Unattached

Unattached represents the number of correctly identified
ER elements resulting from the system that are not
attached to their corresponding items. This inaccuracy
need to taken into account as the error will be reflected in
the output of the system. Nunattach represents this measure.
The following formula (6) is used to calculate unattached:

(6)

Wrongly attached

Wrongly attached measures the numbers of correctly
identified ER elements but wrongly attached to other
items. This is represented by Nwrongattach. The following
formula (7) is used to calculate this measure:

(7)

Precision

Precision is a measure of percentage of correctness of the
information produced. It reflects the accuracy of the
system in obtaining the correct result. The standard
precision formula is as follows:

(8)

In this research, a more detailed formula is used to
evaluate the accuracy of the results produced. Apart from

System Evaluation Results
 Recall Precision Other

E-R Generator
[6]

75% - 50%

CM-Builder
[8]

73% 66% 62%

ER-Converter 90% 85% 3%

correct

correct part _ correct ask incorrect overgenerated

N
Pr ecision

N N N N N
=

+ + + +

incorrect, other additional measures such as ask user,
undergenerated and overgenerated need to be taken into
account for greater accuracy. The following formula (9) is
thus defined to calculate precision:

(9)

RESULTS AND DISCUSSION

ER-Converter has been tested using a test dataset which
consists of 30 database problems or natural language
requirements specification in English. Most of the
problems were gathered mainly from database books and
past exam papers. Each problem ranges between 50 and
100 words in size. On average, ER-Converter takes 1s to
process a database problem which includes processing the
tagged input file and generating the ER elements.

ER-Converter achieved a high average recall of 90%.

The system has successfully produced relevant Entity-
Relationship (ER) elements in all of the problems. With a
high recall, the heuristics-based system is in better
position of applying the corresponding heuristics to the
relevant items as compared to the missing ones. 27% of
the individual problems or datasets achieved a 100%
score in recall. A detailed investigation revealed that all of
the missing or undergenerated items are either
relationships or cardinalities. The undergenerated
relationships may due to the fact that verbs are not
translated directly as relationships. With respect to the
cardinalities, these are mainly due to synonyms and
implicit phrases that imply cardinalities. For example,
from the phrase “each bus is allocated a particular route”,
the adjective ‘particular’ may imply a one-sided
cardinality.

In terms of precision or correctness of the result
produced, ER-Converter scored an average of 85% in the
test datasets. The results support that a heuristics-based
approach to transform a natural language requirements
specification to an ER model can be utilized to aid
conceptual modeling in the early stages of database
systems development.

ER-Converter has an average of 3% for overgenerated

items and 6% for undergenerated items. The
overgeneration are mainly due to synonyms. A detailed
investigation revealed that all of the missing or
undergenerated items are either relationships or
cardinalities. The undergenerated relationships may due to
the fact that verbs are not translated directly as
relationships. For the cardinalities, these are mainly due to
synonyms and implicit phrases that imply cardinalities.
An interesting result to note is on the user’s responses to
ER-Converter or referred to as Ask User in the evaluation.
A user’s response is sought when ER-Converter is unsure
on whether an ER element is an attribute or an entity.
From the evaluation results, it is evident that human

intervention in ER-Converter is very minimal with only
2% on average. Although full automation is seen as
impossible due to incomplete presentation of knowledge,
ambiguities and redundancies [5], this research has shown
that it is still possible to provide an almost complete
automation with very limited user assistance on the
solutions produced. The strength lies in the use of present
and newly formed heuristics and the application of their
corresponding weights.

RELATION TO OTHER WORK

A comparison in terms of recall and precision is made
between ER-Converter and other systems where possible
as presented in Table 1. E-R Generator [7] reported that
the system was able to identify all the relevant ER
relationships and entities in 75% out of 30 database
problems that form the test dataset. However, the result
was based on only 25% of the total test dataset which
were entered interactively by users. The program
overgenerated or undergenerated ER entities and
relationships in 50% of the cases. No overall results were
revealed on the whole test dataset. With ER-Converter,
the precision or the accuracy of the system in obtaining
the correct result is 85%. However, a direct comparison
cannot be made since both systems used different test
datasets.

CM-Builder [8] concentrates on building object-

oriented conceptual models to be represented in Unified
Modelling Language (UML). Though it not comparable in
terms of the end results as the system produces object-
oriented models and not ER model, the techniques used in
the natural language processing and evaluation are
similar. Comparing the results with ER-Converter, ER-
Converter’s performance is well above these figures
though a direct comparison is not possible due to the
different types of modelling.

TABLE 1. COMPARISON OF RESULTS WITH RELATED WORK

CONCLUSION AND FUTURE WORK

We have described an approach of generating ER
elements from natural language specifications using a
heuristics-based system, ER-Converter. The heuristics
used are application-domain independent and suitable for
small application domains. This study has shown that the

formation of new heuristics in transforming natural
language requirements specifications to ER models is
supported by the evaluation results. ER-Converter has an
average recall of 90% and 85% precision. The
contribution made can be applied in areas such as part of
the domain model of an intelligent tutoring system,
designed to assist in the learning and teaching of
databases and other applications of NLP for database
design.

REFERENCES

1. Brill, E. 1992. A Simple Rule-Based Part of Speech
Tagger. Proceedings of the Third Conference on
Applied Natural Language Processing, ACL, Trento,
Italy : 152-155.

2. Buchholz, E., Cyriaks, H., Dusterhoft, A., Mehlan,
H., and B. Thalheim. 1995. Applying a Natural
Language Dialogue Tool for Designing Databases.
Proceedings of the First Workshop on Applications of
Natural Language to Databases (NLDB'95),
Versailles, France: 119- 133.

3. Chen, P.P. 1983. English Sentence Structure and
Entity-Relationship Diagram. Information Sciences
1(1):127-149.

4. Daelemans, W., Zavrel, J., Berck, P. and Gillis, S.
1996. MBT: A memory-based part of speech tagger
generator. Ejerhed, E. and Dagan, I. (eds.), Proc. Of
Fourth Workshop on Very Large Corpora,
Philadelphia, USA: 14-27.

5. Eick, C. F. and Lockemann, P.C. 1985. Acquisition
of Terminology Knowledge Using Database Design
Techniques. Proceedings ACM SIGMOD
Conference, Austin, USA: 84-94.

6. Gomez, F., Segami, C. and Delaune, C. 1999. A
system for the semiautomatic generation of E-R
models from natural language specifications. Data
and Knowledge Engineering 29 (1): 57-81.

7. Grishman, R. and Sundheim, B. 1996. Message
Understanding Conference-6: A Brief History.
Proceedings of the 16th International Conference on
Computational Linguistics, Copenhagen, Denmark :
466-471.

8. Harmain, H.M. and Gaizauskas, R. 2003. CM-
Builder: A Natural Language-Based CASE Tool for
Object-Oriented Analysis. Automated Software
Engineering 10 (2): 157-181.

9. Storey, V.C. and Goldstein, R.C. 1988. A
Methodology for Creating user Views in Database
Design. ACM Transactions on Database Systems 13
(3): 305-338.

10. Tjoa, A.M and Berger, L. 1993. Transformations of
Requirements Specifications Expressed in Natural

Language into an EER Model. Proceeding of the 12th
International Conference on Approach, Airlington,
Texas, USA: 206-217.

11. Zanakis, S.H. and Evans, J.R. 1981. Heuristic
‘Optimization’: Why, When and How to use it.
Interfaces 11(5): 84-91.

12. Zavrel, J. and Daelemans, W. 1999. Recent
Advances in Memory-Based Part-of-Speech-Tagging.
Actas del VI Simposio Internacional de
Communicacion Social, Santiago de Cuba, Cuba
:590-597.

