
Legalising reliable computer programs∗

Paul Mc Kevitt

Department of Computer Science
University of Exeter

Exeter EX4 4PT, United Kingdom
E-mail: JANET: pmc@uk.ac.exeter.cs or pmc@cs.exeter.ac.uk

(0392) 264061

Abstract

One of the most serious problems with computers today is that
they are not reliable. The reason for this is quite simple. Computer
programs are built to solve particular problems and these problems
can be quite large. By large we mean having lots of constraints, cases
and rules as to what constitutes the problem. Real world problems
are so complex that it’s hard to be sure that when a program has been
built it will never fail for an input that has not been taken into ac-
count. Reliability of computer programs has serious legal implications
because if a program fails to work then a question arises as to who
is responsible. If the field of computer science concentrates on bet-
ter techniques for increasing computer reliability then we will decrease
questions of responsibility. It is argued that the root of the problem of
responsibility is the problem of reliability and that computer scientists
should be worrying about the software reliability problem.

∗This research has been funded in part by U S WEST Advanced Technologies,
Denver, Colorado, under their Sponsored Research Program.



1 Introduction

One of the largest problems with computers today is that they are not
reliable1. It is very difficult to build a computer program which will never
fail2 as there may be certain inputs not taken into account. The problem
of unreliability in programs is one of the causes of legal debate. The fur-
ther problem of responsibility arises. Who is responsible for the failure of
the program? Is it the programmer, or the employee who recommended the
program for the company, or the systems person who placed it on the com-
puter? The point is put nicely by Wilks and Ballim (1991, p. 119), as they
speak of responsibility: “The difficulty [of assigning punishment to programs
themselves] can be avoided by always identifying humans, standing behind
the machines and programs as it were, to carry the blame, in the sense in
which there are always real humans standing behind agents, and behind
companies, which also have the legal status of nonhuman responsible enti-
ties (“anonymous persons” in much European law).” It is argued here that
the problem should be tackled at the source, and that more effort should be
placed on program reliability. More reliable programs will reduce questions
of responsibility.

2 Existing reliability techniques

Computer science has already developed techniques for ensuring the relia-
bility of computer programs. Programs have been developed to aid pro-
grammers in developing and testing software for specific domains. Practical
software engineering tools such as CASE (Computer Assisted Software En-
gineering) products are being used today (see The Byte Staff 1989). CASE
tools are very useful for building computer software for limited domains, yet
not very useful for tackling problems outside their scope. For example, there
are very few CASE tools which would be useful for tackling the problem of
building a machine translation system for translating Swahili into Chinese.

1Any references to reliability in this paper will be to software reliability although the
problem of hardware reliability is also important.

2By “fail” we mean that either (1) the program crashes, in the common computer
science sense of crash, or (2) the program has no procedures for handling the input in
question.



Methodologies for the development of computer software have also been
defined. Partridge (1986) argues for the a Run-Debug-Edit methodology
which is later modified to RUDE (Run-Understand-Debug-Edit) in Partridge
and Wilks (1987). RUDE is a software development methodology for the
design of, mainly, AI programs. It is also pointed out by Partridge and Wilks
(1987) that the RUDE methodology may be useful for traditional computer
science problems too. This methodology calls for a discipline of incremental
program development where programs are run and, if they fail on input,
are edited and rerun. The problem with RUDE is that it is tedious, and
takes a long time, as the programmer is just hacking piecemeal at solving
the problem without really knowing what the problem is. There is no specific
goal toward which the program or programmer is geared. Also, Partridge3

has pointed out that in many cases it is difficult to solve an AI problem,
piece by piece, because solutions for decomposed parts of the problem do not
solve the problem as a whole, when placed together.

Another methodology called SAV (Specify-And-Verify), coined in Par-
tridge (1986), calls for proofs of specifications of problems, and formal veri-
fication of the subsequent algorithm. The SAV approach is advocated by by
Gries (1981), Dijkstra (1972), and Hoare (1981). The use of formal techniques
in proving programs correct for real world complex problems in computer
science has proven difficult. One of the problems with Artificial Intelligence
(AI) programs is that they are very difficult to specify (see Partridge 1986).
The application of proof logics to the intricacies of complex programs is too
tedious. The technique has only become useful for small, simple programs.

Both RUDE and SAV only ensure that a program is reliable for a partic-
ular specification. There is no guarantee that the specification is correct, or
reliable, for the real world problem at hand for which it is intended. Also,
taking into account the fact that AI programs are very difficult to specify
these will have more serious implications for computer reliability than tradi-
tional computer science programs. New techniques are needed for reliability
checking for traditional computer science and AI problems which may incor-
porate elements of both RUDE and SAV.

3Presentation at the Fifth Rocky Mountain Conference on Artificial Intelligence
(Theme: Pragmatics in Artificial Intelligence), Las Cruces, New Mexico, June, 1990.



3 The EDIT methodology

EDIT (Experiment-Design-Implement-Test) first published in Mc Kevitt and
Partridge (1991) is a software development methodology which attempts to
integrate elements of the SAV and RUDE methodologies. EDIT incorporates
experimentation as an integral component. This is particularly useful in the
AI problem domain which incorporates the added difficulty of the researcher
not knowing how to describe a problem while trying to solve it. EDIT is
both a (1) software development, and (2) software test methodology. EDIT
addresses the problem brought out by Narayanan (1986, p. 44) where he says,
“The aim of this paper, apart from trying to steer well clear of terminological
issues, such as the distinction between ‘science’ and ‘study’, is to demonstrate
that unless AI is provided with a proper theoretical basis and an appropriate
methodology, one can say just about anything one wants to about intelligence
and not be contradicted; unless AI is provided with some reasonable goals
and objectives little of current AI research can be said to be progressing.” It
is believed that EDIT might be the methodology that Narayanan asks for.

Briefly, EDIT has the following stages:

1. Experiment: Experiment(s) (E) are conducted to collect empirical
data on the problem. This data can be stored in log file(s) (L).

2. Design: A design4 (D), or specification, can be developed from L
together with relevant theories of the program domain.

3. Implement: The description, or specification, is implemented (I) as a
computer program (P).

4. Test: P is sent around the cycle and tested by placing it through E
again. However, this time E involves P whereas initially E did not
involve a program. The cycle is iterated until a satisfactory P is found.

The system developer(s) initially use(s) E to help define the problem, and
successively use(s) E to develop and test P. In the initial stage E does not
involve a program for responding to questions. However, each subsequent E
involves a partially implemented P, until the final P is decided upon. The

4By “design” we mean any reasonable description whether it be in English, Hindi,
Gaelic, logic, algorithmic form, or assembly code.



design of the initial E is up to the AI theorist who wants to build a program
P. Of course, this design will limit the scope with which the program can be
tested. The design of the initial P, and each subsequent P, is also up to the
AI theorist. EDIT will always terminate after E and before I in the cycle.
The EDIT cycle is shown in Figure 1 below.

EXPERIMENT / TEST

p

IMPLEMENT

DESIGN

Figure 1: EDIT (Experiment Design Implement Test) Cycle.

At the experiment stage (E) an experiment is conducted to gather data
on the problem. Say, for example, the problem is to develop a natural lan-
guage program which answers questions about computer operating systems
like UNIX. Then, valid experimentation software would be a program which
enables a number of subjects (S) to ask questions about UNIX, and an ex-
pert to answer these questions. An example setup for this experiment would
be the Wizard-of-Oz5 paradigm. A number of S and Wizard’s (W) from
varying backgrounds may be used in the experiment. Of course, the greater
the number of S and W the more comprehensive the data collected will be.

5A Wizard-of-Oz experiment is one where subjects interact with a computer through
typed dialogue, at a monitor, and are led to believe that they are conversing with the
computer. For example, in the case of a Wizard-of-Oz test for a natural language interface,
a subject’s utterances are sent to another monitor where a “Wizard”, or expert, sends back
a reply to the subject monitor.



Also, there may be groups of S and W rather than just a single S and single
W. Information on exchanges between S and W is logged in a log file for
later inspection. S and W operations are marked in the file. Such an exper-
iment is described with greater detail in Mc Kevitt and Ogden (1989) and
the implications of that experiment are described in Mc Kevitt (1990b).

At the design stage (D), L from E is analysed and inspected. In the initial
stage the data here gives a snapshot description of the problem and how it
is characterised. Further stages of the cycle will give snapshots of how well
the problem is characterised in the current P. An analysis of L will give a
picture of the information needed in various components of a program, such as
knowledge representation, user modeling, and reasoning components. Many
researchers and domain experts from various backgrounds may be called in to
analyse L and determine what aspects of the software need to be developed.
In fact, the type of researcher brought in will determine the type of program
eventually developed and the best of all worlds would be to have a wide span
of researchers/experts from different backgrounds. The job of the researchers
is to develop algorithms with the help of the data, and to specify these
algorithms in some manner.

At the implementation (I) stage the algorithms or designs in D are imple-
mented. These designs may be implemented in any programming language
(P) that the implementers find most appropriate. Finally, the implemented
program is sent back to E again and tested. Then, a new cycle begins.

During the initial state of the EDIT manifestation described here, S and
W interact over the problem and the data is logged in L. Data may be
collected for a specific task within a domain, or the whole domain itself.
Each successive run of E involves the incorporation of P, which tries to answer
questions first and if it fails W steps in while P restarts. The cycle may be
operated in real time, or batch mode. In batch mode the experimentation
component would involve a number of batched questions which are collected
from S, and processed by P, where W interrupts if P fails.

The EDIT cycle continues until the program performs satisfactorily to
the requirements of the designers. The deigner(s) may wish P to perform
satisfactorily only 50% of the time, or 80% of the time. The success or
failure of P will be determined at design time, D, when the L is analysed. L
will show where P has failed and where it has passed the test. W entries will
show up why P did not work and will indicate what components of P need
to be updated. In the case of natural language question answering W entries



might show up the fact that certain types of question are not being answered
very well, or at all. Therefore, W entries would indicate how P needs to
be augmented in principle to solve a recurring pattern of failure. W entries
could be analysed for such recurring patterns. In effect, what is happening
here is that P is “learning” by being investigated, and augmented, in the
same way as a mother might teach her child, noticing the child’s failure to
complete certain tasks6.

The success of P is measured by the number of answers P can give, and the
number of answers P gets correct. The measure of capability and correctness
is determined by inspection of L. During the development of P the initial
coding may need to be recoded is some manner as data collected later may
affect P’s design.

There are many forms in which the EDIT cycle may be manifested. The
experimentation stage may involve experiments other than the Wizard-of-Oz
type. Another experiment might involve an observer sitting beside the sub-
ject during testing and helping the subject with the program as he/she uses
it. The observer would restart the program if it failed. Such a technique is
used in experiments described by Al-Kadurie and Morgan (1989). The de-
sign stage and inspection of L may involve only one or a number of designers.
These designers may know much about the domain, and little about design,
or vice versa. Experts and good designers may both be used at the design
stage. Also, E could consist of a set of experts with different points of view
and different backgrounds. Bear in mind too that the interface to P need
not be a natural language one. We have chosen natural language because
it seems to be the ultimate interface, but we could well have chosen a more
limited menu-based interface with icons, where the interaction could easily
have been logged. Also, it could be argued that a natural language interface
is one of the most general possible, and that other more limited interfaces
are subsets, or equivalent, in terms of power to it. Hence, EDIT may con-
sist of many manifestations of the methodology, yet, the basic methodology
involves developing and testing through experimentation.

EDIT can be used to develop and test systems. Development continues
until the designers are happy with the system at the completion of some
cycle. EDIT can also act as methodology for testing hypotheses in AI where

6This analogy was provided by personal communication from Brendan Nolan of Uni-
versity College Dublin.



such hypotheses may be solutions to parts of problems. The advantage of
the Wizard-of-Oz technique incorporating W is that if P fails for reasons
other than the hypothesis then W can step in, keeping P alive, so to speak.
Meanwhile, no data is lost in the current experiment dialogue. Of course, the
log file marks where W interrupts. During testing as far as S is concerned
the program has never failed as S does not necessarily know that W has
intervened. The data from the testing phase can be logged in a file and
system developers can then observe where the system failed, and where W
interfered. This information will be used in updating the system, and any
theory which the system represents.

EDIT is a useful technique in that it allows the iterative development
of systems and gives feedback on how to design an AI system as it is being
developed. Sharkey and Brown (1986, p. 282) point out that the belief that
an AI system can be constructed first, and then tested later, as argued by
Miller (1978), is not the way to go. Sharkey and Brown show that (1) an AI
system takes a long time to build, and it may be wrong at the beginning,
and (2) an AI theory, and its implementation in the final state, may not be
coined in a way that allows psychological testing.

One of the problems with AI today is that it is not appreciated as a science
and has no scientific test methodology. Narayanan (1986, p. 46-47) points
out: “It can be argued that the criterion of implementability is vacuous at
the level of the Church-Turing thesis.” The thesis basically says that any
process which can be described by an algorithm can be implemented on a
computer. Thus, any AI theory which can be described by an algorithm
can be implemented on a computer, and hence all AI theories are valid no
matter what they say. Sharkey and Brown (1986, p. 278) also point out this
problem: “To say that a theory is implementable is simply to say that it can
be expressed in the form of a computer program which will run successfully”,
and suggest that a solution needs to be found: (p. 280) “Another question
we would like to raise here is this: At what point in implementation do we
decide that there are too many patches to accept that the running program is
actually a test of a theory.” Sutcliffe (1991) argues for more empiricism and
says, “I see the use of norming studies and other techniques from psychology
as being relevant to AI.” EDIT calls for not just implementability but also for
the implementation to work on experimentation over real data. Also, EDIT
solves the problem of how to check whether an AI theory is valid. Narayanan
(1986, p. 48) points out: “In any case, even if a criterion of complexity for



AI programs (theories) can be found, there still remains the suspicion that
no criterion exists for determining whether an AI theory is true or accurate.”
EDIT may provide such a criterion in the inspection of log files.

To those researchers who might argue that EDIT may be narrow and
inductivist, as an hypothesis test method we would point out that EDIT is
totally compatible with a test, where an initial design has been thought up,
and programmed, and where P is entered into EDIT, at E, before any data is
collected. Hence, EDIT is completely in accord with scientific test method-
ologies proposed by the philosophers of science, Hempel (1966), and Popper
(1972). EDIT is a methodology for testing hypotheses in AI where AI is a
scientific endeavour. EDIT does not follow the traditional AI approach of
building programs which are stated to embody a theory, and where imple-
mentability is the test of this theory.

4 Comparing EDIT to RUDE

EDIT is not just a rearrangement and renaming of RUDE. The difference is
that EDIT offers a means of convergence on a solution. EDIT and RUDE
differ in that the algorithms are developed in conjunction with data describ-
ing the problem rather than from what the problem “might” be. Too often
in the field of AI there are attempts at, a priori, deciding what a problem is
without any attempt to analyse the problem in depth. As was pointed out
earlier one of the problems with developing AI programs is that it is very
difficult to specify the problem. One solution to that might be to collect
data on the problem, as EDIT calls for. The second major difference is that
experimentation involves testing software over real data in the domain. Also,
by using the Wizard-of-Oz technique the testing phase breaks down less as
the wizard keeps the system going. We argue that this is important because
if a test fails then data can be lost due to temporal continuity effects. Failure
happens a lot while testing AI programs. For example, if one is testing a nat-
ural language interface, with an hypothesis for solving reference in natural
language dialogue, then if the test fails the continuation of that dialogue may
never happen, and data will be lost.

The problem with RUDE is that it does not include any goal as part of
the process of development; only the update of a program. We argue here
that E must be included to produce log files which measure how close P is



to the goal that needs to be achieved. EDIT can be considered a more “tied
down” version of RUDE where it is clearer what the problem is, and how
well P is solving the problem. In fact Partridge and Wilks (1987, p. 117) say,
“What is needed are proper foundations for RUDE, and not a drift towards
a neighbouring paradigm.”

EDIT is an attempt to address the problem brought forth by Narayanan
(1990, p. 179) where he says: “What we need here is a clear categorization of
which edits lead to ‘theory edits’, as opposed to being program edits only. It
is currently not clear, in the AI literature, how such a categorization might be
achieved. AI does not have the sort of complexity measure which would help
identify when the theory, as opposed to the program, should be jettisoned in
favour of another theory.” Using EDIT an inspection of L should show up,
in many cases, where a program has failed because of an hypothesis failure,
or because of other reasons, and hence there will be distinct implications for
the theory and the program. Also, Narayanan (1990, p. 181) says: “But
given the above comments, it appears that there can, currently at least, be
no scientific claims for claiming that one AI theory is better than another
and that AI is making progress, simply because the conceptual tools for
measuring one theory against another, and so for measuring the progress
of AI are missing.” We believe that EDIT may be a path on the road to
such conceptual tools. It may be the case that EDIT has a lot to say in the
development of foundations for AI as a science rather than a technology (see
Narayanan 1990, Partridge and Wilks 1990).

The EDIT cycle is conducted until the implementation performs satisfac-
tory over a number of tests. The EDIT cycle enables the iterative develop-
ment of a system through using the problem description itself as part of the
solution process. EDIT is not just an hypothesis test method, but is also a
method by which the reason for failure of software is logged and a method
where that reason does not cause data loss. EDIT is useful for the develop-
ment of software in an evolutionary way and is similar to those techniques
described in Connell et al. (1989). Again, 100% reliability is very difficult
to guarantee but we believe that problem description and implementation
through experimentation will lead to better implementations than RUDE on
its own.

EDIT is like the general methodology schemes proposed by researchers
who are developing expert systems. The stages for the proper evolution of
an expert system are described by Hayes-Roth et al. (1983):



• IDENTIFICATION: determining problem characteristics

• CONCEPTUALIZATION: finding concepts to represent knowledge

• FORMALIZATION: designing structures to organize knowledge

• IMPLEMENTATION: formulating rules that embody knowledge

• TESTING: validating rules that embody knowledge

This is in the spirit of EDIT where, of course, identification is similar
to E, conceptualization and formalization to D, and implementation to I.
However, with EDIT, E is involved in both identification and testing and we
argue that this is the way to go about testing if P is to meet the problem
head on.

EDIT is currently being used in the development of AI software which
answers natural language questions about computer operating systems. An
initial computer program was developed called OSCON (see Mc Kevitt 1986,
Mc Kevitt 1990a, Mc Kevitt and Wilks 1987, and Mc Kevitt and Pan 1989)
which answers simple English questions about computer operating systems.
To enhance this research it was decided that an experiment should be con-
ducted to discover the types of queries that people actually ask. An exper-
iment has been conducted to acquire data on the problem. More details on
the experiment and its implications are given in Mc Kevitt (1990b).

5 Applying EDIT to the law domain

EDIT can be applied in the law domain as follows. One possible mani-
festation of the experimentation stage (E) would be where a Wizard-of-Oz
exeriment has been set up such that W is a lawyer or solicitor giving advice
or answering questions. A number of subjects, or clients, sit sown and ask
questions on law and W answers these constituting a sort of lawyer-client
interaction. In effect, we have what Mehl (1959) called “The Law Machine”
which would “provide a decision within a highly specialised field of law ...
[or, more ambitiously] ... answer any question put to it over a vast field of
law.” The program P would act as a solicitor, or lawyer, advising S, or the
client, on solutions to problems.



The domain of law may be fixed to domains like Law relating to Sup-

plementary Benefits and Family Income Supplements (“the Yellow Book”)
(see Bench-Capon 1987) which incorporates acts of parliament and statu-
tory instruments — a domain used by Kowalski and Sergot (1991). Indeed,
Kowalski and Sergot (1991, p. 105) point out that, “to construct a program
dealing with the British Nationality Act that could be used in practice, it
would be necessary to enlist the help of an expert lawyer, preferably several
experts on citizenship and immigration law.”

In another light, the program P may be intended to be a judge, where P
is fed with evidence, and cases for and against the defendant. Here, E would
involve both members of the prosecution and defence interacting with the
W which may be a judge or set of judges. In effect, P would be simulating
a courtroom scene. This would involve a very complex experimental setup
indeed. Yet, other sciences have such complex experiments. This scenario
is pointed out by Bennun (1991, p. 48), as he says: “The problem is not
to computerize the law (his italics), which is clearly feasible through the use
of logic and databases; it is to computerize the judicial method (his italics),
which is another matter entirely.”

The design phase (D) would be one where a number of solicitors and
programmers perused the log files and determined the right information to
be placed in the P. The information could be obtained from legal texts and
experts. In the case of P acting as a judge information would have to be
obtained on the running of the judicial process itself. This process of entering
information into such a program is termed “legal knowledge engineering”
by Clark and Economides (1991, p. 7), “The process of “extracting” legal
knowledge from legal texts and legal experts and representing it within an
expert system is referred to as “legal knowledge engineering.”

The design would be implemented at stage (I) and the program retested
over S. The cycle is completed when the required measure of success is
reached.

In the above discussion P is described as a program which either acts as
a legal adviser, or the judicial process itself. P may also assume any of the
types of legal work as defined by Clark and Economides (1991). These are (a)
giving legal advice, (b) negotiating points of view of other lawyers (different
W’s would be used here), (c) officials and parties representing clients in court,
and (d) structuring of the law itself. The program P may be build to cater
for these more specific tasks.



One of the problems arising in the law domain, and other domains, would
be to determine the W to be allowed to answer questions by S. The problem
with this is that, say, W on the whole were logical positivists (see Clark and
Economides, 1991 p. 7), then P might turn out to have a logical positive
point of view. On the other hand if they were naturalists then we may
have the opposite effect. Where is the line drawn? Also, the inspectors
of log files during D may be partial in their analysis of the L and even
the programmers during I may be partial too. In fact, subjectivity is a
problem with most software development today. The solution to this problem
would be to organise a balanced set of W, inspectors and programmers who
represent a balanced set of views. In effect, this is argued for by Whitby
(1991, p. 97): “A useful step might be the introduction of something along
the lines of an ‘ethical committee’ which could consider some of the legal,
social, and political implications of AI systems in law which present special
problems. The criteria for membership of such a committee are by no means
clear, but almost any committee would be more effective and carry more
consensus than the present reliance on ad-hoc decisions, often by researchers
with limited legal knowledge, and without public scrutiny or debate.” In
EDIT such debate and scrutiny might come in during any of E, D, or I, and
is most important during D.

The EDIT methodology does not follow the spirit of Kowalski and Sergot
(1991, p. 101) in which they argue for a set of representations where “The
most obvious application of the British Nationality Act program, for example,
is to test whether a given individual is, or is not, a British citizen according
to (a given interpretation of) the Act. There is no fundamental reason,
however, why the same representations should not be used for other legal
problem-solving tasks: in systems which plan or advise on a sequence of
legal transactions to achieve some desired goal, or to help identify for a
lawyer possible lines of reasoning and argumentation, or in systems which
are intended to help in the formulation of legislation itself.” We believe
that a set of representations may be determined a priori but that those
representations will change as more data is gathered during the EDIT cycle.
In fact, a Wizard-of-Oz experiment on a natural language help system for
UNIX showed up a number of problems with the design of existing such help
systems (see Mc Kevitt 1990b).

Also, Kowalski and Sergot (1991, p. 108) point out: “One can imagine
how a draftsman who is charged with formulating a piece of new legislation or



with modifying an existing piece might use an executable model of his current
draft to test that it “does” what he intended. He could have available, for
example, a library of stereotypical cases on which he can try out changes to
his current draft.” We argue that the EDIT approach is a better test as it
involves testing P as it should behave in actual use.

The development of an EDIT approach is, in fact, argued for by Clark and
Economides (1991, p. 22), where they say: “However, if we are to design com-
puter systems that are capable of supporting processes of intelligent human
interaction and communication in legal settings, we need a far more detailed
understanding of these processes than we have at present” It is argued here
that such processes are given by the log files. Also, Jackson (1988, p. 115)
says: “We need empirical studies which will trace, step by step, the forms of
discourse by which legal messages are constructed and communicated. Each
of these steps in the communicational chain requires independent assessment;
who is communicating to whom?, in what medium?, and through the use of
what codes?”

The distinction between the use of EDIT as (1) a development method-
ology, and (2) a test methodology is brought out by Susskind (1991) in his
discussion of the distinction between pragmatism and purism. EDIT used as
a test methodology, is a purist pursuit, and as a development methodology,
is a pragmatic pursuit.

6 Conclusion

It is pointed out here that the EDIT methodology can provide a solution
to the development and testing of programs in Artificial Intelligence (AI),
a field where there are no sound foundations yet for either development, or
testing. Also, we dare go as far as to say that EDIT may be used for the
development of traditional computer science programs too.

EDIT may help in the endeavour to solve the problem of AI being an
ad-hoc science. EDIT provides a methodology whereby AI can be used to
develop programs in different domains and experts from those domains can
be incorporated within the design and testing of such programs.

It is shown how EDIT can be used in the law domain and EDIT may
address the problem brought up by Bennun and Narayanan (1991, p. 3, pref-
ace), “Could AI and law be two subjects looking for a methodology, and are



some of the contributors to this book looking for a common methodology?”
One of the outcomes of EDIT is that it not only provides a methodology for
testing AI programs, but it also shows how a domain itself can better get a
grip on it’s own methodology. This will happen at the design stage where
inspectors will have many debates about the domain as well as how it can
be described. Also, Bennun and Narayanan (1991, p. 4) point out: “That
is ‘progress’ in law, computer science, and AI currently seems to take place
on an ad hoc basis” and EDIT may be a methodology which, is not ad hoc,
but provides a goal whereby the development of P is the goal of solving E
in its initial state. The measure of success towards this goal is determined
by an analysis of log files. Bennun and Narayanan (1991, Preface) point out
the problems of (1) people just meeting here and there to discuss problems
in constrained domains, (2) solutions not being generalisable, and (3) over-
coming the lack of an agreed methodology. The EDIT methodology is one
where people meet to overcome the task of analysing and formalising log files
and such log files could be passed around by various researchers as direct
descriptions of the problem to be solved.

Of course, we have made the assumption throughout that EDIT is a
correct methodology, and that if a program passes the EDIT test then it
is a valid AI program. However, EDIT does have some problems. A main
problem is that it is difficult to simulate, through experiments within EDIT,
software use, as it would occur in real life. Experiments can usually only
approximate real life situations. An added problem is that it will be difficult
to determine when a methodology like EDIT is in a state so that one can
say if a program passes through the methodology, the program is a valid AI
program. Therefore, at best we can only hope that methodologies like EDIT
bring us closer to designing and testing AI programs that are valid. Also, it
may be the case that there are other methodologies which bring AI systems
closer to valid solutions, than EDIT does.

The central conclusion here is that if we are to attempt to develop com-
puter software for standard software engineering problems, or for AI prob-
lems, then we should be doing data collection, and deciding how programs
can be built in conjunction with experimentation. Any a priori decisions
about how such software should be built will lead us into solutions which do
not solve the problem at all. It is likely that without data collection pro-
grams for complex problems will be developed which do not solve problems
adequately and hence become unreliable. Also, if AI is a science, and the



science is to progress, then a methodology which tests AI theories needs to
exist. A sound methodology will reduce problems of reliability, and hence
problems of legal responsibility, and will have serious implications not only
for AI and law, but for AI and computer science.

7 Acknowledgements

I would like to thank Simon Morgan, Ajit Narayanan, and Derek Partridge of
the Computer Science Department at the University of Exeter and Brendan
Nolan from University College Dublin for providing comments on this work.

8 References

Al-Kadurie, Osama and Simon Morgan (1989) The PCMATH System: em-

pirical investigations. In the Journal. of Artificial Intelligence in Education,
Vol. 1(1), Fall 1989.

Bench-Capon, T.J.M., G.O. Robinson, T.W. Routen, and M.J. Sergot (1987)
Logic programming for large scale applications in the law: A formalisation of

supplementary benefit legislation. In Proceedings of the First International
Conference on Artificial Intelligence and Law, 190-198. Boston, MA.

Bennun, Mervyn (1991) Computers in court: the irreplaceable judge. In
“Law, Computer Science and Artificial Intelligence”, Mervyn Bennun and
Ajit Narayanan (Eds.), 45-61. Norwood, New Jersey: Ablex Publishing Cor-
poration. (Forthcoming)

Bennun, Mervyn and Ajit Narayanan (1991) Law, Computer Science and

Artificial Intelligence. Norwood, New Jersey: Ablex Publishing Corporation.
(Forthcoming)

Clark, Andrew and Kim Economides (1991) Computers, expert systems, and

legal processes: toward a sociological understanding of computers in legal

practice In “Law, Computer Science and Artificial Intelligence”, Mervyn
Bennun and Ajit Narayanan (Eds.), 3-32. Norwood, New Jersey: Ablex
Publishing Corporation. (Forthcoming)



Connell, John L. and Linda Brice Shaffer (1989) Structured rapid prototyping:

an evolutionary approach to software development. Engelwood Cliffs, New
Jersey:Yourdon-Press Computing Series.

Dijkstra, E.W. (1972) The humble programmer. Communications of the
ACM, 15, 10, 859-866.

Gries, D. (1981) The science of programming. Springer-Verlag, NY.

Hayes-Roth, F., D.A. Waterman and D.B. Lenat (1983) Building expert sys-

tems. Reading, MA: Addison-Wesley.

Hempel, C. (1966) Philosophy of natural science. Prentice Hall.

Hoare, C.A.R. (1981) The emperor’s old clothes. Communications of the
ACM, 24, 2, 75-83.

Jackson, B.S. (1988) Editorial. International Journal for the Semiotics of
Law, 1, 113-116.

Kowalski, Robert and Marek Sergot (1991) The use of logical models in legal

problem solving. In “Law, Computer Science and Artificial Intelligence”,
Mervyn Bennun and Ajit Narayanan (Eds.), 99-117. Norwood, New Jersey:
Ablex Publishing Corporation. (Forthcoming)

Mc Kevitt, Paul (1986) Formalization in an English interface to a UNIX

database. Memoranda in Computer and Cognitive Science, MCCS-86-73,
Computing Research Laboratory, Dept. 3CRL, Box 30001, New Mexico
State University, Las Cruces, NM 88003-0001.

Mc Kevitt, Paul (1990a) The OSCON operating system consultant. In “In-
telligent Help Systems for UNIX – Case Studies in Artificial Intelligence”,
Springer-Verlag Symbolic Computation Series, Peter Norvig, Wolfgang
Wahlster and Robert Wilensky (Eds.), Berlin, Heidelberg: Springer-Verlag.
(Forthcoming)

Mc Kevitt, Paul (1990b) Data acquisition for natural language interfaces.
Memoranda in Computer and Cognitive Science, MCCS-90-178, Computing
Research Laboratory, Dept. 3CRL, Box 30001, New Mexico State University,
Las Cruces, NM 88003-0001.

Mc Kevitt, Paul and Yorick Wilks (1987) Transfer Semantics in an Operat-

ing System Consultant: the formalization of actions involving object transfer.



In Proceedings of the Tenth International Joint Conference on Artificial In-
telligence (IJCAI-87), Vol. 1, 569-575, Milan, Italy, August.

Mc Kevitt, Paul and Zhaoxin Pan (1989) A general effect representation

for Operating System Commands. In Proceedings of the Second Irish Na-
tional Conference on Artificial Intelligence and Cognitive Science (AI/CS-89),
School of Computer Applications, Dublin City University (DCU), Dublin,
Ireland, European Community (EC), September. Also, in “Artificial Intel-
ligence and Cognitive Science ’89”, Springer-Verlag British Computer Soci-
ety Workshop Series, Smeaton, Alan and Gabriel McDermott (Eds.), 68-85,
Berlin, Heidelberg: Springer-Verlag.

Mc Kevitt, Paul and William C. Ogden (1989) Wizard-of-Oz dialogues in the

computer operating systems domain. Memoranda in Computer and Cognitive
Science, MCCS-89-167, Computing Research Laboratory, Dept. 3CRL, Box
30001, New Mexico State University, Las Cruces, NM 88003-0001.

Mc Kevitt, Paul and Derek Partridge (1991) Problem description and hy-

pothesis testing in Artificial Intelligence. In Proceedings of the Third Irish
Conference on Artificial Intelligence and Cognitive Science (AI/CS-90), Uni-
versity of Ulster at Jordanstown, Northern Ireland, September. Also, in
“Artificial Intelligence and Cognitive Science ’90”, Springer-Verlag British
Computer Society Workshop Series, McTear, Michael and Norman Creaney
(Eds.), Berlin, Heidelberg: Springer-Verlag. (Forthcoming)

Mehl, Lucien (1959) Automation in the legal world: From the machine pro-

cessing of legal information to the “Law Machine”. National Physical Lab-
oratory Symposium, No. 10, Mechanisation of Thought Processes (2 Vols.).
London: HMSO.

Miller, L. (1978) Has Artificial Intelligence contributed to an understanding of

the human mind? A critique of the arguments for and against. In Cognitive
Psychology, 2, 111-127.

Narayanan, Ajit (1986) Why AI cannot be wrong. In Artificial Intelligence
for Society, 43-53, K.S. Gill (Ed.). Chichester, UK: John Wiley and Sons.

Narayanan, Ajit (1990) On being a machine. Volume 2, Philosophy of Arti-
ficial Intelligence. Ellis Horwood Series in Artificial Intelligence Foundations
and Concepts. Sussex, England: Ellis Horwood Limited.



Partridge, Derek (1986) Artificial Intelligence: applications in the future of

software engineering. Halsted Press, Chichester: Ellis Horwood Limited.

Partridge, Derek and Yorick Wilks (1987) Does AI have a methodology which

is different from software engineering?. In Artificial Intelligence Review, 1,
111-120.

Popper, K. R. (1972) Objective knowledge. Claredon Press.

Sharkey, Noel E. and G.D.A. Brown (1986) Why AI needs an empirical foun-

dation. In “AI: Principles and applications”, M. Yazdani (Ed.), 267-293.
London, UK: Chapman-Hall.

Susskind, Richard (1991) Pragmatism and purism in artificial intelligence

and legal reasoning. In “Law, Computer Science and Artificial Intelligence”,
Mervyn Bennun and Ajit Narayanan (Eds.), 33-44. Norwood, New Jersey:
Ablex Publishing Corporation. (Forthcoming)

Sutcliffe, Richard (1991) Representing meaning using microfeatures. In “Con-
nectionist approaches to natural language processing”, R. Reilly and N.E.
Sharkey (Eds.). Hillsdale, NJ: Earlbaum. (Forthcoming)

The Byte Staff (1989) Product Focus: Making a case for CASE. In Byte,
December 1989, Vol. 14, No. 13, 154-179.

Whitby, Blay (1991) AI and the law: learning to speak each other’s language.
In “Law, Computer Science and Artificial Intelligence”, Mervyn Bennun and
Ajit Narayanan (Eds.), 89-98. Norwood, New Jersey: Ablex Publishing Cor-
poration. (Forthcoming)

Wilks, Yorick and Afzal Ballim (1991) Liability and consent. In “Law,
Computer Science and Artificial Intelligence”, Mervyn Bennun and Ajit
Narayanan (Eds.), 118-131. Norwood, New Jersey: Ablex Publishing Cor-
poration. (Forthcoming)


