Securing electronic data interchange

Paul Mc Kevitt
Department of Computer Science
Regent Court
University of Sheffield
211 Protobello Street
GB- S1 4DP, England, UK, EC
E-mail: JANET: p.mckevitt@dcs.shef.ac.uk

Abstract

One of the growing areas of computer technology is electronic data inter-
change (EDI). Electronic data interchange is the electronic transfer of data from
one agent to another. One of the most important problems with computer pro-
grams today is that they are not reliable. The reason for this is quite simple.
Computer programs are built to solve particular problems and these problems
can be quite large. By large we mean having lots of constraints, cases and rules
as to what constitutes the problem. Real world problems are so complex that
it’s hard to be sure that when a program has been built it will never fail for
an input that has not been taken into account. Hence, reliability of computer
programs for electronic data interchange has serious implications because if a
program fails to work then this can lead to problems with security. If the field
of computer science concentrates on better techniques for increasing computer
reliability then we will be able to build more reliable and secure programs for
electronic data interchange.



1 Introduction

Computers are being used more and more today for electronic data interchange
(EDI). EDI is the transfer of electronic data from one or more agents to one or
more other agents. The data may be transferred by computer network or posted
on computer disks or tapes. The agents may be individuals, organisations, or even
computers themselves!. Here, we shall be concerned with electronic means of trans-
ferring data over computer networks. Transferring electronic data by post does not
concern computer programs or computer networks. During the process of EDI over
computer networks computer programs and data can become lost, stolen, copied,
read, or corrupted. This issue is important not only from the point of security of
use, but also because such data may be used in court as evidence (see Hirst 1992).
In order to make such programs and data more secure the programs that, for exam-
ple, transfer data over computer networks must be able to ensure that such data is
secure. In order for programs to be able to do that they must be reliable. However,
one of the largest problems with computers today is that they are not reliable?. It
is very difficult to build a computer program which will never fail® as there may be
certain inputs not taken into account. The problem of unreliability in programs is
one of the causes of legal debate.

The further problem of responsibility arises. Who is responsible for the failure of
the program? Is it the programmer, or the employee who recommended the program
for the company, or the systems’ person who placed it on the computer? The point
is put nicely by Wilks and Ballim (1992, p. 119), as they speak of responsibility:
“The difficulty [of assigning punishment to programs themselves| can be avoided by
always identifying humans, standing behind the machines and programs as it were,
to carry the blame, in the sense in which there are always real humans standing
behind agents, and behind companies, which also have the legal status of nonhuman

2

responsible entities (“anonymous persons” in much European law).” It is argued

!For example, Allen (1992) considers the case where computers themselves can have intentions
to make legally binding contracts.

2 Any references to reliability in this paper will be to software reliability although the problem
of hardware reliability is also important.

3By “fail” we mean that either (1) the program crashes, in the common computer science sense
of crash, or (2) the program has no procedures for handling the input in question, or (3) for a
secure program, that security is breached.



here that the problem of computer software reliability and security should be tackled
at the source, and that more effort should be placed on program reliability. More
reliable programs will increase the security of computer programs and hence the

security of EDI.

2 Existing reliability techniques

Computer science has already developed techniques for ensuring the reliability of
computer programs. Programs have been developed to aid programmers in de-
veloping and testing software for specific domains. Practical software engineering
tools such as CASE (Computer Assisted Software Engineering) products are being
used today (see Ince 1989, The Byte Staff 1989). CASE tools are very useful for
building computer software for limited domains, yet not very useful for tackling
problems outside their scope. For example, there are very few CASE tools which
would be useful for tackling the problem of building a machine translation system
for translating Swahili into Japanese.

Methodologies for the development of computer software have also been defined.
Partridge (1986) argues for the a Run-Debug-Edit methodology which is later modi-
fied to RUDE (Run Understand Debug Edit) in Partridge and Wilks (1987). RUDE
is a software development methodology for the design of, mainly, Al programs. It is
also pointed out by Partridge and Wilks (1987) that the RUDE methodology may
be useful for traditional computer science problems too. This methodology calls
for a discipline of incremental program development where programs are run and,
if they fail on input, are edited and rerun. There are two problems with RUDE.
First, it is not clear how the RUDE methodology will begin; where does the initial
prototype come from? Second, it is tedious, and takes a long time, as the program-
mer is just hacking piecemeal at solving the problem without really knowing what
the problem is. There is no specific goal toward which the program or programmer
is geared or converging upon. These points have been noted by Bader et al. (1988)
who argue for a methodology where there are multiple RUDE cycles involved in a
waterfall model called POLITE (Produce Objectives Logical /physical design Imple-
ment Test Edit). Also, Partridge (1990, 1992) has pointed out that in many cases it



is difficult to solve an AI problem, piece by piece, because solutions for decomposed
parts of the problem do not solve the problem as a whole, when placed together.

Another methodology called SAV (Specify And Verify), coined in Partridge
(1986), calls for proofs of specifications of problems, and formal verification of the
subsequent algorithm. The SAV approach is advocated by by Gries (1981), Dijkstra
(1972), and Hoare (1981). The use of formal techniques in proving programs correct
for real world complex problems in computer science has proven difficult. One of
the problems with Artificial Intelligence (AI) programs is that they are very difficult
to specify (see Partridge 1986). The application of proof logics to the intricacies of
complex programs is too tedious. The technique has only become useful for small,
simple programs.

Both RUDE and SAV only ensure that a program is reliable for a particular
specification. There is no guarantee that the specification is correct, or reliable,
for the real world problem at hand for which it is intended. Also, taking into
account the fact that Al programs are very difficult to specify these will have more
serious implications for computer reliability and security than traditional computer
science programs. New techniques are needed for reliability checking for traditional
computer science and Al problems which may incorporate elements of both RUDE

and SAV.

3 The EDIT methodology

EDIT (Experiment Design Implement Test) (see Mc Kevitt 1990b, Mc Kevitt and
Partridge 1991) is a software development methodology which attempts to integrate
elements of the SAV and RUDE methodologies. EDIT incorporates experimenta-
tion as an integral component. This is particularly useful in the Al problem domain
which incorporates the added difficulty of the researcher not knowing how to de-
scribe a problem while trying to solve it. EDIT is both a (1) software development,
and (2) software test methodology. EDIT addresses the problem brought out by
Narayanan (1986, p. 44) where he says, “The aim of this paper, apart from trying

to steer well clear of terminological issues, such as the distinction between ‘science’

and ‘study’, is to demonstrate that unless Al is provided with a proper theoret-



ical basis and an appropriate methodology, one can say just about anything one
wants to about intelligence and not be contradicted; unless Al is provided with
some reasonable goals and objectives little of current Al research can be said to be
progressing.” It is believed that EDIT might be the methodology that Narayanan
asks for.

Briefly, EDIT has the following stages:

(1) Experiment: Experiment(s) (E) are conducted to collect empirical data on

the problem. This data can be stored in log file(s) (L).

(2) Design: A design* (D), or specification, can be developed from L together

with relevant theories of the program domain.

(3) Implement: The description, or specification, is implemented (I) as a com-

puter program (P).

(4) Test: P is sent around the cycle and tested by placing it through E again.
However, this time E involves P whereas initially E did not involve a program.

The cycle is iterated until a satisfactory P is found.

The system developer(s) initially use(s) E to help define the problem, and suc-
cessively use(s) E to develop and test P. In the initial stage E does not involve a
program (P). However, each subsequent E involves a partially implemented P, until
the final P is decided upon. The design of the initial E is up to the Al theorist who
wants to build a program P. Of course, this design will limit the scope with which
the program can be tested. The design of the initial P, and each subsequent P, is
also up to the Al theorist. EDIT will always terminate after E and before I in the
cycle. The EDIT cycle is shown in Figure 1 below.

At the experiment stage (E), an experiment is conducted to gather data on
the problem. Say, for example, the problem is to develop a natural language pro-
gram which answers questions about computer operating systems like UNIX. Then,
valid experimentation software would be a program which enables one or more sub-

jects (S) to ask questions about UNIX, and one or more experts, or Wizards (W),

By “design” we mean any reasonable description whether it be in English, Hindi, Gaelic, logic,
algorithmic form, or assembly code.

Ot



EXPERIMENT / TEST]|

DESIGN

IMPLEMENT

Figure 1: EDIT (Experiment Design Implement Test) Cycle.

to answer these questions. An example setup for this experiment would be the
Wizard-of-Oz° paradigm. A number of S and W from varying backgrounds may be
used in the experiment. Of course, the greater the number of S and W the more
comprehensive the data collected will be. Also, there may be groups of S and W
rather than just a single S and single W. Information on exchanges between S and
W is logged in a log file for later inspection. S and W operations are marked in the
file. Such an experiment is described with greater detail in Mc Kevitt and Ogden
(1989) and the implications of that experiment are described in Mc Kevitt (1990a).
In Mc Kevitt and Partridge (1991) the wider implications of EDIT are described.
At the design stage (D), L from E is analysed and inspected. In the initial stage
the data here gives a snapshot description of the problem and how it is charac-
terised. Further stages of the cycle will give snapshots of how well the problem is
characterised in the current P. An analysis of L. will give a picture of the information
needed in various components of a program, such as knowledge representation, user

modeling, and reasoning components. Many researchers and domain experts from

5A Wizard-of-Oz experiment is one where subjects interact with a computer through typed
dialogue, at a monitor, and are led to believe that they are conversing with the computer. For
example, in the case of a Wizard-of-Oz test for a natural language interface, a subject’s utterances
are sent to another monitor where a “Wizard”, or expert, sends back a reply to the subject
monitor.



various backgrounds may be called in to analyse L and determine what aspects
of the software need to be developed. In fact, the type of researcher brought in
will determine the type of program eventually developed and the best of all worlds
would be to have a wide span of researchers/experts from different backgrounds.
The job of the researchers is to develop algorithms with the help of the data, and
to specify these algorithms in some manner. Now, note that we have solved one of
the problems of the RUDE methodology which was where does the initial prototype
come from.

At the implementation (I) stage the algorithms or designs in D are implemented.
These designs may be implemented in any programming language (P) that the
implementers find most appropriate. Finally, the implemented program is sent
back to E again and tested. Then, a new cycle begins.

During the initial state of the EDIT manifestation described here, S and W
interact over the problem and the data is logged in L. Data may be collected for a
specific task within a domain, or the whole domain itself. Each successive run of E
involves the incorporation of P, which tries to answer questions first, and if it fails
W steps in while P restarts. The cycle may be operated in real time or batch mode.
In batch mode the experimentation component would involve a number of batched
questions which are collected from S, and processed by P, where L marks where P
fails.

The EDIT cycle continues until the program performs satisfactorily to the re-
quirements of the designers. The deigner(s) may wish P to perform satisfactorily
only 50% of the time, or 80% of the time. The success or failure of P will be deter-
mined at design time, D, when the L is analysed. L will show where P has failed and
where it has passed the test. W entries will show up why P did not work and will
indicate what components of P need to be updated. In the case of natural language
question answering W entries might show up the fact that certain types of question
are not being answered very well, or at all. Therefore, W entries would indicate
how P needs to be augmented in principle to solve a recurring pattern of failure. W
entries could be analysed for such recurring patterns. In effect, what is happening
here is that P is “learning” by being investigated, and augmented, in the same way

as a mother might teach her child, noticing the child’s failure to complete certain



tasks®. Also, note now that EDIT solves the second problem of RUDE, which is a
need for a measure of convergence on a solution. The goal solution, of course, is the
data collected in L for the initial experiment (E).

The success of P is measured by the number of answers P can give, and the
number of answers P gets correct. The measure of capability and correctness is
determined by inspection of L. During the development of P the initial coding may
need to be recoded in another form as data collected later may affect P’s design.

There are many forms in which the EDIT cycle may be manifested. The ex-
perimentation stage may involve experiments other than the Wizard-of-Oz type.
Another experiment might involve an observer sitting beside the subject during
testing and helping the subject with the program as he/she uses it. The observer
would restart the program if it failed. Such a technique is used in experiments
described by Al-Kadurie and Morgan (1989). The design stage and inspection of L
may involve only one or a number of designers. These designers may know much
about the domain, and little about design, or vice versa. Experts and good design-
ers may both be used at the design stage. Also, E could consist of a set of experts
with different points of view and different backgrounds. Bear in mind too, that the
interface to P need not be a natural language one. We have chosen natural lan-
guage because it seems to be the ultimate interface, but we could well have chosen
a more limited menu-based interface with icons, where the interaction could easily
have been logged. Also, it could be argued that a natural language interface is one
of the most general possible, and that other more limited interfaces are subsets,
or equivalent, in terms of power to it. Hence, EDIT may consist of many mani-
festations of the methodology, yet, the basic methodology involves developing and
testing through experimentation.

EDIT can be used to develop and test systems. Development continues until the

designers are happy with the system at the completion of some cycle.

5This analogy was provided by personal communication from Brendan Nolan of the Department
of Computer Science at University College Dublin.



4 EDIT and artificial intelligence

The area of Artificial Intelligence (AI) has come under scrutiny with respect to a
need for more software engineering (see Partridge 1986, 1991, 1992). EDIT can
also act as methodology for testing hypotheses in AI where such hypotheses may be
solutions to parts of problems (see Mc Kevitt and Partridge 1991). The advantage
of the Wizard-of-Oz technique incorporating W is that if P fails for reasons other
than the hypothesis, then W can step in keeping P alive so to speak. Meanwhile, no
data is lost in the current experiment dialogue. Of course, the log file marks where
W interrupts. During testing, as far as S is concerned the program has never failed
as S does not necessarily know that W has intervened. The data from the testing
phase can be logged in a file and system developers can then observe where the
system failed, and where W interfered. This information will be used in updating
the system, and any theory which the system represents.

EDIT is a useful technique in that it allows the iterative development of systems
and gives feedback on how to design an Al system as it is being developed. Sharkey
and Brown (1986, p. 282) point out that the belief that an AI system can be
constructed first, and then tested later, as argued by Miller (1978), is not the way
to go. Sharkey and Brown show that (1) an Al system takes a long time to build,
and it may be wrong at the beginning, and (2) an Al theory, and its implementation
in the final state, may not be coined in a way that allows psychological testing.

One of the problems with Al today is that it is not appreciated as a science
and has no scientific test methodology. Narayanan (1986, p. 46-47) points out:
“It can be argued that the criterion of implementability is vacuous at the level of
the Church-Turing thesis.” The thesis basically says that any process which can
be described by an algorithm can be implemented on a computer. Thus, any Al
theory which can be described by an algorithm can be implemented on a computer,
and hence all Al theories are valid no matter what they say. Sharkey and Brown
(1986, p. 278) also point out this problem: “To say that a theory is implementable is
simply to say that it can be expressed in the form of a computer program which will
run successfully”, and suggest that a solution needs to be found: (p. 280) “Another

question we would like to raise here is this: At what point in implementation do



we decide that there are too many patches to accept that the running program
is actually a test of a theory.” Sutcliffe (1991) argues for more empiricism and
says, “I see the use of norming studies and other techniques from psychology as
being relevant to AL” EDIT calls for not just implementability but also for the
implementation to work on experimentation over real data. Also, EDIT solves
the problem of how to check whether an AI theory is valid. Narayanan (1986, p.
48) points out: “In any case, even if a criterion of complexity for Al programs
(theories) can be found, there still remains the suspicion that no criterion exists for
determining whether an Al theory is true or accurate.” EDIT may provide such a
criterion in the inspection of log files.

To those researchers who might argue that EDIT may be narrow and inductivist,
as an hypothesis test method we would point out that EDIT is totally compatible
with a test, where an initial design has been thought up, and programmed, and
where P is entered into EDIT, at E, before any data is collected. Hence, EDIT is
completely in accord with scientific test methodologies proposed by the philosophers
of science, Hempel (1966), and Popper (1972). EDIT is a methodology for testing
hypotheses in AI where Al is a scientific endeavour. EDIT does not follow the
traditional Al approach of building programs which are stated to embody a theory,

and where implementability is the test of this theory.

5 Comparing EDIT to RUDE

EDIT is not just a rearrangement and renaming of RUDE. The difference is that
EDIT offers a means of convergence on a solution. EDIT and RUDE differ in
that with EDIT algorithms are developed in conjunction with data describing the
problem rather than from what the problem “might” be. Too often in the field of
AT there are attempts at, a priori, deciding what a problem is without any attempt
to analyse the problem in depth. As was pointed out earlier, one of the problems
with developing Al programs is that it is very difficult to specify the problem. One
solution to that might be to collect data on the problem, as EDIT calls for. The
second major difference is that experimentation involves testing software over real

data in the domain. Also, by using the Wizard-of-Oz technique the testing phase

10



breaks down less as the wizard keeps the system going. We argue that this is
important because if a test fails then data can be lost due to temporal continuity
effects. Failure happens a lot while testing AI programs. For example, if one is
testing a natural language interface, with an hypothesis for solving reference in
natural language dialogue, then if the test fails the continuation of that dialogue
may never happen, and data will be lost.

The problem with RUDE is that it does not include any goal as part of the
process of development; only the update of a program. We argue here that E must
be included to produce log files which measure how close P is to the goal that needs
to be achieved. EDIT can be considered a more “tied down” version of RUDE where
it is clearer what the problem is, and how well P is solving the problem. In fact
Partridge and Wilks (1987, p. 117) say, “What is needed are proper foundations
for RUDE, and not a drift towards a neighbouring paradigm.”

EDIT is an attempt to address the problem brought forth by Narayanan (1990,
p. 179) where he says: “What we need here is a clear categorization of which edits
lead to ‘theory edits’, as opposed to being program edits only. It is currently not
clear, in the Al literature, how such a categorization might be achieved. AI does
not have the sort of complexity measure which would help identify when the theory,
as opposed to the program, should be jettisoned in favour of another theory.” Using
EDIT an inspection of L. should show up, in many cases, where a program has failed
because of an hypothesis failure, or because of other reasons, and hence there will
be distinct implications for the theory and the program. Also, Narayanan (1990, p.
181) says: “But given the above comments, it appears that there can, currently at
least, be no scientific claims for claiming that one Al theory is better than another
and that AT is making progress, simply because the conceptual tools for measuring
one theory against another, and so for measuring the progress of Al are missing.”
We believe that EDIT may be a path on the road to such conceptual tools. It may
be the case that EDIT has a lot to say in the development of foundations for Al
as a science rather than a technology (see Narayanan 1990, Partridge and Wilks
1990).

The EDIT cycle is conducted until the implementation performs satisfactory over

a number of tests. The EDIT cycle enables the iterative development of a system

11



through using the problem description itself as part of the solution process. EDIT
is not just an hypothesis test method, but is also a method by which the reason
for failure of software is logged and a method where that reason does not cause
data loss. EDIT is useful for the development of software in an evolutionary way
and is similar to those techniques described in Connell et al. (1989). Again, 100%
reliability is very difficult to guarantee but we believe that problem description and
implementation through experimentation will lead to better implementations than
RUDE on its own.

EDIT is like the general methodology schemes proposed by researchers who are
developing expert systems. The stages for the proper evolution of an expert system

are described by Hayes-Roth et al. (1983):

o IDENTIFICATION: determining problem characteristics

e CONCEPTUALIZATION: finding concepts to represent knowledge
o FORMALIZATION: designing structures to organize knowledge

o IMPLEMENTATION: formulating rules that embody knowledge

e TESTING: validating rules that embody knowledge

This is in the spirit of EDIT where, of course, identification is similar to E,
conceptualization and formalization to D, and implementation to I. However, with
EDIT, E is involved in both identification and testing and we argue that this is the
way to go about testing if P is to meet the problem head on.

EDIT is currently being used in the development of AI software which answers
natural language questions about computer operating systems. An initial com-
puter program called OSCON (Operating System CONsultant) (see Mc Kevitt 1986,
1990a, 1991, 1992, Mc Kevitt and Wilks 1987, Mc Kevitt and Pan 1989, Mc Kevitt
et al. 1992a, 1992b, 1992¢c, 1992d) has been developed, which answers, in English,
simple English questions about computer operating systems. To enhance this re-
search it was decided that an experiment should be conducted to discover the types
of queries that people actually ask. An experiment has been conducted to acquire
data on the problem. More details on the experiment and its implications are given

in Mec Kevitt (1990a).

12



6 Applying EDIT to the law and EDI

EDIT can be applied in the law domain as follows. One possible manifestation of
the experimentation stage (E) would be where a Wizard-of-Oz exeriment has been
set up such that W is a lawyer or solicitor giving advice or answering questions. A
number of subjects, or clients, sit sown and ask questions on law and W answers
these constituting a sort of lawyer-client interaction. In effect, we have what Mehl
(1959) called “The Law Machine” which would “provide a decision within a highly
specialised field of law ... [or, more ambitiously] ... answer any question put to it
over a vast field of law.” The program P would act as a solicitor, or lawyer, advising
S, or the client, on solutions to problems.

The domain of law may be fixed to domains like Law relating to Supplementary
Benefits and Family Income Supplements (“the Yellow Book”) (see Bench-Capon
1987) which incorporates acts of parliament and statutory instruments — a domain
used by Kowalski and Sergot (1992). Indeed, Kowalski and Sergot (1992, p. 105)
point out that, “to construct a program dealing with the British Nationality Act
that could be used in practice, it would be necessary to enlist the help of an expert
lawyer, preferably several experts on citizenship and immigration law.”

In another light, the program P may be intended to be a judge, where P is fed
with evidence, and cases for and against the defendant. Here, E would involve both
members of the prosecution and defence interacting with the W which may be a
judge or set of judges. In effect, P would be simulating a courtroom scene. This
would involve a very complex experimental setup indeed. Yet, other sciences have
such complex experiments. This scenario is pointed out by Bennun (1992, p. 48),
as he says: “The problem is not to computerize the law (his italics), which is clearly
feasible through the use of logic and databases; it is to computerize the judicial
method (his italics), which is another matter entirely.”

The design phase (D) would be one where a number of solicitors and programmers
perused the log files and determined the right information to be placed in the P. The
information could be obtained from legal texts and experts. In the case of P acting
as a judge information would have to be obtained on the running of the judicial

process itself. This process of entering information into such a program is termed

13



“legal knowledge engineering” by Clark and Economides (1992, p. 7), “The process
of “extracting” legal knowledge from legal texts and legal experts and representing
it within an expert system is referred to as “legal knowledge engineering.”

The design would be implemented at stage (I) and the program retested over S.
The cycle is completed when the required measure of success is reached.

In the above discussion P is described as a program which either acts as a legal
adviser, or the judicial process itself. P may also assume any of the types of legal
work as defined by Clark and Economides (1992). These are (a) giving legal advice,
(b) negotiating points of view of other lawyers (different W’s would be used here),
(c) officials and parties representing clients in court, and (d) structuring of the law
itself. The program P may be build to cater for these more specific tasks.

One of the problems arising in the law domain, and other domains, would be to
determine the W to be allowed to answer questions by S. The problem with this
is that, say, W on the whole were logical positivists (see Clark and Economides,
1992 p. 7), then P might turn out to have a logical positive point of view. On the
other hand if they were naturalists then we may have the opposite effect. Where
is the line drawn? Also, the inspectors of log files during D may be partial in their
analysis of the L and even the programmers during I may be partial too. In fact,
subjectivity is a problem with most software development today. The solution to
this problem would be to organise a balanced set of W, inspectors and programmers
who represent a balanced set of views. In effect, this is argued for by Whitby (1992,
p. 97): “A useful step might be the introduction of something along the lines of
an ‘ethical committee’” which could consider some of the legal, social, and political
implications of Al systems in law which present special problems. The criteria for
membership of such a committee are by no means clear, but almost any committee
would be more effective and carry more consensus than the present reliance on ad-
hoc decisions, often by researchers with limited legal knowledge, and without public
scrutiny or debate.” In EDIT such debate and scrutiny might come in during any
of E, D, or I, and is most important during D.

The EDIT methodology does not follow the spirit of Kowalski and Sergot (1992,
p. 101) in which they argue for a set of representations where “The most obvious

application of the British Nationality Act program, for example, is to test whether

14



a given individual is, or is not, a British citizen according to (a given interpretation
of) the Act. There is no fundamental reason, however, why the same representations
should not be used for other legal problem-solving tasks: in systems which plan or
advise on a sequence of legal transactions to achieve some desired goal, or to help
identify for a lawyer possible lines of reasoning and argumentation, or in systems
which are intended to help in the formulation of legislation itself.” We believe that
a set of representations may be determined a priori but that those representations
will change as more data is gathered during the EDIT cycle. In fact, a Wizard-of-Oz
experiment on a natural language help system for UNIX showed up a number of
problems with the design of existing such help systems (see Mc Kevitt 1990a).

Also, Kowalski and Sergot (1992, p. 108) point out: “One can imagine how
a draftsman who is charged with formulating a piece of new legislation or with
modifying an existing piece might use an executable model of his current draft to
test that it “does” what he intended. He could have available, for example, a library
of stereotypical cases on which he can try out changes to his current draft.” We
argue that the EDIT approach is a better test as it involves testing P as it should
behave in actual use.

Now, let us turn to EDI and see what EDIT would have to offer in that particular
aspect of computers and law. The development of an EDIT approach is, in fact,
argued for by Clark and Economides (1992, p. 22), where they say: “However,
if we are to design computer systems that are capable of supporting processes of
intelligent human interaction and communication in legal settings, we need a far
more detailed understanding of these processes than we have at present.” It is
argued here that such processes are given by the log files. Also, Jackson (1988,
p. 115) says: “We need empirical studies which will trace, step by step, the forms
of discourse by which legal messages are constructed and communicated. Each of
these steps in the communicational chain requires independent assessment; who is
communicating to whom?, in what medium?, and through the use of what codes?”
Hence, in order to test whether a computer program, acting as a communications
network for the process of EDI, is secure we should ensure that the program is
reliable. In order to do that we must ensure that the program is developed and

tested using a methodology like EDIT. Any breaches of such security should show



up at the E stage of EDIT. We cannot of course ensure that data or programs
transferred in the post will not be intercepted by alien agents.

The distinction between the use of EDIT as (1) a development methodology, and
(2) a test methodology is brought out by Susskind (1992) in his discussion of the
distinction between pragmatism and purism. EDIT used as a test methodology, is

a purist pursuit, and as a development methodology, is a pragmatic pursuit.

7 Conclusion

Our aim here has been to demonstrate that in order for EDI to occur securely over
computer networks those networks, which are in effect computer programs, must be
reliable. To ensure that computer programs are reliable we must ensure that they
are designed effectively. We need sound development methodologies for computer
software.

It is pointed out here that the EDIT methodology can provide a solution to the
development and testing of programs in software engineering. We have also argued
that EDIT will work for Artificial Intelligence (AI), a field where there are no sound
foundations yet for either development, or testing.

It is shown how EDIT can be used in the law domain and EDIT may address the
problem brought up by Bennun and Narayanan (1992, p. 3, preface), “Could Al
and law be two subjects looking for a methodology, and are some of the contributors
to this book looking for a common methodology?” One of the outcomes of EDIT is
that it not only provides a methodology for testing AI programs, but it also shows
how a domain itself can better get a grip on it’s own methodology. This will happen
at the design stage where inspectors will have many debates about the domain as
well as how it can be described. Also, Bennun and Narayanan (1992, p. 4) point
out: “That is ‘progress’ in law, computer science, and Al currently seems to take
place on an ad hoc basis” and EDIT may be a methodology which, is not ad hoc,
but provides a goal whereby the development of P is the goal of solving E in its
initial state. The measure of success towards this goal is determined by an analysis
of log files. Bennun and Narayanan (1992, Preface) point out the problems of (1)

people just meeting here and there to discuss problems in constrained domains,

16



(2) solutions not being generalisable, and (3) overcoming the lack of an agreed
methodology. The EDIT methodology is one where people meet to overcome the
task of analysing and formalising log files and such log files could be passed around
by various researchers as direct descriptions of the problem to be solved.

If computer evidence is to be provided in court (see Hirst 1992) then such evi-
dence will be taken more seriously if the programmer and lawyer are able to pro-
duce evidence on how the program, which generated or manipulated such data, was
proven to have been tested adequately and secured using a methodology like EDIT.
Galtung (1992) lists a number of different elements a party should present to the
court in the case of a dispute. These elements could be presented in conjunction
with test data from EDIT. If data is to be passed over national boundaries (see Ho-
eren 1992) then similarly security can be maintained by ensuring that networking
software between different nations has been tested likewise.

Of course, we have made the assumption throughout that EDIT is a correct
methodology, and that if a program passes the EDIT test then it is a valid Al
program. However, EDIT does have some problems. A main problem is that it is
difficult to simulate, through experiments within EDIT, software use as it would
occur in real life. Experiments can usually only approximate real life situations.
An added problem is that it will be difficult to determine when a methodology like
EDIT isin a state so that one can say if a program passes through the methodology,
the program is a valid Al program. Therefore, at best we can only hope that
methodologies like EDIT bring us closer to designing and testing AI programs that
are valid. Also, it may be the case that there are other methodologies which bring
AT systems closer to valid solutions, than EDIT does.

The central conclusion here then is that if we are to attempt to develop computer
software for standard software engineering problems, or for AI problems, whether
for EDI applications or otherwise, then we should be doing data collection, and
deciding how programs can be built in conjunction with experimentation. Any a
priori decisions about how such software should be built will lead us into solutions
which do not solve the problem at all. It is likely that without data collection
programs for complex problems will be developed which do not solve problems

adequately and hence become unreliable and unsecure. A sound methodology will

17



reduce problems of reliability and security and will have serious implications not

only for EDI, but for law, computers and Al.

8 References

Allen, Thomas (1992) Electronic data interchange, computer ordering and the for-
mation of contracts. In Proceedings of the Third National Conference on Law,
Computers and Artificial Intelligence, Indira Carr and Katherine Williams (Eds. ),
2-13. Centre for Computer and Law (Department of Law), The University Col-
lege of Wales, Aberystwyth, Wales, March-April.

Al-Kadurie, Osama and Simon Morgan (1989) The PCMATH System: empirical
investigations. In Artificial Intelligence in Education, Vol. 1(1), Fall.

Bader, J., J. Edwards, C. Harris-Jones, and D. Hannaford (1988) Practical engi-
neering of knowledge-based systems. In Information and Software Technology,
30(5), 266-277.

Bench-Capon, T.J.M., G.O. Robinson, T.W. Routen, and M.J. Sergot (1987) Logic
programming for large scale applications in the law: A formalisation of supple-
mentary benefit legislation. In Proceedings of the First International Conference
on Artificial Intelligence and Law, 190-198, Boston, MA..

Bennun, Mervyn (1992) Computers in court: the irreplaceable judge. In Law, Com-
puter Science and Artificial Intelligence, Mervyn Bennun and Ajit Narayanan
(Eds.), 45-61. Norwood, New Jersey: Ablex Publishing Corporation.

Bennun, Mervyn and Ajit Narayanan (1992) Law, Computer Science and Artificial
Intelligence. Norwood, New Jersey: Ablex Publishing Corporation.

Clark, Andrew and Kim Economides (1992) Computers, expert systems, and legal
processes: toward a sociological understanding of computers in legal practice.
In Law, Computer Science and Artificial Intelligence, Mervyn Bennun and Ajit
Narayanan (Eds.), 3-32. Norwood, New Jersey: Ablex Publishing Corporation.

Connell, John L. and Linda Brice Shaffer (1989) Structured rapid prototyping: an
evolutionary approach to software development. Engelwood Cliffs, New Jersey:
Yourdon-Press Computing Series.

Dijkstra, E.W. (1972) The humble programmer. In Communications of the ACM,
15, 10, 859-866.

Galtung, Andreas (1992) Evidential issues in an EDI context according to norwegian
law. In Proceedings of the Third National Conference on Law, Computers and
Artificial Intelligence, Indira Carr and Katherine Williams (Eds.), 49-56. Centre
for Computer and Law (Department of Law), The University College of Wales,
Aberystwyth, Wales, March-April. Also see this issue.

Gries, D. (1981) The science of programming. Springer-Verlag, NY.

Hayes-Roth, F., D.A. Waterman and D.B. Lenat (1983) Building expert systems.
Reading, MA: Addison-Wesley.

Hempel, C. (1966) Philosophy of natural science. Englewood Cliffs, New Jersey:

18



Prentice-Hall.

Hirst, Michael (1992) Computers and the English law of evidence. In Proceedings
of the Third National Conference on Law, Computers and Artificial Intelligence,
Indira Carr and Katherine Williams (Eds.), 71-80. Centre for Computer and Law
(Department of Law), The University College of Wales, Aberystwyth, Wales,
March-April. Also see this issue.

Hoare, C.A.R. (1981) The emperor’s old clothes. In Communications of the ACM,
24, 2, 75-83.

Hoeren, Thomas (1992) Electronic data interchange and transborder flow of per-
sonal data: the perspectives of private international law. In Proceedings of the
Third National Conference on Law, Computers and Artificial Intelligence, In-
dira Carr and Katherine Williams (Eds.), 81-88. Centre for Computer and Law
(Department of Law), The University College of Wales, Aberystwyth, Wales,
March-April. Also see this issue.

Ince, D.C. (1989) Software engineering. London: Van Nostrand.

Jackson, B.S. (1988) Editorial. In International Journal for the Semiotics of Law,
1, 113-116.

Kowalski, Robert and Marek Sergot (1992) The use of logical models in legal problem
solving. In Law, Computer Science and Artificial Intelligence, Mervyn Bennun
and Ajit Narayanan (Eds.), 99-117. Norwood, New Jersey: Ablex Publishing
Corporation.

Me Kevitt, Paul (1986) Formalization in an English interface to a UNIX database.
Memoranda in Computer and Cognitive Science, MCCS-86-73, Computing Re-
search Laboratory, Dept. 3CRL, Box 30001, New Mexico State University, Las
Cruces, NM 88003-0001.

Mec Kevitt, Paul (1990a) Data acquisition for natural language interfaces. Memo-
randa in Computer and Cognitive Science, MCCS-90-178, Computing Research
Laboratory, Dept. 3CRL, Box 30001, New Mexico State University, Las Cruces,
NM 88003-0001.

Mec Kevitt, Paul (1990b) Legalising reliable computer programs. In Proceedings of
the Second National Conference on Law, Computers and Artificial Intelligence,
Theme: The Legal Implications of Computer Misuse and Abuse, Crossmead
Conference Centre, University of Exeter, England, European Community (EC),
November 1990. Also, as Technical Report 225, Department of Computer Sci-
ence, University of Exeter, GB- EX4 4PT, Exeter, England, EC, 1991.

Me Kevitt, Paul (1991) Principles and practice in an operating system consultant.
In Artificial Intelligence and Software Engineering, Chapter on ‘Al Mechanisms
and techniques in practical software’, Derek Partridge (Ed.), 439-462. New York:
Ablex Publishing Corporation.

Me Kevitt, Paul (1992) The OSCON operating system consultant. In Intelligent
Help Systems for UNIX — Case Studies in Artificial Intelligence, Springer-Verlag
Symbolic Computation Series, Peter Norvig, Wolfgang Wahlster and Robert
Wilensky (Eds.). Heidelberg, Germany: Springer-Verlag.

Mec Kevitt, Paul and Yorick Wilks (1987) Transfer Semantics in an Operating System

19



Consultant: the formalization of actions involving object transfer. In Proceedings
of the Tenth International Joint Conference on Artificial Intelligence (IJCAI-
87), Vol. 1, 569-575, Milan, Italy, August.

Paul and William C. Ogden (1989) Wizard-of-Oz dialogues in the computer operating
systems domain. Memoranda in Computer and Cognitive Science, MCCS-89-
167, Computing Research Laboratory, Dept. 3CRL, Box 30001, New Mexico
State University, Las Cruces, NM 88003-0001.

Me Kevitt, Paul and Zhaoxin Pan (1990) A general effect representation for Oper-
ating System Commands. In Artificial Intelligence and Cognitive Science '89,
Springer-Verlag British Computer Society Workshop Series, Smeaton, Alan and
Gabriel McDermott (Eds.), 68-85. Berlin, Heidelberg: Springer-Verlag. Also in
Proceedings of the Second Irish National Conference on Artificial Intelligence and
Cognitive Science (AI/CS-89), School of Computer Applications, Dublin City
University (DCU), Dublin, Ireland, European Community (EC), September.

Mec Kevitt, Paul and Derek Partridge (1991) Problem description and hypothesis
testing in Artificial Intelligence. In Artificial Intelligence and Cognitive Sci-
ence 90, Springer-Verlag British Computer Society Workshop Series, McTear,
Michael and Norman Creaney (Eds.), 26-47. Berlin, Heidelberg: Springer-

‘erlag. Also in, Proceedings of the Third Irish Conference on Artificial Intelli-
gence and Cognitive Science (AI/CS-90), University of Ulster at Jordanstown,
Northern Ireland, September, and as Technical Report 224, Department of
Computer Science, University of Exeter, GB- EX4 4PT, Exeter, England, EC,
September, 1991.

Me Kevitt, Paul, Derek Partridge and Yorick Wilks (1992a) Approaches to natural
language discourse processing. In Artificial Intelligence Review, Special issue
on Natural Language Processing, Mc Kevitt, P. (Ed.), 6(4), Also extended in,
Technical Report 235, Department of Computer Science, University of Exeter,
GB- EX4 4PT, Exeter, England, EC.

Mec Kevitt, Paul, Derek Partridge and Yorick Wilks (1992b) Analysing coherence
of intention in natural language dialogue. Technical Report 227, Department of
Computer Science, University of Exeter, GB- EX4 4PT, Exeter, England, EC.

Mec Kevitt, Paul, Derek Partridge and Yorick Wilks (1992c) Why machines should
analyse intention in natural language dialogue. Technical Report 233, Depart-
ment of Computer Science, University of Exeter, GB- EX4 4PT, Exeter, Eng-
land, EC.

Mec Kevitt, Paul, Derek Partridge and Yorick Wilks (1992d) Experimenting with
intention in natural language dialogue. Technical Report 234, Department of
Computer Science, University of Exeter, GB- EX4 4PT, Exeter, England, EC.

Mehl, Lucien (1959) Automation in the legal world: From the machine processing
of legal information to the “Law Machine”. In National Physical Laboratory
Symposium, No. 10, Mechanisation of Thought Processes (2 Vols.), London:
HMSO.

Miller, L. (1978) Has Artificial Intelligence contributed to an understanding of the
human mind? A critique of the arguments for and against. In Cognitive Psy-

20



chology, 2, 111-127.

Narayanan, Ajit (1986) Why AI cannot be wrong. In Artificial Intelligence for
Society, K.S. Gill (Ed.), 43-53. Chichester, UK: John Wiley and Sons

Narayanan, Ajit (1990) On being a machine, Volume 2, Philosophy of Artificial In-
telligence. Ellis Horwood Series in Artificial Intelligence Foundations and Con-
cepts, Sussex, England: Ellis Horwood Limited.

Partridge, Derek (1986) Artificial Intelligence: applications in the future of software
engineering. Halsted Press, Chichester: Ellis Horwood Limited.

Partridge, Derek (1990) The syntax of pragmatics. In Proceedings of the Fifth
Rocky Mountain Conference on Artificial Intelligence and (RMCAI-90), Subti-
tled, ‘Pragmatics in Artifictal Intelligence’, Yorick Wilks and Paul Mc Kevitt
(Eds.), 41-46. Computing Research Laboratory, Dept. 3CRL, Box 30001, New
Mexico State University, Las Cruces, NM 88003-0001, USA, June.

Partridge, Derek (1991) Artificial Intelligence and Software Engineering. New York:
Ablex Publishing Corporation.

Partridge, Derek (1992) Engineering artificial intelligence software. Oxford, Eng-
land: Intellect Books.

Partridge, Derek and Yorick Wilks (1987) Does AI have a methodology which is
different from software engineering?. In Artificial Intelligence Review, 1, 111-
120.

Popper, K. R. (1972) Objective knowledge. Claredon Press.

Sharkey, Noel E. and G.D.A. Brown (1986) Why AI needs an empirical foundation.
In AIL: Principles and applications, M. Yazdani (Ed.), 267-293, London, UK:
Chapman-Hall.

Susskind, Richard (1992) Pragmatism and purism in artificial intelligence and legal
reasoning. In Law, Computer Science and Artificial Intelligence, Mervyn Bennun
and Ajit Narayanan (Eds.), 33-44. Norwood, New Jersey: Ablex Publishing
Corporation.

Sutcliffe, Richard (1991) Representing meaning using microfeatures. In Connection-
ist approaches to natural language processing, R. Reilly and N.E. Sharkey (Eds.).
Hillsdale, NJ: Earlbaum.

The Byte Staff (1989) Product Focus: Making a case for CASE. In Byte, December
1989, Vol. 14, No. 13, 154-179.

Whitby, Blay (1992) AI and the law: learning to speak each other’s language.
In Law, Computer Science and Artificial Intelligence, Mervyn Bennun and Ajit
Narayanan (Eds.), 89-98. Norwood, New Jersey: Ablex Publishing Corporation.

Wilks, Yorick and Afzal Ballim (1992) Liability and consent. In Law, Computer
Science and Artificial Intelligence, Mervyn Bennun and Ajit Narayanan (Eds.),
118-131. Norwood, New Jersey: Ablex Publishing Corporation.

21



