

Combining educational games and virtual learning environments for teaching Physics with the Olympia architecture

Karla Cristina Muñoz Esquivel, Paul Mc Kevitt & Tom Lunney Intelligent Systems Research Centre School of Computing & Intelligent Systems Faculty of Computing & Engineering University of Ulster, Derry, Northern Ireland

External Collaborating Professor: Julieta Noguez
Department of Computer Science and Information Systems
Faculty of Engineering & Architecture
Tecnológico de Monterrey, Distrito Federal, Mexico

28th August, 2009

Outline of presentation

- Background & related work
- Olympia
 - Aims & objectives
 - Olympia architecture
 - Case study & methodology
 - GUI design & student model
 - Results & evaluation
- Conclusion & future work

Background & related work

- Ultimate goal: Make teaching & learning more effective
- Virtual learning environments (VLEs) & educational games
 - Subliminal messages (Williams 2008)
 - Enhance Intelligent Tutoring Systems (ITSs): Recognising & expressing emotions (Conati 2002, D'Mello 2008)
- Emotion & cognition -> deeply intertwined & equally important (Norman et al. 2003)
- VLEs vs. Educational & commercial games: Features and modules of commercial & educational games -> High level of interactivity -> Emotional link (Noguez & Sucar 2005, Neji & Ben Ammar 2007, Duarte et al. 2008, Adams & Rollings 2007, Sherrod 2007, Bergeron 2005)

Aims & objectives

- Enhance VLE's Human Computer Interaction (HCI) level using features of commercial & educational games
- Enhance student motivation & understanding
- Test hypothesis in specific case study: Teaching Physics at undergraduate level

Olympia architecture

- Enables combination of VLEs, educational games & new generation of VLEs with ITSs
- Originated and based on the generic architecture introduced by Noguez & Sucar (2005)
- Semi-open environment (Noguez & Sucar, 2006)

1SEA 2009

Case study & methodology

Implemented enhanced & traditional VLEs using Olympia architecture for teaching momentum

Results were evaluated using Weighted hypothesis testing (Wasserman 2004)

Divided 20 undergraduate students (ITESM-CCM) into experimental & control groups

Students interacted with the corresponding VLE

Student model based on PRMs

Results & evaluation

	Average knowledge detected (%)							
	Velocity and rectilinear uniform movement		Linear momentum		Conservation of momentum			
Statistical	Enhanced	Traditional	Enhanced	Traditional	Enhanced	Traditional		
function	VLE	VLE	VLE	VLE	VLE	VLE		
Average	65.88	61.83	61.09	59.69	58.81	57.67		
Standard								
deviation	19.79	16.62	24.38	22.33	19.48	17.84		
Z ₀		1.09		0.28		0.29		

	InteractionResults (number of cases)							
	Succes	sful cases	Total cases					
Statistical	Enhanced	Traditional	Enhanced	Traditional				
function	VLE	VLE	VLE	VLE				
Average	2.20	2.70	7.50	6.60				
Standard								
deviation	2.04	2.15	4.06	2.69				
Z ₀		-1.04		1.50				

Conclusion & future work

- Olympia incorporates features of VLEs, educational games & ITSs
- Olympia evaluated in specific case study of teaching Physics at undergraduate level
- Students feel more motivated interacting with enhanced VLE
- Experiment on a larger population
- Enhance student learning model
- Implement additional educational games

Questions

