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tThere is a need for semanti
 representations that 
an bridge the gap between linguisti
inputs verbs and their 
orresponding visual knowledge whi
h are indispensable in perform-ing a variety of tasks involving the automati
 generation of 3D animation. The semanti
representation of events in visual knowledge and the design of a suitable knowledge basespe
i�
ally for the integration of linguisti
 and visual information are dis
ussed here. Wedes
ribe a framework used to represent a
tion verb semanti
s in a visual knowledge base.Visually observed events are des
ribed by establishing a 
orresponden
e between verbs andthe visual depi
tions they evoke. The method proposed here is well-suited to pra
ti
al ap-pli
ations su
h as automati
 language visualisation appli
ations and intelligent storytellingsystems. In parti
ular, it will be useful within CONFUCIUS, a system whi
h re
eives in-put natural language stories and presents them with 3D animation, spee
h, and non-spee
haudio.1 Introdu
tionMost traditional semanti
 representation languages in natural language pro
essing representmeaning on the senten
e level or phrase level, and are used for purposes like question-answeringand information retrieval. Here we introdu
e a framework whi
h 
an represent pro
edural se-manti
s on the word level for a
tion verbs and is suited for 
omputer graphi
 generation fromnatural language input. The framework extends traditional predi
ate-argument stru
tures downto the verb level and uses a hierar
hy of a
tions to des
ribe visual semanti
s of a
tion verbs.First, we begin by introdu
ing the ba
kground of this work, the Sean
ha�i1 platform and itsCONFUCIUS module that interprets natural language story input and presents it as 3D anima-tion with other modalities (se
tion 2). Then we explore previous ways to represent semanti
s,fo
using on 
on
eptual dependen
y and event-logi
 (se
tion 3). We turn next to the topi
 ofsemanti
 representation in a knowledge base for natural language and vision pro
essing systemsand dis
uss verb 
lassi�
ation from the prospe
t of the generation of 3D animation (se
tion 4).Next we propose a framework of semanti
 representation of events, whi
h extends traditionalsemanti
 predi
ate-argument stru
tures from senten
e level to word level, giving de�nitions ofverbs and verb phrases to fa
ilitate automati
 language visualisation (se
tion 5). Next, relationsof our method to other work are 
onsidered (se
tion 6) and �nally se
tion 7 
on
ludes with adis
ussion of possible future work on semanti
 representation of events.2 Sean
ha�i and CONFUCIUSThe long-time goal of this work is using the methodology presented here to generate 3D anima-tion automati
ally in an intelligent multimedia storytelling platform 
alled Sean
ha�i. Sean
ha�i1Sean
ha�i means `Storyteller' in the Gaeli
 language.



Figure 1: Intelligent multimodal storytelling platform { Sean
ha�i

Figure 2: System ar
hite
ture of CONFUCIUSwill perform multimodal storytelling generation, interpretation and presentation and 
onsists ofHomer, a storytelling generation module, and CONFUCIUS, a storytelling interpretation andpresentation module (Figure 1). The output of the former module 
ould be fed as input to thelatter. Homer fo
uses on natural language story generation. It will re
eive two types of inputfrom the user, (1) either the beginning or the ending of a story in the form of a senten
e, and(2) stylisti
 spe
i�
ations, and outputs natural language stories; and CONFUCIUS fo
uses onstory interpretation and multimodal presentation. It re
eives input natural language stories or(play/movie) s
ripts and presents them with 3D animation, spee
h and non-spee
h audio.The knowledge base and its visual knowledge representation presented here are used inCONFUCIUS (Figure 2), and they 
ould also be adopted in other vision and natural languagepro
essing integration appli
ations. The dashed part in the �gure in
ludes the prefabri
atedobje
ts su
h as 
hara
ters, props, and animations for basi
 a
tivities, whi
h will be used in theAnimation generation module. When the input is a story, it will be transferred to a s
ript bythe s
ript writer, then parsed by the s
ript parser and the natural language pro
essing modulerespe
tively. The modules for Natural Language Pro
essing (NLP), Text to Spee
h (TTS) andsound e�e
ts operate in parallel. Their outputs will be fused at 
ode 
ombination, whi
h gen-erates a holisti
 3D world representation in
luding animation, spee
h and sound e�e
ts. NLPwill be performed using Gate and WordNet, TTS will be performed using Festival or Mi
rosoftWhistler, VRML (Virtual Reality Modelling Language) will be used to model the story 3D vir-tual world, and visual semanti
s is represented using a Prolog-like formalism proposed in thispaper. 2



3 Previous semanti
 representation languagesThere are several semanti
 representation languages whi
h have been implemented for naturallanguage pro
essing: FOPC (First Order Predi
ate Cal
ulus), semanti
 networks, Con
eptualDependen
y (CD) (S
hank 1973), and frames (Minsky 1975). FOPC and frames have histori
allybeen the prin
ipal methods used to investigate semanti
 issues. Re
ent resear
h on semanti
representation of simple a
tion verbs in
ludes event-logi
 (Siskind 1995) and x-s
hemas with f-stru
ts (Bailey et al. 1997). In addition, XML as a mark-up language is used to represent seman-ti
 stru
ture in re
ent multimodal systems, su
h as in BEAT (Cassell et al. 2001) and a derivative,M3L (MultiModal Markup Language), in SmartKom (Wahlster et al. 2001). The traditional se-manti
 representations (FOPC, semanti
 networks, CD and frames) are used at senten
e/phraselevel, e.g. predi
ate-argument models list as many arguments as are needed to in
orporateall the entities asso
iated with a motion, su
h as give(sub, indire
tObj, dire
tObj) and
ut(sub, obj, tool), while both event-logi
 and x-s
hemas work on the word level (a
tionverbs). However, S
hank's CD theory also provides fourteen primitive a
tions to represent andinfer verb semanti
s, i.e. at the word level.There are many natural language and vision pro
essing integration appli
ations developedbased on these semanti
 representations, su
h as CHAMELEON (Br�ondsted et al. 2001) andWordsEye (Coyne & Sproat 2001) based on frame representations, SONAS (Kelleher et al.2000) based on predi
ate-argument representations, SmartKom and BEAT based on XML torepresent semanti
 stru
ture of multimodal 
ontent, and Narayanan's language visualisationsystem (Narayanan et al. 1995) based on CD, ABIGAIL (Siskind 1995) and the L0 proje
t(Bailey et al. 1997) based on their respe
tive semanti
 representations. Now we will dis
ussCD, event-logi
 truth 
onditions, and x-s
hemas in detail sin
e these fo
us most on semanti
representation of a
tion verbs.3.1 S
hank's Con
eptual Dependen
y theory and s
riptsS
hank (1973) dis
usses Con
eptual Dependen
y (CD) theory to represent 
on
epts a
quiredfrom natural language input. The theory provides fourteen primitive a
tions and six primitive
on
eptual 
ategories. These primitives 
an be 
onne
ted together by relation and tense modi-�ers to des
ribe 
on
epts and draw on inferen
es from senten
es. CD theory makes it possibleto represent senten
es as a series of diagrams depi
ting a
tions using both abstra
t and realphysi
al situations. The agents and the obje
ts in the senten
es are represented. The pro
ess ofsplitting the knowledge into small sets of low-level primitives makes the problem solving pro
esseasier, be
ause the number of inferen
e rules needed is redu
ed. Therefore CD theory 
ouldredu
e inferen
e rules sin
e many inferen
e rules are already represented in CD stru
ture itself.However, knowledge in senten
es must be de
omposed into fairly low level primitives in CD,therefore representations 
an be 
omplex even for relatively simple a
tions. In addition, some-times it is diÆ
ult to �nd the 
orre
t set of primitives, and even if a proper set of primitives arefound to represent the 
on
epts in a senten
e, substantial inferen
e is still required.Additionally, sin
e people have routines-routine ways of responding to greetings, routineways to go to work every morning, and so on-as should an intelligent knowbot, S
hank in-trodu
ed s
ripts, expe
ted primitive a
tions under 
ertain situations, to 
hara
terize the sortof stereotypi
al a
tion sequen
es of prior experien
e knowledge within human beings' 
ommonsense whi
h 
omputers la
k, su
h as going to a restaurant or travelling by train. A s
ript 
ouldbe 
onsidered to 
onsist of a number of slots or frames but with more spe
ialised roles. The
omponents of a s
ript in
lude: entry 
onditions, results, props, roles, tra
ks and s
enes.An implemented text-to-animation system based on CD primitives (Narayanan et al. 1995)shows the limitations of CD. The graphi
 display in the system is i
oni
, without body movementdetails be
ause CD theory fo
uses on the inferen
es of verbs and relations rather than the visualinformation of the primitive a
tions.We dis
uss now two verb semanti
 representations, event-logi
 truth 
onditions and f-stru
ts.Both of them are mainly designed for a
tion re
ognition from visual input. The goal of our work3



is a reverse pro
ess to visual re
ognition, i.e. language visualisation in CONFUCIUS. A 
ommonproblem in the tasks of both visual re
ognition and language visualisation is to represent visualsemanti
s of motion events, whi
h happen both in the spa
e and time 
ontinuum.3.2 Event-logi
 truth 
onditionsTraditional methods in visual re
ognition segment a stati
 image into distin
t obje
ts and 
lassifythose obje
ts into distin
t obje
t types. Siskind (1995) des
ribes the ABIGAIL system whi
hfo
uses on segmenting 
ontinuous motion pi
tures into distin
t events and 
lassifying thoseevents into event types. He proposed event-logi
 truth 
onditions for simple spatial motionverbs' de�nition used in a vision re
ognition system. The truth 
onditions are based on thespatial relationship between obje
ts su
h as support, 
onta
t, and atta
hment, whi
h are 
ru
ialto re
ognition of simple spatial motion verbs. A

ording to the truth 
ondition of the verbs'de�nition, the system re
ognizes motions in a 2D line-drawing movie. Siskind introdu
ed a setof per
eptual primitives that denote primitive event types and a set of 
ombining symbols toaggregate primitive events into 
omplex events. The primitives are 
omposed of three 
lasses:time independent primitives, primitives determined from an individual frame in isolation, andprimitives determined on a frame-by-frame basis. Using these primitives and their 
ombinations,he gives de�nitions of some simple motion verbs and veri�es them in ABIGAIL.Siskind's event-logi
 de�nition has two de�
ien
ies: (1) overlapping between primitive rela-tions, and (2) la
k of 
onditional sele
tion, i.e. this framework does not provide a me
hanismfor sele
tion restri
tions of the arguments. So some de�nitions are arbitrary to some degree.They do not give a ne
essary and suÆ
ient truth-
ondition de�nition for a verb. For example:the de�nitions for `jump' and `step' are the following:2jump(x) = supported(x); (:3supported(x) ^ translatingUp(x))step(x) = 9y(part(y; x) ^ [
onta
ts(y; ground);:3
onta
ts(y; ground);
onta
ts(y; ground)℄)The de�nition of `jump' means x is supported, and then not supported and moves up in theimmediate subsequent interval. The de�nition of `step' 
an be interpreted that there exists y,whi
h 
ould be a foot, whi
h is part of the x, and y �rst 
onta
ts ground, then does not 
onta
t,and �nally 
onta
ts ground again. From the two de�nitions, we see that the de�nition of `step'
an also de�ne the motion of `jump' or `stamp (a foot)'. Hen
e, the de�nition of one verb 
analso be used to de�ne other verbs. Also, an alternative de�nition of `step' based on Siskind'smethodology 
ould be:step(x) = 9y1; y2(part(y1; x) ^ part(y2; x) ^[(
onta
ts(y1; ground) ^ :3
onta
ts(y2; ground));(:3
onta
ts(y1; ground) ^ :3
onta
ts(y2; ground));
onta
ts(y1; ground)℄)The de�nition des
ribes the alternate movement of two feet y1 and y2 
onta
ting the groundin a step. Hen
e, one verb 
an be de�ned by many de�nitions. Siskind's visual semanti
 rep-resentation method is subje
t to ambiguity, i.e. a single verb 
an legitimately have di�erentrepresentations su
h as `step', and a single representation 
an 
orrespond to di�erent eventssu
h as the �rst de�nition of `step' 
an de�ne `jump' and `stamp' as well. This arbitrariness inthe event de�nition 
auses some false positives and false negatives when ABIGAIL re
ognisesmotions in animation. The de�
ien
y of 
onditional sele
tion 
auses some loose de�nitions, ad-mitting many false positives, e.g. the de�nition of `jump' admits unsupported upward movementof some inanimate obje
ts like ball or balloon, be
ause it does not have any semanti
 
onstraints2a;b means event b o

urs immediately after event a �nishes. 3a�i means a happens during i or a subset ofi, so :3supported(x)�i means `x is not supported in any time during i'.4



on the �llers of argument x, indi
ating that x should be an animate 
reature (non-metaphorusage).The arbitrariness of verb de�nition might arise from two problems in his primitives. One isthe overlapping between some primitives in individual frame 
lass, su
h as 
onta
ts(), supports(),and atta
hed(). For instan
e, when one obje
t is supported by another, it usually 
onta
ts thesupporting obje
t. The other problem is that some primitives in frame-by-frame 
lass are notatomi
, i.e. 
ould be des
ribed by 
ombinations of others, su
h as slideAgainst(x,y) might beperformed by translatingTowards() ^ supports(y; x). In his methodology, Siskind does not
onsider internal states of motions (e.g. motor 
ommands), relying instead on visual featuresalone, su
h as support, 
onta
t, and atta
hment. This works in vision re
ognition programs.However, internal states are required in vision generation appli
ations. X-s
hemas (eXe
uting-s
hema) and f-stru
ts (Feature-stru
tures) (Bailey et al. 1997) examine internal exe
ute motora
tions.3.3 X-s
hemas and f-stru
tsBailey et al.'s (1997) x-s
hemas and f-stru
ts representation 
ombines s
hemata representationwith fuzzy set theory. It uses a formalism of Petri nets to represent x-s
hemas as a stable stateof a system that 
onsists of small elements whi
h intera
t with ea
h other when the system ismoving from state to state, and ea
h sense of a verb is represented in the model by a feature-stru
ture (f-stru
t) whose values for ea
h feature are probability distributions. For instan
e,the f-stru
t of one word-sense of push, using the slide x-s
hema, 
onsists of motor parameterfeatures and world state features. Motor parameter features 
on
ern the hand motion featuresof the a
tion push, whi
h invoke an x-s
hema with 
orresponding parameters, su
h as dire
tion,elbow joint motion, and hand posture. World state features 
on
ern the obje
t that the a
tionis performed on, su
h as obje
t shape, weight, and position.The probabilisti
 feature values in this stru
ture are learned from training data. The appli-
ation based on this representation is a system trained by labelled hand motions whi
h learnsto both label and 
arry out similar a
tions with a simulated agent. It 
an be used in both verbre
ognition and performing the verbs it has learned. However, the model requires training datato 
reate the f-stru
ts of verbs before it 
an re
ognize and 
arry them out.Most of previous semanti
 representations are suited to 
ertain purposes. FOPC is goodfor query-answering (espe
ially a true or false judgement); event-logi
 truth 
onditions are suit-able for motion re
ognition; x-s
hemas with f-stru
ts are suited to both verb re
ognition andperforming the a
tion, but require training.4 Visual knowledge representationExisting multimodal semanti
 representations within various intelligent multimedia systems mayrepresent the general organisation of semanti
 stru
ture for various types of inputs and outputsand are usable at various stages su
h as media fusion and pragmati
 aspe
ts. However, thereis a gap between high-level general multimodal semanti
 representation and lower-level repre-sentation that is 
apable of 
onne
ting meanings a
ross modalities. Su
h a lower-level meaningrepresentation, whi
h links language modalities to visual modalities, is proposed in this paper.Figure 3 illustrates the multimodal semanti
 representation of CONFUCIUS. It is 
omposed oflanguage, visual and non-spee
h audio modalities. Between the multimodal semanti
s and ea
hspe
i�
 modality there are two levels of representation: one is a high-level multimodal semanti
representation whi
h is media-independent, the other is an intermediate level media-dependentrepresentation. CONFUCIUS will use an XML-based representation for high-level multimodalsemanti
s and an extended predi
ate-argument representation for intermediate representationwhi
h 
onne
ts language with visual modalities as shown in Figure 3. The visual semanti
s de-
omposition method dis
ussed here is at the intermediate representation level. It is suitable forimplementation in the 3D graphi
 modelling language VRML. It will be translated to VRML5



Figure 3: MultiModal semanti
 representation in CONFUCIUS

Figure 4: Knowledge base of CONFUCIUS
ode by a Java program in CONFUCIUS. We also plan to in
lude non-spee
h audio in themedia-dependent and media-independent semanti
 representations.4.1 Visual semanti
sThe knowledge representation required for CONFUCIUS must provide the following 
apabili-ties: (1) model both de
larative and pro
edural knowledge, (2) inferen
e me
hanisms for obje
t
lassi�
ation, lexi
al dependen
ies, and spatial relations. Figure 4 illustrates the 
ontents of theknowledge base of CONFUCIUS, and is also a general knowledge base design for any intelligentmultimedia appli
ations whi
h in
lude both natural language pro
essing and vision pro
essing.This knowledge base is the prefabri
ated obje
ts, dashed part of Figure 2. It 
onsists of languagemodels, visual models, world knowledge and spatial & qualitative reasoning modules. Languageknowledge is used in the natural language pro
essing 
omponent (shown in Figure 2) to extra
t
on
ept semanti
s from text. Visual knowledge 
onsists of the information required to gener-ate moving image sequen
es. It 
onsists of obje
t model, fun
tional information, event model,internal 
oordinate axes, and asso
iations between obje
ts. The Obje
t model has semanti
representation of 
ategories (nouns), the event model has semanti
 representation of motions(verbs), and the internal 
oordinate axes are indispensable in some primitive a
tions of eventmodels su
h as rotating operations, whi
h require spatial reasoning based on the obje
t's internalaxes.Here we fo
us on eÆ
ient semanti
 representation of event models in the typi
al knowledge6



base for natural language and vision integration systems. The event model in visual knowledgerequires a

ess to other parts of visual knowledge. For instan
e, in the event \he 
ut the 
ake",the verb \
ut" 
on
erns kinemati
al knowledge of the subje
t-human being, i.e. the movementof his hand, wrist and forearm. Hen
e it needs a

ess to the obje
t model of a man who performsthe a
tion, \
ut". It also needs fun
tion information of \knife", the internal 
oordinate axesinformation of \knife" and \
ake" to de
ide the dire
tion of the movement. To interpret theverb wear(x,y)3, the event model needs a

ess to the obje
t model of y, whi
h might be a \hat",a \ring", a \pair of glasses", or \shoes", and its fun
tion model that 
on
erns its typi
al lo
ation(e.g. \hat on the head", \ring on a �nger").4.2 Categories of events in animationSin
e verbs are 
ore to events, verb sub
ategories are signi�
ant for visualisation of events.Both traditional grammars sub
ategorising verbs into transitive and intransitive, and moderngrammars distinguishing as many as 100 sub
ategories (COMLEX and ACQUILEX tagsets)
lassify verbs a

ording to sub
ategorisation frames, i.e. possible sets of 
omplements the verbsexpe
t (Table 1). Here we sub
ategorise verbs in animation from the visual semanti
 perspe
tive,as shown in Figure 5, albeit the 
lassi�
ation has overlays with linguisti
 sub
ategorisation.Frame Verb Example� eat, sleep I want to eatNP prefer, �nd, leave �nd [NP the 
ight from New York to Boston℄NP NP show, give show [NP me℄ [NP airlines with 
ights from New York℄PP from PP to 
y, travel I would like to 
y [PP from New York℄ [PP to Boston℄V P to prefer, want, need I want [V Pto to have a pint of beer℄V P bareStem 
an, would, might I 
an [V PbareStem swim℄S mean, say, think, believe He said [S the Government disagreed with her a

ount℄Table 1: Some linguisti
 sub
ategorisation frames and example verbsFirst we divide all events into events on atomi
 entities and events on non-atomi
 entitiesbased on whether the obje
ts they a
t on have sub-
omponents or not. Non-atomi
 entities are
onstru
ted out of 
olle
tions of obje
ts. In the atomi
 entities group, we 
lassify the eventsto those 
hanging obje
ts' physi
al lo
ation and those 
hanging obje
ts' intrinsi
 attributeslike shape, size, and 
olour. In the non-atomi
 group, we 
lassify them a

ording to whetherthey 
on
ern a 
hara
ter. Those events based on 
hara
ters 
an next be divided based onwhether or not they are easily observable. A
tion verbs are easily observed and hen
e the majorpart of events in animation. A
tion verbs 
an be further 
lassi�ed into transitive verbs andintransitive verbs, a

ording to their a

usative nature, i.e. if the a
tion 
on
erns obje
t(s). Inthe a
tion verb group, the movement of the subje
t whi
h performs the a
tion usually 
ouldbe modelled by biped kinemati
s, and the movement (or 
hange) of the obje
ts or tools (fortransitive verbs) 
ould be modelled by event models. In the intransitive verb group, there is animportant 
lass involving multimodal presentation { 
ommuni
ation verbs. These verbs requireboth visual presentation su
h as lip movement (e.g. \speak", \sing"), fa
ial expressions (e.g.\laugh", \weep") and audio presentation su
h as spee
h or other 
ommuni
able sounds.Verbs working on atomi
 entities 
an also work on non-atomi
 obje
ts, for instan
e, \disap-pear/vanish" 
an work on both atomi
 and non-atomi
 obje
ts (the Cheshire 
at in the followingexample 1) or 
omponent(s) of non-atomi
 obje
ts like \tail" in example 1 and \head" in example2.(1) `All right,' said the Cat. And this time it vanished quite slowly, beginning with the endof its tail and ending with its grin.(2) He turned his head and looked ba
k.3wear(x,y) means x wears y; x is a person or personated 
hara
ter, y is an obje
t.7



Figure 5: Categories of eventsNon-a
tion verbs and verbs with metaphor meanings are not easily observable. They are hardto des
ribe by physi
al 
hanges and however are 
ommon in even simple stories like 
hildren'sstories. In performan
e art, they are often expressed by fa
e expressions, body poses, or morestraightforward, through the spee
h modality. Stati
 language visualisation is used to expressmental a
tivities with thinking bubbles. The visual semanti
s of this type of visualisation isbeyond the s
ope of this paper.Sin
e the tasks of representing transitive verbs 
an be divided into two sub-tasks: modellingbiped kinemati
s for the subje
t, and modelling atomi
 entity 
hanges for obje
ts and tools,representing kinemati
s be
omes the main task in visual models. There are two ways to des
ribea biped's kinemati
al motion. One method is to model di�erent body parts as distin
t obje
ts inobje
t modelling (see Figure 4), e.g. forearm and upper arm, leg and shin are individual obje
tswhi
h atta
h together, event modelling then transforms these individual obje
ts (body parts)that the motion 
on
erns using some kinemati
al simulators. This method requires substantialwork in event modelling in order to a
hieve realisti
 e�e
ts. The se
ond method, whi
h is alsoin vogue, regards the body as a whole non-atomi
 obje
t 
onsisting of several sub-
omponentswhi
h atta
h to a skeleton system in obje
t modelling. Event modelling moves the bone (asa parent or a 
hild in the hierar
hi
al skeleton tree) and passes the movement to its atta
hedparents or 
hildren using forward kinemati
s or inverse kinemati
s. Forward kinemati
s is asystem in whi
h the transforms of the parent in a hierar
hi
al tree stru
ture are passed on tothe 
hildren, and animation is performed by transforming the parent. Inverse kinemati
s isa system in whi
h the movement of the 
hildren is passed ba
k up the 
hain to the parent.Animation is performed by a�e
ting the ends of the 
hain, e.g. in biped walking animation, bymoving the foot and the shin, knees and thighs rotate in response. Inverse kinemati
s modelsthe 
exibility and possible rotations of joints and limbs in 3D 
reatures. This approa
h givesthe best possibilities to produ
e life-like animation of a 
hara
ter in a story, but does involvee�ort to set up the obje
t models for the 
hara
ters.8



5 Extending predi
ate-argument representation to word levelIn this se
tion, we will extend the predi
ate-argument representation of verbs fromphrase/senten
e level to word level in a bottom-up fashion by �rst examining primitives andthen showing how they 
an be 
omposed to de�ne 
omposite event semanti
s. The dis
ussionof semanti
 representation of obje
t models is beyond the s
ope of this paper. The extendedpredi
ate-argument model des
ribes verbs and verb phrases. To de�ne obje
ts, their propertiesand 
ategories is the task of the obje
t model (in visual knowledge), whi
h may de
lare anobje
t as an instantiation of a type (its 
ategory membership) at �rst, and give its attributes.The 
ommon attributes are position, orientation, size and so on. Some 
omplex obje
ts mayhave other attributes like gender, age and so on, for an instan
e of person. For example, Ali
e(a six years old girl) is an instan
e of person, with 
ommon attributes like her initial lo
ation,orientation (fa
e to whi
h dire
tion), height (size) and spe
i�
 attributes su
h as female (gen-der), and 6 (age) as well. The body parts are de�ned in the prototype of person. The extendedpredi
ate-argument model is aimed at automati
 generation of animation from linguisti
 input(language visualisation). It 
an also be used to expand FOPC representations for appli
ation tolower levels of linguisti
 input.5.1 Constants, variables and typesThere are a few 
onstants in this framework referring to spe
i�
 obje
ts whi
h exist in everys
ene of the virtual world. We use the 
onvention that names of 
onstants in CONFUCIUS are
omposed of 
apitals and unders
ores. GROUND is a plane in the 
oordinates (0,0,0) with thelength and width whi
h are greater than the spa
e of the visualised s
ene and has the fun
tion ofsupporting things whi
h otherwise will look like they were 
oating in the air. SUN is the defaultambient light whi
h illuminates obje
ts in the s
ene. The term 
onstant in CONFUCIUS'knowledge base has a di�erent sense than that used in programming languages, i.e. its values
an be 
hanged. The are 
onstants in the sense of their 
onstant existen
e in the simulated visualworld. For example, though it has in�nite value for its length and width, one 
an 
hange thesize of the GROUND a

ording to the size of the stage for fa
ilitating implementation. Similarly,for SUN, when the language input des
ribes that \It turned dark." or \in dusk", the brightnessof SUN 
an be 
hanged.Unlike in FOPC, some proper nouns su
h as Mary (person's name) are not treated as 
on-stants in the framework but variables (instan
es of the type Man/Woman). Like in otherprogramming languages, variables in CONFUCIUS 
an denote names of obje
ts, whi
h is aninstan
e of a type. A variable name is started from a lower
ase letter and 
an be followed by let-ters (upper
ase or lower
ase), numbers, unders
ores and hyphens. Obje
t parts and properties
an be referred to by a dot operator, e.g. ali
e.righthand or ali
e.height.Type is the name of a 
ategory. We use the 
onvention that a type name begins with a
apital and is followed by letters, numbers, unders
ores or hyphens. As in WordNet (Be
k-with et al. 1991), obje
ts inherit all the properties of their super-
on
epts (parents). However,attributes su
h as size, 
olor, position, and so on 
an be spe
ialised. There are two operations in-volving type: type(objName, typeName) and aKindOf(subtypeName, parentTypeName), e.g.type(ali
e, Girl), aKindOf(Girl, Person).5.2 Hierar
hi
al stru
ture of predi
ate-argument primitivesThe predi
ate-argument format we apply to represent verb semanti
s has a Prolog-inspirednomen
lature. Ea
h non-atomi
 a
tion is de�ned by one or more subgoals, and the name of everygoal/subgoal reveals its purpose and e�e
t. Primitives 1 through 14 below are basi
 primitivea
tions in our framework (Figure 6). We do not 
laim that these fourteen 
over all the ne
essary
9



1) move(obj, xIn
, yIn
, zIn
)2) moveTo(obj, lo
)3) moveToward(obj, lo
, displa
ement)4) rotate(obj, xAngle, yAngle, zAngle)5) fa
eTo(obj1, obj2)6) alignMiddle(obj1, obj2, axis)7) alignMax(obj1, obj2, axis)8) alignMin(obj1, obj2, axis)9) alignTou
h(obj1, obj2, axis)10) tou
h(obj1, obj2, axis) ; for the relation of support and 
onta
t11) s
ale(obj, rate) ; s
ale up/down, 
hange size12) squash(obj, rate, axis) ; squash or lengthen an obje
t13) group(x, [y|_℄, newObj)14) ungroup(xyList, x, yList)Figure 6: Basi
 predi
ate-argument primitives within CONFUCIUS
Figure 7: Hierar
hi
al stru
ture of CONFUCIUS' primitivesprimitives needed in modelling observable verbs. 134 and 145 are a
tually not primitive a
tions,but they are ne
essary in pro
essing 
omplex spa
e displa
ement. In the �rst twelve primitives,1-3 des
ribe position movement, 4 and 5 
on
ern orientation 
hanges, 6-9 fo
us on alignment, 10is a 
omposite a
tion (not atomi
) 
omposed by lower level primitives, and 11, 12 
on
ern size(shape) 
hanges. Figure 7 illustrates the hierar
hi
al stru
ture of the twelve primitives. Higherlevel a
tions are de�ned by lower level ones. For instan
e, alignment operations are 
omposedby move() and/or moveTo() predi
ates. We will explain these primitives below.move(obj, xIn
, yIn
, zIn
) moves obj by designated displa
ement on the spe
i�
 axis(axes). Arguments xIn
, yIn
, and zIn
 
an be a pla
e-holding unders
ore (or zero) indi
atingno displa
ement on the axis. For example, move(glasses,_,10,_) means `move the glasses up10 units'.moveTo(obj, lo
), as shown below, moves obj to a spe
i�
 position designated by lo
whi
h is an instan
e of type Position, 
onsisting of 3D 
oordinates.moveTo(obj, lo
):-type(lo
, Position).moveToward(obj, lo
, displa
ement), as shown below, moves obj towards/away from adesignated position by some displa
ement. The se
ond argument is 3D 
oordinates of thedestination. The third argument 
an be positive, whi
h means `move toward the destination'; ornegative, whi
h means `move away from the destination'. If the third argument is uninstantiated,when 
alled moveToward(obj,lo
,displa
ement), the displa
ement will be a positive random4As is the 
onvention in the programming language Prolog, arguments 
an be repla
ed by an unders
ore ifthey are undetermined.5ungroup element x from a list whi
h 
ontains it. yList is the rest of the list after deleting x from the originallist. This is also a basi
 list operation in Prolog. 10



Figure 8: Align predi
ates (on y axis) in a 3D 
oordinate systemvalue greater than 0 and less than the distan
e between obj and destination lo
ation. This isa se
ond level a
tion, implemented by movement primitive a
tions at the �rst level (Figure 7).moveToward(obj, lo
, displa
ement):-type(lo
, Position).rotate(obj, xAngle, yAngle, zAngle) rotates obj on the designated internal axis (axes).The last three arguments are not external absolute 
oordinate axes, but the internal 
oordinateaxes of the obj, whi
h is de�ned in visual knowledge/internal 
oordinate axis (Figure 4). It willbe shown with CONFUCIUS that using internal axes is more pra
ti
al than external axes.fa
eTo(obj1, obj2) is a se
ond level a
tion, also involving an obje
t's internal 
oordi-nate axes. It fa
es obj1 to obj2. This operation 
on
erns not only obj1's internal axes,but also its fun
tional information (Figure 4) in whi
h its fa
e is de�ned. For example, infa
eTo(book, ali
e), the book is a 
ube with fa
e is de�ned as the book 
over. This a
tionrotates this book on its internal axes to make its 
over fa
e to ali
e.Figure 8 illustrates alignment a
tions from 6 through 9. Note that,alignTou
h(obj1, obj2, axis)uses the �rst obje
t's maximum value and the se
ond obje
t's minimum value along the axis.tou
h(obj1, obj2, axis) is a 
omposite a
tion on the third level in the primitive hierar
hy.It moves the �rst argument to the destination where it 
an tou
h the nearest fa
e of obj2.Figure 9 shows how tou
h() behaves given di�erent axes as the third argument. The 
ommaseparating ea
h sub-a
tivity indi
ates the sequential temporal relation. a
t01, a
t02 meansthat a
t02 begins immediately after a
t01 is 
ompleted. In addition, `;' is used to indi
atethe temporal relation between several a
tivities whi
h o

ur at the same time. a
t01; a
t02means that a
t01 and a
t02 begin and end at the same time, i.e. the durations of the twoa
tivities are equal. This temporal relation is usable for de�ning verbs su
h as \roll" in forexample \rolling of a wheel".roll(obj, rollingAngle, newPosition):-moveTo(obj, newPosition);rotate(obj, 0, 0, rollingAngle).s
ale(obj, rate) s
ales up/down the size of the obje
t a

ording to the spe
i�ed rate. rateis a real number indi
ating how mu
h the size should be 
hanged, 1.0 means the same size as the11



Figure 9: tou
h() along di�erent axesoriginal, 2.0 means double size, and 0.5 means half size, on all three axes.squash(obj, rate, axis) 
hanges both size and shape of obj vis-�a-vis s
ale(). It only
hanges the size on the spe
i�ed axis. For instan
e, squash(sphere01, 0.8, y) means \squashthe ball 
alled sphere01 to 0.8 of its original size on its y axis". Squash() 
an perform morerealisti
 visual e�e
ts on elasti
 obje
ts like balls.5.3 Visual de�nitions in extended predi
ate-argument modelUsing predi
ate-argument primitives we 
an provide de�nitions of visual semanti
s of verbs,investigate how they relate to word senses and 
onsider spe
ial families of verbs.5.3.1 Example visual de�nitionsGiven below are some examples of visual semanti
s of verbs using the above primitives:Example 1, jump6 :jump(x):-type(x, Animal),move(x.feet, _, HEIGHT, _),move(x.body, _, HEIGHT, _),move(x.feet, _, -HEIGHT, _).Other 
omplex joint movements will be modelled by inverse kinemati
s. If the se
ond sub-goal about movement of the man's body is missing, we will see the man's feet lift with some
orresponding movements on his legs (by inverse kinemati
s), but his body keeps at the originalheight. Then the reverse subgoal, move(man, _, -HEIGHT, _) is not ne
essary be
ause it willbe performed by inverse kinemati
s automati
ally.Example 2, 
all:{ as in \A is 
alling B" (verb tense is not 
onsidered here be
ause it is at senten
e levelrather than word level). This is one word-sense of 
all where 
alling is 
ondu
ted by telephone.6Semanti
 
onstraint { de
lare an instan
e of the type `Animal'. Metaphor usage of vegetal or inanimate
hara
ters is not 
onsidered here. 12



Here is the de�nition of one word-sense of 
all whi
h is at the �rst level of the visual semanti
verb representation hierar
hy:
all(a):-type(a, Person),type(tel, Telephone),pi
kup(a, tel.re
eiver, a.leftEar),dial(a, tel.keypad),speak(a, tel.re
eiver),putdown(a, tel.re
eiver, tel.set).Note there is only one argument for \
all" though it is a transitive verb in the example \a is
alling b" { but we don't 
are who b is sin
e he is not present in the s
ene. The type(a, Person)operation is a semanti
 
onstraint, to de
lare that a is an instan
e of the type Person. Thevariable tel, an instan
e of Telephone, is from asso
iation between the event 
all and the obje
ttelephone in the knowledge base (Figure 4). speak() involves lip movement and 
oordinateswith another modality { spee
h. putdown() refers to the movement of hangup.Here is the de�nition of pi
kup whi
h is at the se
ond level of the visual semanti
 verbrepresentation hierar
hy. The three arguments of pi
kup() are subje
t, obje
t and destinationposition respe
tively. dest is the 3D 
oordinates of a lo
ation. Here obj is a telephone re
eiver.pi
kup(x, obj, dest):-type(x, Person),moveToward(x.leftHand, lo
ation(Obj), lo
ation(Obj)-lo
ation(x)-5),tou
h(x.leftHand, obj, axis),group(x.leftHand, obj, xhandObj),moveToward(xhandObj, dest, _).Here is the de�nition of putdown whi
h is also at the se
ond level of the visual semanti
verb representation hierar
hy. The variable x is an aggregation obje
t 
ontaining a person andobje
t(s) whi
h are not part of the human body. obj is a telephone re
eiver.putdown(x, obj, dest):-moveTo(x.leftHand, dest),ungroup(x, obj, x1),type(x1, Person).There are many 
omplex issues left un
onsidered in the example, su
h as how to put downthe re
eiver in the exa
t pla
e of the phone set. However, this 
an be a
hieved by some furtheroperations su
h as a 
ombination of aligns and moves with the 
al
ulation of the lo
ation of a partof an obje
t. The above examples show a hierar
hi
al representation that involves multiple levelsof visual des
ription and the ability to perform top-down interpretation when ne
essary rightdown to the primitive level. The implementation of the visual semanti
 representation providesa ba
ktra
king me
hanism similar to Prolog whi
h is 
onvenient and eÆ
ient. Constru
ting a
omplete event semanti
s of the visual knowledge base (event model in Figure 4) by the abovemethod requires extensive work on verb de�nitions a

ording to their 
orresponding semanti
knowledge in the lexi
on (Figure 4). However, su
h work is indispensable for an automati
language visualisation system.Although semanti
 de
omposition of lexi
al meanings is not a new idea in verb semanti
analysis su
h as S
hank's Con
eptual Dependen
y analysis, pros and 
ons are within the lan-guage modality only, and few 
onsiderations of visual presentation of verb semanti
s are given.Ja
kendo� (1972) advo
ates semanti
 de
omposition for the generative fa
ilities it provides. Hethinks that the de
omposition of word meaning into smaller semanti
 elements allows spe
i�
a-tion of a generative, 
ompositional system whi
h 
onstrains the way su
h elements 
an be relatedand thereby 
onstrains the ways in whi
h senten
es 
an be 
onstru
ted, i.e. to prevent seman-ti
ally anomalous senten
es. Opponents of semanti
 de
omposition argue that it is inadequate13



be
ause a list of ne
essary and suÆ
ient 
onditions of a word meaning does not adequately 
ap-ture the 
reative aspe
t of meaning. Linguists have attempted to set forth the full and 
ompletesemanti
 stru
ture of some parti
ular lexi
al items, but some residue of unexpressed meaning isalways left.Some verb semanti
 predi
ates su
h as \move", \go", or \
hange" are argued to be thebasi
 
omponents of most verbs from a wide variety of di�erent semanti
 �elds (Ja
kendo�1976, Dowty 1979). The de
ompositional methodology we proposed above di�erentiates fromthe previous semanti
 de
omposition theories in two ways: �rstly, it is aimed at presentationpurposes for visual modalities rather than the generative or interpretative purposes in languagemodalities; and se
ondly it does not emphasize atomi
 predi
ates. The basi
 predi
ates we listedin Figure 6 are not only at the atomi
 level but also at other higher 
ompound levels and, it ispossible to 
hoose predi
ates at any level to 
onstru
t a new verb de�nition.5.3.2 Visual de�nition and word senseThe extended predi
ate-argument model works at the word level, but every de�nition is for oneword sense rather than one word. A

ording to Be
kwith's statisti
s (Fellbaum 1998), one verbhas 2.11 senses on average in Collins' English di
tionary. For instan
e, \beat" may have twode�nitions for the sense of \strike, hit" and the sense of \stir, whisk (
ooking verb)". Vi
eversa, synonyms like \shut" and \
lose" 
an share one de�nition. Disambiguation is a task ofthe language parser that is solved (probably by sele
tional restri
tions) in language modalities.However, one word sense of a verb may have more than one visual de�nition be
ause word senseis a minimal 
omplete unit7 of 
on
eption in language modalities whilst visual de�nition is aminimal 
omplete unit of visual representation in visual modalities. Take the word sense \
lose"as an example again, there 
ould be three visual de�nitions for 
losing of a normal door (rotationon y axis), a 
losing of a sliding door (moving on x axis), or a 
losing of a rolling shutter door(a 
ombination of rotation on x axis and moving on y axis).5.3.3 Troponym verbsThere is a semanti
 relation in the verb family 
alled \troponym" (Fellbaum 1998). Two verbshave a troponym relation if one verb elaborates the manner of another (base) verb. For instan
e,\mumble" (talk indistin
tly), \trot" (walk fast), \stroll" (walk leisurely), \stumble" (walk un-steadily), \gulp" (eat qui
kly), the relation between mumble and talk, trot/stroll/stumble andwalk, gulp and eat is troponymy. In CONFUCIUS, we use the method of base verb + adverbto present manner elaboration verbs, that is, to present the base verb �rst and then, to mod-ify the manner (speed, the agent's state, duration of the a
tivity, iteration, and so on) of thea
tivity. To visually present \trot", we 
reate a loop of walking movement, then modify the
y
leInterval to a smaller number to present fast walking.5.3.4 Stative verbsEnglish has produ
tive morphologi
al rule deriving verbs from adje
tives or nouns via aÆxes su
has -en, -ify and -ize. These derived verbs, e.g. \whiten", \lengthen", \shorten", \strengthen",\usually" refer to a 
hange of state or property. Those relating to 
hange of size (e.g. \enlarge",\lengthen") 
ould be de�ned by the predi
ates s
ale() or squash(); those relating to otherproperties like 
olour (e.g. \whiten") 
ould be implemented by 
hanging the 
orrespondingproperty �elds of the obje
t in VRML 
ode, whi
h will be dis
ussed in future work on semanti
representation of attributes.7Stri
tly speaking, the smallest meaningful unit in the grammar of a language is morpheme. But morphemeis not a 
omplete unit sin
e it often 
on
erns aÆx.
14



5.4 Implementation of extended predi
ate-argument representationAt the intermediate level visual semanti
 representation that we have shown in Figure 3, theextended predi
ate-argument model of motion verbs we proposed above will be parsed by aJava program whi
h �nds the 3D obje
t/agent that performs the a
tivity the verb des
ribes inVRML, 
hanges its 
orresponding keys and key values of interpolators, and hen
e 
reates theanimation of the obje
t/agent. For example, when 
reating animation for \A ball is boun
ing"(visual de�nition of \boun
e" in Figure 10 (a)), the program looks for the obje
t \ball" in theVRML �le (Figure 10 (b)), and 
reates the boun
e animation by adding a timer and positioninterpolator (with its keys and key values) of the ball (Figure 10 (
)).5.5 Visual semanti
 representation of a
tive and passive voi
eOne important di�eren
e between a
tive and passive voi
e is semanti
: the subje
t of an a
tivesenten
e is often the semanti
 agent of the event des
ribed by the verb (He re
eived the letter)while the subje
t of the passive is often the undergoer or patient of the event (The letter wasre
eived), i.e. the topi
 of a
tive voi
e is the performer but the topi
 of passive voi
e is theundergoer. In CONFUCIUS' visualisation, the semanti
 di�eren
e of voi
e is represented bypoint of view, the perspe
tive of the viewer in the virtual world. Sin
e the virtual world inCONFUCIUS is modelled in VRML, Viewpoint node is used to represent voi
es. With theViewpoint node, one 
an de�ne a spe
i�
 viewing lo
ation for a s
ene like a 
amera. In theprevious example, although the two senten
es des
ribe the same event, re
eiving the letter, ina
tive voi
e the fo
us is the person who re
eived it, whereas in passive voi
e it is the letter.Therefore the modelling of the event and 
on
erned obje
t/
hara
ter are the same for the twosenten
es, the di�eren
e is the parameters (orientation and position) of Viewpoint node torepresent the topi
 in ea
h voi
e. Besides voi
e, Viewpoint node may also present 
onverse verbpairs su
h as \give/take", \buy/sell", \lend/borrow", \tea
h/learn". They refer to the samea
tivity but from the viewpoint of di�erent parti
ipants.6 Relation to other workExtended predi
ate-argument representation 
an be regarded as an extension of S
hank's s
ripts.Consider the following s
ript of \rob" and \order food" in Figure 11. The extended predi
ate-argument representation is a s
ript-like rule system from this viewpoint. However, 
omparedwith s
ripts our method uses di�erent primitives to represent visual semanti
s of events. Table 2shows a 
omparison of extended predi
ate-argument representations and s
ripts. Both s
riptsand extended predi
ate-argument representations translate high level events to lower level events.Level 1 in
ludes routine events (
omplex a
tivities) that are either lexi
alised to verbs (e.g.\interview") or verb phrases (e.g. \eat out", \see a do
tor"). Level 2 in
ludes simple a
tionverbs su
h as \jump", \push". Level 3 in
ludes a �nite set of universal semanti
 
omponents(primitives, atomi
 a
tions, or atomi
 predi
ates) into whi
h all event verbs/verb phrases 
ouldbe exhaustively de
omposed.Figure 11 [1℄ and [3℄ translate routine events (level 1 in Table 2) to simple a
tion verbs (level2 in Table 2) whilst [2℄ and [4℄ translate simple a
tion verbs to primitive a
tions (level 2 to level3 in Table 2). The di�eren
e between these two methods is in level 2 to 3 translation. Extendedpredi
ate-argument representation fo
uses on visual presentation of events whilst s
ripts aresuited for language 
omprehension. A

ording to our events 
ategories in Figure 5, for 
hara
terevents, level 2 to 3 translation of our method des
ribes biped kinemati
s su
h as \pi
k up"; forother events, it interprets the visual semanti
s of verbs su
h as \boun
e" using primitives (e.g.move, rotate) or 
hanges obje
t properties dire
tly (e.g. \bend", \turn red").Previous language visualisation systems (Narayanan et al. 1995) built on S
hank's CD theoryhave no image details of dynami
 events though this has advantages in inferen
es from verbs;the world in SONAS (Kelleher et al. 2000) has 3D image details but only 
on
erns simplespatial relation instru
tions su
h as \move ten metres forward to the green house" and la
ks15



boun
e(obj):-move(obj, 0, 20, 0),move(obj, 0, -20, 0).(a) visual definition of the verb ``boun
e'' (una

usative)DEF ball Transform {translation 0 0 0
hildren [Shape {appearan
e Appearan
e {material Material { diffuseColor 0.6 0.8 0.8 }}geometry Sphere { radius 5 }}℄}(b) Input -- VRML 
ode of a stati
 ballDEF ball Transform {translation 0 0 0
hildren [DEF ball-TIMER TimeSensor { loop TRUE 
y
leInterval 0.5 },DEF ball-POS-INTERP PositionInterpolator {key [0, 0.5, 1 ℄keyValue [0 0 0, 0 20 0, 0 0 0 ℄ },Shape {appearan
e Appearan
e {material Material { diffuseColor 0.6 0.8 0.8 }}geometry Sphere { radius 5 }}℄ROUTE ball-TIMER.fra
tion_
hanged TO ball-POS-INTERP.set_fra
tionROUTE ball-POS-INTERP.value_
hanged TO ball.set_translation}(
) Output -- VRML 
ode of a boun
ing ballFigure 10: 3D animation from predi
ate-argument representation
16



S
ripts Extended predi
ate-argument representation[1℄ Rob(person, pla
e):- [3℄ 
all(a):-obtain(person, gun), pi
kup(a, tel.re
eiver, a.leftEar),go(person, pla
e), dial(a, tel.keypad),holdUp(person, pla
e), speak(a, tel.re
eiver),es
ape(person, pla
e). putdown(a, tel.re
eiver, tel.set).[2℄ OrderFood(person):- [4℄ pi
kup(x,obj,dest):-ATRANS(waiter,person,menu), moveToward(x.leftHand,lo
ation(obj),MTRANS(menu, person), lo
ation(obj)-lo
ation(x)-5),MBUILD(person, 
hoi
e), tou
h(x.leftHand, obj, y),TRANS(person,waiter,
hoi
e). group(x.leftHand, obj, xhandObj),moveToward(xhandObj, dest, _).Figure 11: Examples of s
ripts and extended predi
ate-argument representationEvent levels Example verbs(1) Routine events, 
omplex a
tivities Rob, 
ook, interview, eatOut(2) Simple a
tion verbs jump, lift, give, walk, push(3) Primitive a
tions ATRANS, PTRANS, MOVE (S
ript)move, rotate (Extended predi
ate-argument representation)Table 2: Comparison of s
ripts and extended predi
ate-arguments
ollision dete
tion; ABIGAIL (Siskind 1995) is applied to spatial motion verb re
ognition, butnot synthesis, and has ambiguity in some verbs' de�nition; and L0 (Bailey et al. 1997) 
an bothlabel verbs and 
arry them out but requires training data to 
onstru
t probabilisti
 feature-stru
tures of verbs.7 Con
lusion and future workThe methodology introdu
ed in this paper is a visual semanti
s representation that des
ribespro
edural information of a
tion verbs and fa
ilitates automati
 animation generation from text.This work is most relevant in the 
ontext of automati
 generation of 3D animation from linguis-ti
 input. The hierar
hi
al extended predi
ate-argument representation of visual semanti
s forevents may be applied in the knowledge base of automati
 text-to-animation appli
ations likeCONFUCIUS. The main goal of this work is to develop a suitable methodology for formalizingthe meanings of a
tion verbs. Hen
e we 
on
lude the visual semanti
s representation for CON-FUCIUS is appropriate and will be implemented using Java and VRML where the Prolog-likeintermediate representation will be parsed by a Java program. The reusability of the visualsemanti
s representation and the knowledge base of CONFUCIUS is 
onsidered. The languageand visual knowledge shown in Figure 4 are dependent on one another be
ause entries in thegraphi
 library depend on the taxonomy and granularity of lexi
on in the language knowledgebase. However, the language and visual knowledge as a whole may be independent from othermodules of CONFUCIUS and reused in other language and vision integration systems, and otherappli
ation domains.Further work will attempt to solve the following issues. One major problem that text-to-animation appli
ations fa
e is vagueness. Most text-to-graphi
s systems solve the vagueness innatural language by substituting an obje
t type with a more spe
i�
 obje
t of the type. Forexample, to visualise the phrase \give her a toy" by substituting a toy with a spe
i�
 toy su
h as ateddy bear. Verb semanti
s has the same problem. Although it 
an be solved by spe
i�
-general17



substitution, a vague representation of the meaning of the obje
t/event may be appropriate insome situations. It will be advantageous for a semanti
 representation to maintain a 
ertainlevel of vagueness. But it is almost impossible in vision, be
ause visual modalities require morespe
i�
 information than language modalities. The issue of representing temporal information ofevents is not addressed in this paper, whilst it is important for the information that verb tenses
onvey. Our 
urrent model of predi
ate-argument de
ompositional representation des
ribes theorder of suba
tivities but does not indi
ate how long ea
h suba
tivity takes. Moreover, futurework will also 
onsider visual semanti
 representation of nouns, non-a
tion verbs, adje
tives,adverbs, and prepositions in 3D animation.Referen
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