
Embed, track and authenticate images online with
SDW-WebCrawler

Pratheepan Yogarajah, Joan Condell, Kevin Curran
and Paul Mc Kevitt

School of Computing and Intelligent Systems,
University of Ulster, Northern Ireland, U.K.

Abbas Cheddad
Umea Centre for Molecular Medicine (UCMM),

Umea Universitet,
901 87 Umea, Sweden.

Abstract—The Internet is a widely open source to everyone
to access Web pages. Using a web browser anyone can access
websites. Because of this facility people can easily download
images from websites without the owner’s knowledge and use
them in their own documents. Also image content may be
modified for illegal purposes. Therefore a system is needed to
authenticate images over the Web. Web image authentication
is a challenging task that requires web crawlers to track and
download images for authentication. Most of the known web
image tracking engines such as TinEye and PicScout retrieve
images according to the image infringement of the original image.
However, these systems do not have the facility to authenticate
the retrieved image, i.e. whether the retrieved image is similar to
the original image or any image content alteration has occurred
in the retrieved image and who is the copyrighted owner of the
retrieved image.

In order to solve the above mentioned drawbacks this paper
presents a framework to protect image content, track it over the
internet and authenticate the content. The proposed framework
is based on self-embedding (i.e. where secret data and a binary
version of the image are encrypted and embedded into the image),
tracking (i.e. where a web crawler traverses over the internet to
download images) and self-authentication (i.e. where the binary
version of the hidden data is extracted to authenticate the image).
Also another advantage of the proposed system is that it does
not need the original image for the authentication process.

I. INTRODUCTION

The World Wide Web is a system of interlinked hypertext
documents accessed via the Internet. With a web browser, one
can view web pages that may contain text, images, videos, and
other multimedia and navigate between them via hyperlinks.
Once owners post their images on the Internet, any visitor can
save those pictures or videos and it would be so easy for them
to post those pictures onto their own websites and then take
credit for them. Also they can forge the original content and
make fake imagery for any illegal use.

Image forgery is a technique for generating a fake image
by altering, combining, or creating new image content. Using
commonly available software, it is now feasible to perform
digital image editing by inserting or deleting objects from
those images without introducing visible artifacts. The ease
of editing visual data in the digital domain has facilitated
unauthorized tampering without leaving any perceptible trace.

Therefore the main questions of the owner of the image are
“how do I know my image has been used in an illegal manner
on the internet?” and “who is using it without permission from

me?” As a answer, a system is needed to protect the image,
track the image over the internet to find out who is using it and
authenticate the image to find out whether the image content
has been modified or not. There are some products available
in the market such as TinEye and PicSout and those give a
partial solution for the above mentioned questions. TinEye [1]
is a reverse image on-line based search engine developed and
offered by Ide, Inc. It searches the web for user submitted
images to locate infringement on their copyright. This makes
TinEye a potential tool for the copyright holders to track their
images over the internet.

Fig. 1. (a) submitted lena image. (b) a retrieved image from internet using
TinEye tool. (c) a retrieved image along with the corresponding information
of current user of that image.

Another tool is called PicScout Image Tracker [2] and it is
also a web-based program that allows a user to upload images.
PicScout then starts the tracking process of the uploaded
image. Whenever a match to an uploaded image is found
the user receives a report on that match from PicScout. Both
systems works under similar concepts:

• fingerprint user submitted image
• search the Web to find images using web crawler over

different websites
• compare the images that are similar to the submitted

image and send matches to the user
The main goal of methods mentioned above is that if a user

submitted an image then these systems find similar images
even though those images have been changed in terms of e.g.



intensity, rotated, translated, cropped or stretched. Figure 1(b)
shows one of the retrieved images for the submitted ‘Lena’
image, see Figure 1(a), using TinEye on-line tool. Figure
1(c) shows the result of who is using the retrieved image.
PicSout also works similar to the TinEye on-line tool. The
main drawbacks of these two systems are:

• need original image for search
• could not automatically verify the image to find which

portion of the image content has been altered
• without original image the owner could not prove his/her

ownership
To overcome the drawbacks of the above systems, we

propose a system that protects images using a self-embedding
steganography based watermarking technique, track the image
over the internet using our web crawler and verify the images
using our authentication method. The main goal of our work is
to prevent the possibility of creating a forgery that goes unde-
tected. Manipulations on images fall into different categories
such as the intensity changes, noise, removing and replacing
content.

This paper is mainly focused on the removing and replacing
content type of attack. To detect the unauthorised manipulation
of such image footages, an image authentication system should
verify that the image taken has not been tampered with in the
spatial domain. Authentication has always been an important
issue [12]. Content authentication is a process by which a user
is guaranteed that image content is original and has not been
maliciously modified.

Based on the embedding of specific digital signatures (a
set of authentication bits), the image may be viewed by
authorized personnel but made unavailable to others. Self-
embedding refers to the process where a compressed copy of
the image is embedded into itself during watermarking. After
self-embedding, it is possible to recover portions of the image
that have been altered without accessing the original image.

This paper is organised as follows. Our method is discussed
in Section II. The secure image encryption algorithm is
explained in section III. Section IV explains our embedding
algorithm. The web crawling is explained in section V. The
sections VI and VII explain results and provide a discussion
and conclusions respectively.

II. OUR METHOD

Our method contains two main concepts called self au-
thentication and web crawler. Our self authentication method
consists of two parts, self-embedding and authentication. In
the self-embedding phase, a binary version of the original
content (also called payload) is embedded into the original
image (also called the cover image). Since we need a means of
protecting the image files against forgery, it is essential that the
payload will carry as much information from the cover image
as possible. An approximation of the cover image file can be
achieved by applying binarization techniques which result in
a binary image demanding only 1 bit per pixel for storage.

Figure 2 shows three different binary versions (b), (c)
and (d) of the original image (a). Figure 2 (b), (c) and

Fig. 2. (a) original image. (b) created by dithering using the method described
by Floyd and Steinberg [7], (c) created by thresholding the original image and
(d) created by Canny edge operator respectively.

(d) are created by dithering, thresholding and Canny edge
detection respectively. All these binary versions can be con-
sidered as spatial payload for self-embedding. Pratheepan et
al. [3] use the above three binary versions of payloads for
self-embedding. In the authentication phase, they argue that
extracted thresholded payload shows much more “visible”
original content than extracted edge and dither payloads.
They only use the Human Visual Systems (HVS) to compare
the original payload content against the extracted payload
content. Instead of HVS, we are interested on recovering the
approximation of the original image content to compare with
the original image content for image content authentication.

Cheddad et al. [4] argued that the dithered version of
payload is a better choice to recover the approximation of the
original image. Therefore we use the dithered version of the
original image as our payload. There exist different algorithms
to generate an inverse halftone image. Neelamani et al. [5]
propose an inverse halftoning in the Wavelets domain using
Floyd-Steinberg [7] kernels to generate the error diffusion
signal. We use their Wavelet-based Inverse Halftoning via
De-convolution (WInHD) to recover the approximation of
the original signal. This recovery of the original image is
important as our system does not need the original image for
authentication.

Fig. 3. (a) The binary representation of the 6 characters. (b) corresponding
binary image.

Further, each image should have it’s owner name as this
information allows the owner to prove his/her ownership.
Therefore we considered using the owner name (ON) (i.e.



authorised body of the image) for embedding. In total 6
characters are allocated to represent ON for each image. Each
character is represented as an 8 bits binary representation. For
example, if we considered a ON, “UU SDW”, is converted to
an 6x8 bits binary representation, see Figure 3(a). Then the
calculated 6x8 binary matrix is directly converted to a binary
image, see Figure 3(b). Then the calculated binary images are
embedded in the original image (cover image) based on the
highly secure self-embedding algorithm proposed in [4].

III. IMAGE ENCRYPTION ALGORITHM

This algorithm is explained based on [4] and the encryption
algorithm is fully described in [6]. A hash function is more
formally defined as the mapping of bit strings of an arbitrary
finite length to strings of fixed length [8]. Here we attempt to
extend SHA-1 (the terminology and functions used as building
blocks to form SHA-1 are described in the US Secure Hash
Algorithm 1, [9]) to encrypt digital 2D data. The introduction
of Fast Fourier Transform (FFT) forms together with the
output of SHA-1 a strong image encryption setting. Let the
key bit stream be λk,l where the subscripts k and l denote the
width and height after resizing the keys bit stream respectively,
i.e., 8, M ∗N , where M,N are the plain image’s dimension.

The FFT will operate on the Discrete Cosine Transform
(DCT) of λk,l subject to Eq. 2.

f(u, v) =
1

N

N−1∑
x=0

N−1∑
y=0

F (x, y)e−2πi(xu+yv)/N (1)

where F (x, y) = DCT (λk,l) satisfying Eq. (2). Note that
for the transformation at the FFT and DCT levels we do not
utilise all of the coefficients. Rather, we impose the following
rule, which generates at the end a binary random-like map.
Given the output of Eq. 1 we can derive the binary map
straightforwardly as:

Map(x, y) =

{
1 iff f(u, v) > 0
0 otherwise

(2)

This map takes the positive coefficients of the imaginary
part to form the ON pixels in the map. Since the coefficients
are omitted the reconstruction of the password phrase is im-
possible, hence the name Irreversible Fast Fourier Transform
(IrFFT). In other words, it is a one way function which accepts
initially a user password. This map finally is XORed with the
binary version of each colour component separately. Another
phenomenon that we noticed and we would like to exploit is
the sensitivity of the spread of the FFT coefficients to changes
in the spatial domain.

Therefore if we couple this with the sensitivity of the SHA-
1 algorithm to changes of the initial condition, i.e., password
phrase, we can easily meet the Shannon law requirements,
i.e., confusion and diffusion. For instance a small change in
the password string will, with overwhelming probability, result
in a completely different hash and thus a different image by
extension. So, the core idea here is to transform these changes
into the spatial domain where we can apply 2D-DCT and 2D-
FFT that introduce the aforementioned sensitivity to the two

dimensional space. As such, images can be easily encoded
securely with password protection. Next section explains the
embedding algorithm.

IV. THE EMBEDDING ALGORITHM

The payloads are securely embedded using the encryption
algorithm explained above. Let C and P be the cover image
and the payload respectively. The stego-image S can be
obtained by the following embedding procedure:

A. Embedding Procedure

• Step 1: Encrypt P using the proposed encryption method
to find P’.

• Step 2: Transform C to YCbCr color space.
• Step 3: Decompose the channel Y by one level of 2D-

Discrete Wavelet Transform (DTW) to yield four subim-
ages (CA, CH, CV, CD).

• Step 4: Convert the integer part of coefficients of CA into
Binary Reflected Gray Code code (BRGC) and store the
decimal values.

• Step 5: The coefficient’s 3rd least significant bit is chosen
to embed the secret bit while random bits are embedded
simultaneously into the coefficient’s 1st and 2nd least
significant bit. This procedure is known as masking and
it helps overcome few compression errors.

• Step 6: Convert the modified BRGC code back to co-
efficients, restore the decimal precision and reconstruct
Y’.

• Step 7: Convert Y’CbCr to RGB colour space and obtain
the stego-image, i.e., S.

There are two payloads need to be embedded in cover
image, owner name and spatial content. Therefore the Y is
divided as two parts, header and body, see Figure 4. The
owner name is embedded in the Header part. Here the size
of the owner name is fixed, 6x8 bits. So the size of the header
part is allocated 4xcolumn size. Therefore the size of body
part is allocated (rows-4)xcolumn size. The spatial content,
the dithered version of the particular image, is only embedded
in the body part of that image. The embedded image is called
the Stego image. Each Stego image contains two parts, the
Header and the Body.

Fig. 4. Header and Body representation of the stego images.

An image is protected using the above mentioned self-
embedding process. In the extraction procedure, WInHD is
applied on the extracted binary image to recover the approx-
imation of the original image. To track the protected images
in the internet we developed a web crawler. Our web crawler
is discussed in the next section.



V. WEB CRAWLING

A web crawler is software used to traverse the internet and
retrieve content of the individual pages passed by along the
way. Following is the process by which web crawler works:

1) visit the web page
2) Pass through the visited page and retrieve all the links.
3) for each link retrieved, repeat the process
In the first step, a web crawler takes a URL and visits the

page from the internet at the given URL. In the second step, a
web crawler parses through the visited page and retrieves the
links to the other pages. Each link in the page is defined with
an HTML anchor tag. Web crawlers may assess the value of a
URL or a content word by examining the HTML tag context
in which it resides. For this, a crawler may need to utilize the
tag tree of the HTML page [10], [11].

Fig. 5. An HTML page and the corresponding tag tree.

Figure 5 shows a tag tree corresponding to an HTML source.
The <html> tag forms the root of the tree and various tags
and texts form nodes of the tree. Unfortunately, many Web
pages contain badly written HTML. For example, a start tag
may not have an end tag (it may not be required by the
HTML specification), or the tags may not be properly nested.
In many cases, the <html> tag or the <body> tag is all-
together missing from the HTML page. Thus structure-based
criteria often require the prior step of converting a “dirty”
HTML document into a well-formed one, a process that is
called tidying an HTML page1. This includes both insertion
of missing tags and the reordering of tags in the page. Tidying
an HTML page is necessary for mapping the content of a page
onto a tree structure with integrity, where each node has a
single parent.

After the crawler has retrieved the links from the page, each
link is added to the list of the links to be crawled. The third
step of web crawling repeats the process. All the crawlers work
in the recursive or loop fashion, but there are two different

1http://www.w3.org/People/Raggett/tidy/ - accessed on 01/05/2011

ways to handle it. Links can be crawled in a depth-first or
breadth-first manner. Depth-first crawling each possible path to
its conclusion before another path is tried. It works by finding
the first link on the first page. It then crawls the page associated
with the link, finding the first link in the new page, and so
on, until the end of the path has been reached. The process
continues until all the links have been exhausted.

In our method, the web crawling process is conducted
by a single web crawler run on a personal computer. The
web crawler performs a depth-first search for image links on
potential websites. When the web crawler receives a URL to
crawl as input, it looks for all potential URLs in the page.
However since it does a depth first search, it recursively keeps
crawling down every link that it traverses. A depth value is
used as a cutoff point to stop the crawling process. Here the
cutoff point three is defined as depth value. At this point, it has
a collection of all links that it just crawled. Figure 6, describes
the basic components of the proposed web crawler.

Fig. 6. Web Crawling.

The proposed web crawler consists of these components:

1) Web Page Downloader: This component reads a list of
URLs and makes HTTP requests to get those web pages.

2) URL Extractor: This component is responsible for ex-
tracting URLs from a visited web page.

3) URL Parser: this component parses the URLs, pass the
image URL to image downloader to be downloaded and
pass the HTML URL to the duplicate checker.

4) Duplicate Checker: this component prevents the same
URL being crawled again by checking the list of URLs
that have already been crawled. If the URL page is not
crawled yet, the duplicate checker adds it back to the
URL Queue which is a list of URLs of Web pages that
will be crawled.

5) Image Downloader: download and store the image and
information about image such as URL of the image site
and image type in the images database.

When an image is downloaded from the Web using our web
crawler the authentication process is applied to authenticate the
image. Next section shows some experimental results of our
proposed system.



VI. RESULTS AND DISCUSSION

In this paper we discuss the development of a sys-
tem to embed, track and authenticate images. When a im-
age is downloaded the header part is tested for owner
name. If the owner name is extracted and identified then
the body part is considered for spatial content verifica-
tion to find the modified content. We created a web
page “http://www.infm.ulst.ac.uk/∼pratheepany/IMVIP2011”
and inserted three images to test our system.

Fig. 7. Track images over the web using URLs.

Fig. 8. (a) found image from the Web. (b) extracted hidden content and
reconstructed using WInHD. (c) altered region is shown with red color.

Figure 7 shows the results received for the given URL
“http://www.infm.ulst.ac.uk/∼pratheepany/IMVIP2011”. Our
web crawler retrieved all three images from the given website.
Then the authentication method considers retrieved images one
by one and first checks the header part for the owner name
“UU SDW”. If owner name is extracted and identified from the
image then “Identified and click to verify the content” message
will be displayed next to the retrieved image else “Nothing
identified” will be displayed.

Fig. 9. (a) Original image, (b) halftoned binary image, (c) and (d) are
recovered images from JPEG 95% and 85% quality compression attacks
respectively.

If “Identified and click to verify the content” link is clicked
then the dithered binary version of the spatial image content
will be extracted and the original image will be recovered
using WInHD. Based on the recovered spatial content from the
retrieved image and the spatial content of the retrieved image
the modified region is identified using some image processing
operations, see Figure 8.

The content of watermarked digital images can be easily
attacked by using image processing operations such as lossy
compression. Invisible watermarking requires a reasonable
robustness against compression attacks. Lossy compression
algorithms tend to remove invisible information that can be
related to the watermark. Watermark robustness under image
compression is an essential issue for image content protec-
tion. Therefore, watermarks should combine invisibility and
robustness simultaneously.

Therefore lossy compression methods, such as JPEG, Block
Truncation Coding (BLC) and Singular Value Decomposition
(SVD), are applied to test the robustness of our proposed
method against these compression attacks. Block Truncation
Coding (BTC) is a lossy image compression technique. It
divides the original images into blocks and then uses a
quantizer to reduce the number of grey levels in each block
while maintaining the same mean and standard deviation
[13]. Singular Value Decomposition (SVD) is one of the
most useful tools of linear algebra. It is a factorization and
approximation technique which effectively reduces any matrix
into a smaller invertible and square matrix. Using (SVD) for
image compression can be a very useful tool to save storage
space [14], [15].

We illustrate and evaluate the performance of the proposed
method against JPEG, BTC and SVD compression attacks on
grayscale images. Here we present experimental results using
the image ‘Lena’ (256x256 pixels, grayscale). The ‘Lena’
image is shown in Figure 9(a).

Then the watermarked images are generated. These wa-
termarked images are attacked by JPEG, BTC and SVD
compression techniques. The binary watermarks are extracted
from attacked watermarked images and the approximation of
the original image is recovered, see Figure 9(c) and (d).

For quantitative evaluation, the PSNR (Peak Signal-to-Noise
Ratio) is introduced to evaluate the performance between the
original image and recovered image. The PSNR is defined as
follows:

PSNR = 10log10(
2552

MSE
)dB (3)



Fig. 10. results of JPEG compression attack on ‘Lena’ image.

Fig. 11. results of BTC compression attack on ‘Lena’ image.

MSE =
n∑

i=1

m∑
j=1

(ai,j − bi,j)
2

n ∗m
(4)

where m∗n is the image size, ai,j and bi,j are the correspond-
ing pixel values of cover and recovered images.

Figure 10 shows the performance measure of JPEG com-
pression quality factors 75%, 85%, 90% and 95%. Figure
11 shows the performance measure of BTC compression
technique using block sizes 2x2, 4x4, 8x8 and 16x16. The
performance measure of SVD compression attacks using sin-
gular values of 60 to 80 can be seen from Figure 12.

Our experimental results show evidence that the original

Fig. 12. results of SVD compression attack on ‘Lena’ image.

content of the digital image can be recovered to a certain
extent even though the watermarked image is attacked by lossy
compression such as JPEG, BTC and SVD. Partial results of
compression attacks performance measure appears in [16]

VII. CONCLUSION

We have proposed a novel approach to authenticate the
images that appear on the Web. Spatial content of the original
image and owner name (i.e. secret information) are encrypted
and embedded using a highly secure information hiding tech-
nique, [4]. A web crawler is developed and used to retrieve the
images from Web. Then an authentication method is applied to
authenticate the originality of the image content. Our system
can easily find which portion of the image has been altered and
it can also recover the original content from the altered image
as well. This paper presented a complete system to protect,
track and authorise images appearing on the Web.

We only experimented the robustness of our proposed
method against compression attacks, such as JPEG, BTC and
SVD. Future work will involve to test our method against other
attacks such as scaling, contrast adjustment, gamma correction
and histogram equalisation.

REFERENCES

[1] http://www.tineye.com/ - accessed 11/05/2011.
[2] http://www.picscout.com/products-services/imagetracker.html - accessed

11/05/2011
[3] Y. Pratheepan and J.V. Condell and K. Curran and A. Cheddad and

P. McKevitt, Video Authentication: A Self Embedding Steganography
Approach. Proceedings of The Irish Machine Vision and Image Processing
Conference (IMVIP), 2010.

[4] A. Cheddad and J. Condell and K. Curran and P. McKevitt, A secure and
improved self-embedding algorithm to combat digital document forgery,
Signal Process., 89(12), pages 2324–2332, 2009.

[5] R. Neelamani and R. Nowak and R. Baraniuk, Model-Based Inverse
Halftoning with Wavelet-Vaguelette Deconvolution, Proceedings of Inter-
national Conference on Image Processing, pages 973–976, 2000.

[6] A. Cheddad and J. Condell and K. Curran and P. McKevitt, A Hash-
based Image Encryption Algorithm, Optics Communications, 283(6),
pages 879–893, 2010.

[7] R.W. Floyd and L. Steinberg, An Adaptive Algorithm for Spatial Gray
Scale. Int. Symposium Digest of Technical Papers, Society for Informa-
tion Displays, pages 36, 1975.

[8] W. Yong and L. Xiaofeng and D. Xiao and W. Kwok-Wo, One-way hash
function construction based on 2D coupled map lattices, Inf. Sci., 178(5),
pages 1391–1406, 2008.

[9] RFC3174 - US Secure Hash Algorithm 1 (SHA1),
http://www.faqs.org/rfcs/rfc3174.html, 2001.

[10] G. Pant and F. Menczer, Topical crawling for business intelligence. In
Proc. 7th European Conference on Research and Advanced Technology
for Digital Libraries (ECDL 2003), Trondheim, Norway, 2003.

[11] G. Pant. Deriving Link-context from HTML Tag Tree. In 8th ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery, 2003.

[12] F. Hartung and M. Kutter, Multimedia watermarking techniques. PIEEE,
87(7), pages 1079–1107, 1999.

[13] Chanda B, Dutta Majumder D. Digital Image Processing and Analysis.
Prentice-Hall, 2000.

[14] Richards D, Abrahamsen A. Image compression using singular value
decomposition. linear algebra applications, 2001.

[15] Prasantha H S, Shashidhara H L, Balasubramanya Murthy K N. Image
Compression using SVD. Proc. of International Conference on Computa-
tional Intelligence and Multimedia Applications. 143–145, 2007.

[16] Pratheepan, Y., Condell, J.V., Curran, K., Cheddad, A., Mc Kevitt, P. An
Improved Self-Embedding Algorithm: A Robust Protection against Lossy
Compression Attacks in Digital Image Watermarking, In International
Journal of Image Processing and Communications. 15-1:47-59, 2010.


