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Abstract: Using Wi-Fi signals is an attractive and reasonably affordable option to deal with the 
currently unsolved problem of widespread tracking in an indoor environment. Our system, 
history aware-based indoor tracking system (HABITS) models human movement patterns and 
this knowledge is incorporated into a discrete Bayesian filter to predict the areas that will, or will 
not, be visited in the future. These probabilistic predictions may be used as an additional input 
into building automation systems for intelligent control of heating and lighting. This paper 
outlines current indoor tracking methods and the weaknesses associated with them. It describes in 
detail the operation of the HABITS algorithm and discusses the implementation of this algorithm 
in relation to indoor Wi-Fi tracking with a large wireless network. Testing of HABITS shows that 
it gives comparable levels of accuracy to those achieved by doubling the number of access points. 
It is twice as accurate as existing systems in dealing with signal black spots and it can predict the 
final destination of a person within the test environment almost 80% of the time. 
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1 Introduction 

This paper presents research into improving the capabilities 
of indoor wireless tracking systems. Currently available 
technologies suffer from weaknesses in terms of accuracy, 
precision and latency in their location estimates. From the 
range of options available, those using 802.11 Wi-Fi are 
gaining increasing popularity due to their relatively low 
costs and high scalability levels. However, these suffer from 
a number of significant drawbacks which prohibit their use 
for many applications. It is these specific drawbacks that 
our system history aware-based indoor Wi-Fi tracking 
system (HABITS) targets (Furey et al., 2008). 

HABITS is an intelligent software system, that 
overcomes these problems. This is achieved by 
automatically learning the movement patterns and habits of 
people in a structured environment. The habits are then fed 
back into the system allowing for real-time updates, 
overcoming signal black spots and predicting future 
movements in the short, medium and long term. 

This paper is structured as follows. Section 2 gives the 
motivation for this research, a short overview of the reasons 
why wireless networks are set up and the problems 
associated with these when used for tracking. It outlines the 
barriers to high quality, affordable tracking associated with 
standard Wi-Fi network implementations. Next, the 
background research to our solution is discussed, followed 
by a description of the Ekahau real time locating system 
(RTLS) (www.ekahau.com, 2010), which is a test bed for 
our solution. In Section 5 the HABITS implementation is 
described in detail, along with the description of an 
operational scenario and testing in a real world 
environment. The results of tests, along with a potential 
application of HABITS to building automation control 
systems are then addressed. Finally a conclusion to the 
paper is provided. 

2 Wireless network installations 

In many cases wireless networks (802.11 Wi-Fi) are an 
afterthought in large buildings. Where feasible, large 
organisations will connect most of their devices using a 
fixed wired network. Even when a Wi-Fi network is 
installed, it is usually just a number of wireless access 
points (APs) that are wired on to the main local area 
network (LAN). It is not a mesh network where the network 
is truly wireless. The purpose is to allow users to have 
temporary mobile access or to access the network in an area 
that is not covered by the wired segments. 

When designing a WLAN indoors a number of factors 
are considered. The most important consideration is the 
ability to transmit data to mobile devices at as high a rate as 
possible, without losing quality of service (QoS) (Wang and 
Du, 2005). However, this is dependent on installing as little 
extra infrastructure as possible. Unfortunately, these goals 
are not those that the designer of indoor Wi-Fi tracking 
systems thinks of. The positioning of APs for these two 
tasks is different. In terms of throughput, as few APs as 

possible are used as long as they cover the whole area. This 
is done to minimise cost and installation overhead time. For 
a tracking system to be effective, a large number of 
reference points are usually required. This is in order to 
make the system more accurate and effective. In the case of 
a wireless local area network (WLAN), the reference points 
used for positioning are 802.11 wireless APs. The 
positioning of these is of the utmost importance, a zigzag 
pattern is recommended by Ekahau (2009) to ensure that the 
radio signal patterns in each area are suitably different from 
one another. For the majority of users, the cost of trebling 
the number of APs is prohibitive. The extra cost and time 
involved is usually not worth it. Also, many organisations 
(e.g., universities) have an existing WLAN in place that 
they would like to utilise. If it is a new installation in a high 
value and specialised site (mine, hospital or factory), then 
the layout can be designed with tracking as the main aim, 
but most users want to use their existing networks with 
minor or no tweaks. 

Figure 1 demonstrates what happens when an 
insufficient number of APs are installed. Large areas are 
outside the range of the APs. With only three APs at one 
side a number of areas remain outside of the good coverage 
zones. In the other areas, standard positioning systems will 
lose their accuracy or will fail. 

Figure 1 Too few APs (see online version for colours) 
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With the addition of extra infrastructure (two more APs on 
the other side of the corridor), the majority of the corridor 
space is now covered and position fixes are available as 
Figure 2 illustrates. 

In an indoor environment, radio signal attenuation 
(change in intensity as it travels through an object) and 
refraction (change in direction as it travels through a 
medium) are a major problem as reported by Kaemarungsi 
(2004). Radio frequency (RF) signals bounce all over the 
place. Factors such as furniture, people and/or temperature 
can all affect the way a signal travels around a building. Fox 
(2003) suggests that RTLS’s designers attempt to overcome 
these issues by using a combination of received signal 
strength indicators (RSSI) and probabilistic mathematical 
techniques like Kalman and particle filters. RSSI gives a 
relative measurement of the received signal strength at the 
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device and intelligent filters attempt to overcome the 
uncertainty in the measurement by use of probabilistic 
smoothing and prediction techniques. Much research has 
been carried out on these methods (Fox, 2003). Microsoft 
Research’s RADAR project (Bahl and Padmanabhan, 2000) 
and Intel Research’s PlaceLab Project (LaMarca et al., 
2005), both created impressive early indoor Wi-Fi tracking 
systems. However, since these projects ended around 2005, 
the majority of the research into Wi-Fi RTLS has been 
carried out by private companies. As of 2010, a number of 
these are available. This paper details a method which 
builds on top of these commercial systems and tries to 
improve accuracy using a different approach to that taken 
by Microsoft and Intel. For an in-depth survey of currently 
available RTLS, see Gu et al. (2009). 

Figure 2 Extra APs increase coverage (see online version  
for colours) 
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2.1 Current fixes to indoor Wi-Fi localisation 
problems 

If a tracking system is set up on a WLAN that was just 
designed for basic data transfer and as an add-on to a fixed 
network then it is susceptible to failure. The Finnish 
company Ekahau, market leader in indoor RTLS has 
developed a number of intelligent methods to improve the 
capabilities of their RTLS. Their patented software ‘rails’, 
keeps the tracked object on a particular path. This lessens 
the jumping through walls effect, due to fluctuations in 
RSSI, in which a tracked object would suddenly appear on 
the other side of a wall which it was not possible for it to 
have moved through i.e., no door in that location. A location 
quality filter can also be adjusted in an attempt to eliminate 
wild results, for example, only position updates that have a 
probability of over 80% will be reported to the user. A third 
solution is the addition of a location beacon which is a small 
wireless device that acts as a radio marker and is 
permanently fixed in an area with poor signal strength for 
tracking purposes. These beacons are not used for 
communication and can only be used in conjunction with 

the existing WLAN. This can also be done with APs that are 
not part of the network, i.e., ad-hoc. These location beacons 
have their own drawbacks and are battery operated making 
them an interim solution. 

Outlined in the next section is a novel approach to 
overcome some of these cost and signal issues. This 
approach is designed to operate in particularly large indoor 
environments. 

3 Background and literature review 

Using past movements to improve localisation is an under 
researched area, although a number of useful studies have 
been conducted. Mature technologies, such as GPS 
navigation, have used this approach to predict where and 
when a user will reemerge from a tunnel. Also, the approach 
is used in cellular systems to predict which cell a mobile 
user will enter next. 

Petzold et al. (2006) used various machine learning 
techniques and mathematical methods to model indoor 
movement patterns. Using these models, predictions of the 
next location of a certain user have been made with 69% 
accuracy without pre-training and 96% accuracy with  
pre-training. Another study by Zhou (2006) has shown that 
by using knowledge of previous movements, overall 
accuracy could be improved by 14.3% and estimations of 
the wrong room and wrong floor could be improved by 
69.7% and 50% respectively. 

A recent study (Song, 2010) of past locations from 
mobile phone records, found that general human mobility 
patterns over a wide area were predictable 94% of the time. 
A related, relatively new field of reality mining (Eagle and 
Pentland, 2006) has been developed which records 
movements of people throughout the day with the intention 
of predicting future behaviour. These studies on learning 
human movements for prediction show that the research 
community is beginning to utilise movement information in 
a new way. 

Using previous movements to help improve accuracy 
levels in Wi-Fi positioning has been attempted in a number 
of studies (Bahl and Padmanabhan, 2000; Lassabe, 2009), 
but the focus has been on trying to improve the RSS-based 
problems. HABITS does not try and improve on the RSS 
methods but instead uses the movement habits of users as a 
means of adding intelligence to the system. This knowledge 
is then used to overcome signal black spots and to predict 
where the user will travel to next as Figure 3 shows. 

Recently we have implemented and tested a number of 
RTLS systems and the results of these can be found in the 
study on behalf of JANet UK – location awareness trails 
(Furey and Curran, 2008). Of these, the Ekahau RTLS 
utilises the existing Wi-Fi network and in our tests was the 
best overall indoor tracking system. For this reason it was 
the chosen platform for implementing HABITS. A number 
of stages are involved in implementing this system and 
these are outlined in the next section. 
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Figure 3 HABITS overcomes the need for extra APs (see online 
version for colours) 
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4 Ekahau RTLS – test bed system 

The Ekahau (2010) website claims that the, “Ekahau real 
time location system (RTLS) is the only Wi-Fi-based 
location tracking solution that can operate over any brand or 
generation of Wi-Fi network while offering sub room, 
room, floor and building-level accuracy”. The stages 
involved in the deployment of the RTLS using Ekahau site 
survey (ESS) include: 

• perform a calibration survey by walking around the 
building with a laptop and record the radio fingerprints 
at each location 

• setup zones (optional) around areas of interest to 
indicate if a user/tag enters or leaves it 

• perform a test survey and analyse location accuracy 
which gives accuracy statistics showing which areas 
have poor accuracy. 

This deployment indicated the areas that needed attention 
and where additional APs would be advised. These signal 
black spots are shown in Figure 4 for the Ekahau 
implementation at the University of Ulster. 

To improve the accuracy statistics, organisations with a 
large budget would install extra infrastructure to overcome 
these black spots even though this is one of the Wi-Fi RTLS 
main selling points – that no extra infrastructure is 
necessary! In our implementation, a redesign of the WLAN 
was not an option. After extensive testing and recalibration 
of the RTLS an alternative solution to the problem was 
sought. 

It is these problems that HABITS system attempts to 
overcome, with the creation of a system that learns the 
probabilities of movement patterns of a user and uses this 
knowledge to intelligently predict where the user will go. 
This solution is explained in the next section. 

5 The HABITS movement modelling framework 

While HABITS uses the same radio signals and equipment 
as other systems, it allows for positioning and continuous 
real time tracking with accuracy levels, and in areas that 
were not previously possible. However, HABITS will only 
work in certain environments where people follow 
particular habitual movement patterns, for example, work 
environments, factories or hospitals. Figure 5 shows the 
context in which HABITS can be used. When a mobile 
device is tracked by Ekahau and the HABITS algorithm is 
applied it can still be tracked when it is no longer within 
line of sight (LOS) of three or more APs. This is normally 
the minimum required for accurate localisation. 

 

Figure 4 Black spots identified in MS building (see online version for colours) 
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The highest frequency rate of position updates from Ekahau 
is 5s. These updates are often up to 15 s apart. Each update 
is sent to HABITS along with the learnt historical 
movement data and from this an intelligent prediction of the 
next likely location is given. Short term predictions 
effectively fill in the blanks in between updates from the 
Ekahau system. 

Figure 5 Context of HABITS (see online version for colours) 

 

To make predictions of future movements, HABITS makes 
use of two machine learning techniques. The first is a 
Bayesian filter which conducts predictive data fusion using 
Bayes theorem. The second is fuzzy logic which enables 
HABITS to use an approximate reasoning process in 
addition to the Bayesian filter to more accurately model and 
predict human movement habits. 

5.1 HABITS pre-operation 

For HABITS to operate, two separate phases must be 
performed: pre-operation and operation. Figure 6 shows a 
flow diagram of the pre-operation phase when HABITS is 
implemented in an indoor Wi-Fi environment. 

Figure 6 Tasks to be completed before operating HABITS  
(see online version for colours) 
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The stages in Figure 6 are described as follows. In  
Figure 6(1) the underlying tracking system is implemented. 
This allows for past movements to be learned and provides 

a starting point from which predictions can be made when 
HABITS is in operation. 

In order to collect historical movement data a 
topological map of the test area must be created. A 
topological map is one which consists of a number of nodes 
representing places of interest which are connected by edges 
representing paths where a user may travel. An example of 
this type of map is the London underground where each 
station is represented by a node and the edges indicate paths 
between them. These maps are not drawn to scale. The 
value of a topological map is that it is basically a graph and 
can be represented as a matrix which makes it suitable for 
mathematical manipulation and processing. From the 
Ekahau positioning data it was identified that a number of 
areas were of particular significance. These areas are 
covered by zones in Ekahau which allow for reporting of 
when a person carrying a mobile Wi-Fi device enters or 
leaves them, Figure 6(2). The zones shown in Figure 7 
represent areas that are passed through frequently on the 
ground and first floors in the Intelligent Systems Research 
Centre (ISRC) MS Building at the University of Ulster. 
Each of these zones can be considered to be a node in a 
connected graph. The positioning of these zones is 
calculated using a number of data mining techniques. 

The edges between nodes show paths that may be 
travelled and represent the movements of Wi-Fi tracked 
people in the building. The first item to identify was the 
areas where a user often stopped. We call these wait nodes 
and they have already been identified during the zone 
placement phase. These wait nodes are often targets when a 
person is moving and equate to likely destinations during 
any movement sequence. The sequence of nodes from one 
wait node to another are called paths and the most common 
of these are called preferred paths. The nodes in between 
are known as transition nodes. A graphical representation of 
two floors in the test area is shown in Figure 8 along with 
the particular node types. This diagram is a topological map 
of the zones shown in Figure 7. 

The graph of the area is used along with the historical 
movement data of a person in order to calculate a number of 
different matrices which are necessary for HABITS to 
operate. An incidence matrix [Figure 6(3a)] shows whether 
it is possible to travel directly from one node to another and 
also indicates the possible routes that a user may travel. If a 
path exists then a 1 is placed at that location, otherwise a 0 
is used. A distance matrix [Figure 6(3c)] may be combined 
with the incidence matrix to show the distance between 
nodes or the travel time from one node to the next. The 1’s 
is the previous matrix are replaced with the distance/time 
metrics. To gather movement patterns of a user, a count of 
the number of times a user passes through a node is kept 
and a probability function for each node is calculated from 
this. This information is represented in a transition matrix 
[Figure 6(3b)] a section of which is shown in Table 1. 

The transition matrix by itself gives only general 
predictions. A deeper analysis of the data is required to 
learn patterns of movement that would realistically equate 
to a user’s movement habits. 
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Figure 7 Zones showing areas of interest (see online version for colours) 

 
 

Figure 8 MS building represented as a graph (see online version 
for colours) 
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Table 1 A section of the transition matrix based on one month 
movements by a single user 

From  

1 2 3 4 5 6 

1 0 0.167 0 0 0 0 
2 0.667 0 0.077 0 0.019 0 
3 0 0.667 0 0 0.167 0 

To 

4 0 0 0 0 0.314 0 

Users often travel preferred paths Figures 6(5)] at a 
particular time of day and the likelihood of particular 
destinations are increased or decreased at certain times of 
the day. For example, the probability of travelling to the 
canteen increases at lunchtime, between 12–1.30 pm. The 
average travel speed [Figures 6(4)] was also found to be 
different for different users, therefore, the distance matrices 
need to be individually tweaked. It was also noticed that the 
speed of users when travelling together was often reduced to 
that of the slowest user indicating that they may be in 
conversation. All of these patterns need to be considered. 

When the pre-operation phase of HABITS is complete, it is 
ready to be used in real-time, as the next section describes. 

5.2 HABITS operation 

Figure 9 shows the main inputs and outputs of HABITS 
when in operation for one iteration. When new data 
becomes available this process is repeated. These contain all 
the information necessary to make predictions as to where a 
Wi-Fi tracked user will travel to next. 

Figure 9 Operation of HABITS (see online version for colours) 
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An underlying tracking system is always required to give 
certain key information to HABITS. In Figure 9, boxes  
1a–1c denote the information which is provided by the 
Ekahau RTLS. Knowledge of where the user is, whether 
they are in motion or not and the exact time are essential for 
HABITS to function. This is the only live information that 
HABITS processes. 

Once the live user information is received, HABITS 
checks the matrices (Figures 9, 2a and 2c) to see what 
constraints on movement exist. Combining these constraints 
with the data from Ekahau allows an initial probability 
prediction to be made from the transition matrix (Figure 9, 
2b). Information about node types and preferred paths is 
now added to HABITS to further improve the accuracy of 
the predictions as Figure 9, 3a and 3b depict. In Figure 9 
predictions from HABITS depend on the time scale required 
and may be short term, 4a (a few seconds), medium term, 
4b (a few minutes – end of current journey) or longer term, 
4c (later that day or week). 

The last stage of the operation of HABITS involves 
taking a particular action based on the predictions provided 
if the probability confidence is high enough or plotting these 
future locations on a map. 

5.3 HABITS intelligence 

The various inputs to HABITS listed in Figure 9 are 
combined using a number of artificial intelligence 
techniques. The first is an idea described by Fox (2003), 
which is extensively used in robotics – that of a discrete 
Bayesian filter. This filter works in conjunction with the 
graph matrices and gives out a probability estimate for the 
next location or a number of possible locations when at a 
particular node. 

Pseudo code in Figure 10 shows the basic operation of a 
discrete Bayesian filter. It is basically a data fusion 
technique which uses Bayes theorem as a means of 
predicting the probability of moving from one node to the 
next. The various movement and sensor constraints are 
represented as mathematical models (ut) which work along 
with the updates from Ekahau (zt) and the transition matrix 
data, p(xt | xt–1) to give a prediction of next location. The n 
symbol in Figure 10 – line 4 is used to normalise the result 
to 1. However, this prediction alone is not sufficient to 
model a user’s movement habits accurately.  

Fuzzy logic is derived from fuzzy set theory and is a 
technique used when reasoning is approximate rather than 
precise. Fuzzy rules are similar to normal rules except that 
there are degrees of correctness. In this way we can 
represent ideas like ‘John often goes to the canteen for 
lunch’. 

The addition of the fuzzy rule base is to overcome one of 
the weaknesses of the Bayesian filter. This weakness is that 
it is tied to the Markov assumption which states that all the 
necessary information needed to predict the next step is 
located in the current step. This makes the discrete Bayesian 
filter into a Markov chain, which is any random process that 
is bound by the Markov assumption. As the Markov 
assumption does not hold true in our case, it has been 

overcome by the creation of a hybrid Bayesian-fuzzy 
filter/rule base. This gives us the best of both and allows for 
extra habits, such as being on preferred paths, to be included 
which do not fit into the discrete Bayesian filter. The novel 
combined use of a Bayesian filter along with fuzzy logic is 
represented diagrammatically as Figure 11 shows. 

Figure 10 Discrete Bayesian filter (see online version for colours) 

 General Algorithm for Bayes Filtering 
1  Algorithm_filter(bel(xt-1), ut, zt): 
2    for all xt do 

3       bel(xt) = ∑ p(xt | ut, xt-1) bel (xt – 1)  (PREDICTION STEP) 

4        bel (xt) = η p(zt | xt) bel(xt) (UPDATE STEP) 
5     end for 
6     return bel (xt) 
 
Inputs belief bel(xt-1) at t-1; most recent control ut + measurement zt.  
Output is the belief bel (xt) at time t. 

 

Figure 11 Bayesian-fuzzy hybrid approach 
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5.4 Operational scenario 

The scenario below describes HABITS’ operation in a  
real-world scenario. The user is travelling from his desk to 
leave the building for lunch. The code and accompanying 
diagrams [Figures 9(a)–9(c)] show what the probabilities 
are of going to a particular node. This shows how the 
knowledge of a user’s movement habits can be used to give 
predictions to a useful degree of accuracy. A possible use of 
these predictions is explained in the last section. 

1 If tag = Eoghan 
2 node = 5 and previous node = 4 
3 node 5 NOT = wait node 
4 Action = calc next node 
5 Next node = Either 2, 3, 6, 7, 8 (All have non-zero 

Probability) – Figure 12 
6 Check time period = Lunch 
7 If time = Lunch THEN next node is 6 or 3 (Probability > 

80%) – Figure 13 lunch temporal rule 
8 Check other users in area 
9 If with John THEN next node = 6 (John doesn’t go to the 

canteen!) – Figure 14 other user rule 
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10 If with Mary THEN next node = 3 (Mary usually goes to 
the canteen!) 

11 If alone then next node = 6 (40%) OR 3 (40%) – wait for 
more info! 

12 Use speed and distance to calculate position at time t 
13 Calc and show positions at t + 1, t + 2 … t + n. 

Figure 12 Probability from Bayesian filter (see online version  
for colours) 
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Figure 13 Probability from temporal fuzzy rule (see online 
version for colours) 
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Figure 14 Probability from other user fuzzy rule (see online 
version for colours) 
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6 Testing and results 

In order to test HABITS, a number of stages were required. 
Stage one involved testing the accuracy of the Ekahau 
RTLS. This was conducted as follows. The ESS application 
allows for surveys to be conducted determining the 
accuracy of the site specific implementation of the Ekahau 
RTLS. This involved manually clicking on the current real 
position on a map, whilst walking through the test area, 
which Ekahau then compared to the estimated position. 

Test survey results corresponded to the signal strength 
maps in the ESS and showed that areas of low signal 
strength also had poor location accuracy and therefore were 
target areas for this research. Test surveys carried out in 
stairwells showed very low accuracy, up to 10 m from true. 
This was directly as a result of AP placement being 
designed for data communication. 

The second stage of testing established the accuracy, 
yield and latency of HABITS. For a period of one month, 
three occupants of the Intelligent Systems Research Centre 
carried an Ekahau tag with them at all times. Each of these 
test subjects had a different role within the centre. User 1 
being an academic, User 2 being a research associate (RA) 
and User 3 being a 2nd year PhD student. The different 
types of user were chosen to evaluate whether the system 
worked better with one type than another. It was assumed 
before the test that the RA would have the most predictable 
habits, as the other two tend to work to their own schedule 
whereas the RA is paid to work at a particular location for a 
set duration each day. 

The zones chosen as nodes on the topological map were 
only those which had been proven to give good accuracy 
and precision readings. Each had their own work area 
designated as a zone (base zone). Whenever they left this 
zone and for each zone that they entered a record was kept. 
This was achieved by setting up zone enter/exit rules which 
was done through the software development kit (SDK) 
connected to the Ekahau positioning engine. The sequence 
of nodes entered along with the timestamp was recorded for 
all movements for four weeks. The first three weeks worth 
of movement data was separated from the last week worth. 
This allowed for movement habits to be learned from the 
first three weeks (learning set) and the last week (test set) to 
be used for testing purposes. 

From the learning set, user specific data, such as average 
travel speed was calculated. The transition matrices for each 
user, along with a set of fuzzy logic rules were also 
extracted from this learning dataset. For each user these 
were different. 

In order to test HABITS, each journey in the last week 
(test set), was run through a number of test scripts. These 
scripts calculated the HABITS predicted next node and then 
verified this against the actual visited next node. The results 
for the three test subject were averaged to give overall 
results for HABITS. 

In the test environment, HABITS improved on the 
standard Ekahau RTLS (market leading commercial system) 
in a number of key areas as listed in Table 2. 
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Table 2 Results of testing HABITS 

 
Accuracy 
(average)  

m 

Yield (in 
test area)  

% 

Latency  
s Cost 

Ekahau (APs 
configured for data 
communication) 

4.5 80 5–15 Ekahau 
RTLS 

Ekahau plus 
Bayesian filter 
only 

6 (includes 
wrong 

guesses) 

97 1 Ekahau 
RTLS 

Ekahau plus 
Bayesian filter and 
fuzzy rules 

2 97 1 Ekahau 
RTLS 

Ekahau with 5 
extra APs per floor 

2 100 5–15 Ekahau 
RTLS 

plus €100 
per AP 

The test metrics are described below: 

• accuracy (closeness of position fix to the true (but 
unknown) 

• yield (the ability to get position fixes in all 
environments in test area) 

• latency (time delay between each position fix), 
HABITS should always give something even though it 
will have a probability associated 

• savings over existing indoor tracking systems in terms 
of extra infrastructure required. 

These results show that when implementing a system such 
as Ekahau without redesigning the AP layout, the average 
accuracy achieved of 4.5 m is well below the level of 1m 
which is claimed by Ekahau. Adding substantially more 
APs (5 per floor) did improve the average accuracy to 
approximately 2 m in our test area. However, this 
improvement came with a significant extra cost in terms of 
installation and calibration time, also in financial terms as 
APs for our deployment cost around €100 each. Application 
of HABITS showed a marked improvement compared to 
just using the Ekahau system by itself. Results show why 
the fuzzy rules are necessary to bring accuracy levels to an 
acceptable standard. 

6.1 Overcoming signal black spots 

Figure 15 shows the effect that a signal black spot has on 
the tracking performance of a commercially available 
indoor Wi-Fi-based RTLS. 

At timestamp t = 1 (t1), Ekahau can give a reasonably 
accurate estimate of the location of the user. The signal 
coverage in this area is sufficient, as it is in the location 
indicated by t2. At t2, the HABITS algorithm has kicked in 
as is indicated by the ‘+’ sign. The problem occurs when the 
signal black spot area is reached, as happens at t3. Due to 
weak signal coverage, the RTLS cannot get a good position 
estimate and will usually report the last good position fix it 
had. HABITS (indicated by a + sign), however, can still 

give a position estimate of the true location at time t3 even 
through no updated position fix is available from the RTLS. 

Table 3 shows the improvements due to HABITS at 
particular black spots. The three black spots tested below 
are those indicated in Figure 4 and are the three stairwells in 
the research centre. When using Ekahau alone the accuracy 
of a position estimates is very low in these areas. However, 
on journeys through the building, HABITS was able to 
more than half the error in estimate of location within these 
black spots. While a user is travelling through a black spot, 
HABITS estimates were within the figures listed 95% of the 
time. It was concluded that the 5% of the time the estimate 
were above the stated accuracy were due to stopping and 
turning around or just stopping midway through the journey. 

Figure 15 Signal black spots (see online version for colours) 
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Table 3 Accuracy of HABITS in signal black spots 

Accuracy (95%) 
 

Ekahau HABITS 

Black spot 1 
(Left stairwell) 

8 m 3 m 

Black spot 2 
(Centre stairwell) 

10 m 4 m 

Black spot 3 
(Right stairwell) 

7 m 3 m 

6.2 Prediction with HABITS 

In addition to using HABITS to overcome areas of weak 
signal strength, it may also be used for prediction. Table 4 
shows the success of medium term predictions where  
the end node of a particular journey is predicted. The  
users-based node (desk) is the key to making predictions 
with HABITS. Of the total number of journeys made during 
the test period, 43% had the base node as the destination 
and 52% had the base node as the starting point. This means 
that 95% of all journeys undertaken by our test subjects 
involved travel to or from their base node. All of the test 
subjects showed very high (>90%) predictability when 
travelling to their own work station. When travelling from 
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the base station, the final destination was more difficult to 
predict. However, HABITS still predicted the correct 
destination over 60% of the time for all users. User 2, the 
RA, was still predictable in over 85% of their journeys  
from their base station. Other journeys in the building had a 
much lower predictability. Some small patterns were 
apparent such as going to the toilet after the canteen, but 
overall these journeys proved to be beyond the 
predictability of HABITS. The average predictability of 
final destination of any of the test subjects was almost 80%. 
This means, in our test week, for four out of every five 
journeys taken, HABITS correctly predicted the final 
destination. It must be noted that these results are for 
journeys of greater than two nodes. 

Table 4 Final destination prediction 

 
To base node 

(43.9% of 
journeys) 

From base 
node (52.4% 
of journeys) 

Other 
(3.7% of 
journeys) 

Average (all 
journeys) 

User 1 
academic 

0.91% 0.72% 0.18% 78.4% 

User 2 
research 
associate 

0.94% 0.86% 0.35% 87.6% 

User 3 
PhD 
student 

0.90% 0.61% 0.21% 72.3% 

Overall average 79.4% 

The testing of HABITS revealed a number of interesting 
facts. HABITS is suitable in environments were people 
follow particular movement patterns. The RA (User 2) 
proved to have much more predictable habits than the other 
two test subjects. It was concluded that this was indeed 
because they were paid to sit in the same spot each day and 
had set times for breaks. User 1 (academic) and User 3 
(PhD students) did follow repeating movement patterns but 
these did not follow a rigid timetable. The conclusion from 
this was that the Academic had a changeable meeting 
schedule, whereas the student made particular journeys 
when he/she felt like it. 

7 Building automation – lighting and HVAC 
control 

A potential interesting and useful area of application for 
HABITS could be in control systems, specifically those that 
are dependent on the movement of people. Bolick (2010) 
reports that lighting and heating, ventilation and air 
conditioning (HVAC) account for approx 60% of building 
energy costs. HABITS gives short (<15 s), medium (15s–a 
few mins) and long (a few hours) term predictions on the 
general movement habits of people in a work environment. 
If we use this knowledge of where people will travel within 
a building and when, then we also know where they are not 

likely to go! This knowledge could be used as input to an 
intelligent control system for heating and lighting in a large 
building. 

• Lighting: In the short term, if a system knew what room 
or area a person would travel to next, then the lights 
could already be on or in some standby mode to allow 
quick power up. This way they would not have to stay 
on standby continuously. Areas which were 
infrequently travelled could be put into low energy 
mode or switched off completely thereby saving energy 
consumption and money. 

• Heating: With heating systems a similar but longer 
term approach could be applied. If we knew that at a 
certain time of day e.g. lunch, many people stood in the 
canteen or corridor then the heat could be adjusted up 
or down depending on the outside temperature and 
number of people. Conversely, if we know areas were 
people rarely travel then the heating could be turned off 
and would not be wasted while the area was not in use. 
While various sensors can currently control this, they 
only work when activated, i.e., when someone walks 
past them. HABITS could control the system in 
advance and could learn when the movement patterns 
changed. Existing sensors (motion) on doors could 
either be used in conjunction with HABITS or could be 
replaced by HABITS. 

If a long term study was carried out or was simulated then 
the number of kilowatt hours saved could be calculated and 
this should prove to be substantial. The system could also be 
linked into controlling air conditioning systems in areas 
with hot climates. One reason that makes HABITS suitable 
for this type of application is that the predictions that 
HABITS gives are of varying degrees of accuracy and 
would not be suitable for life critical applications as there is 
a large element of probability involved. However, in 
building automation control systems a certain degree of 
inaccuracy would be acceptable if the overall energy 
savings were significant. 

8 Conclusions 

This research is concerned with the development of a more 
accurate algorithm for Wi-Fi positioning in an indoor 
environment. Indoor positioning systems suffer from one of 
two problems: 

1 either they suffer from high levels of inaccuracy due to 
the distortion of radio signals as they hit solid objects in 
an indoor environment 

2 they require a lot of extra infrastructure to be installed. 

We have developed a novel way to overcome these 
difficulties by developing a system, called HABITS, that 
employs artificial intelligence methods to provide higher 
levels of tracking accuracy. Our algorithm uses the history 
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of movement of users through a building as a means of 
predicting the most likely paths that they will travel in the 
future. HABITS also overcomes RF signal black spots 
where currently available systems fail. While HABITS will 
use the same radio signals and equipment as other systems, 
it will allow for positioning and continuous real time 
tracking with accuracy levels and areas that were not 
previously possible. Movement history has not been 
previously studied as a means of enhancing real-time indoor 
Wi-Fi tracking. HABITS can be applied in either 
infrastructural wireless networks or ad-hoc wireless 
networks. 

Three main test areas were examined. First, the addition 
of HABITS to an existing RTLS gives comparable accuracy 
to that which would be gained by added extra infrastructure. 
Second, it can significantly improve upon how existing 
RTLS deal with signal black spots. HABITS doubles on the 
currently available accuracy in these areas. Third, in tests 
conducted on three occupants of the research centre, when 
on a journey of more than a few seconds, HABITS can 
correctly predict their final destination almost 80% of the 
time. 

An approach such as HABITS has many potential 
application areas. Interesting future work on this project 
could involve applying HABITS to one of these areas.  
A particularly interesting application would be in  
intelligent building control. The buildings of the future will 
learn from their human occupants and HABITS can 
facilitate this. 

A number of drawbacks do exist with the use of 
HABITS. The need to track the location of all personnel 
within a building may be unpopular but in certain 
environments the benefits may be worth it. Also, a certain 
learning time is required before HABITS is effective but 
again this could be acceptable. Lastly, it must be noted that 
HABITS will not work equally well in all environments 
with all people. As our tests demonstrated, it works better 
with people who have constraints on their movements. The 
less constraints, the less accuracy. However, the results of 
our tests show that HABITS could be very useful when 
applied in a suitable location. 

HABITS has been initially trailed in an indoor work 
environment using Wi-Fi signals as the test system, 
however, the theory and approach could be applied to other 
tracking technologies, in other locations, even outdoors. 
While the knowledge of areas that a person habitually 
travels could be of use in many applications, potentially 
more valuable in terms of energy saving, are the areas that 
are not commonly travelled. In the future is intended to test 
HABITS with a large group of people to see whether the 
accuracy levels are affected. 
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