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Abstract: Using Wi-Fi signals is an attractive and reasonably affordable option to deal  
with the currently unsolved problem of widespread tracking in an indoor environment. History 
aware-based indoor tracking system (HABITS) models human movement patterns by applying a 
discrete Bayesian filter to predict the areas that will, or will not, be visited in the future. We 
outline here the operation of the HABITS real-time location system (RTLS) and discuss the 
implementation in relation to indoor Wi-Fi tracking with a large wireless network. Testing of 
HABITS shows that it gives comparable levels of accuracy to those achieved by doubling the 
number of access points. We conclude that HABITS improves on standard real-time location 
systems in term of accuracy (overcoming blackspots), latency (giving position fixes when others 
cannot), cost (less APs are required than are recommended by standard RTLS systems) and 
prediction (short, medium and longer-term predictions are available from HABITS). 
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1 Introduction 

To accurately position an object, intelligent prediction is 
required (Petzold et al., 2005; Vintan et al., 2004; Gellert 
and Vintan, 2006). These methods enable the accuracy 
levels of the estimates to be increased. When a human 

makes estimation about where a person or object  
will be located in the future, they automatically perform  
the complete calculation. To enable computers to  
replicate these calculations and to allow them to work  
with a number of different objects requires a number of 
artificial intelligence techniques. Technologies such as GPS 
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and mobile phones have made this a hot area of  
research in recent years. This has been driven by 
commercial location-based software, from satellite 
navigation devices to targeted advertising on mobile 
phones. Application to indoor environments is a largely 
under researched area. 

Outdoors, using GPS traces to try and learn next 
location has been attempted by Han (2004) for someone on 
foot and in Froehlich and Krumm (2008) for vehicles on a 
road. More recently, data gathered from mobile phone 
records has been mined to try and find patterns of 
movement which could be used to try and make next 
location predictions (González et al., 2008). Indoors, this is 
a largely under researched area, however a number of 
‘smart environments’ have been setup such as the work 
(Petzold et al., 2005). Here, specific sensors on doors were 
utilised to provide movement patterns. A hidden Markov 
model (HMM) and a neutral network (NN) were applied to 
the data and successful predictions were made. Ashbrook 
and Starner (2002) used a Markov chain model and  
K-means clustering algorithm to attempt to predict future 
movement. They clustered GPS data to find significant 
locations and then built a first and second order Markov 
models using location as state to try and predict future 
movement. It is possible to create nth order Markov model 
where probability of the next state is dependent not only on 
the current state but on the previous n – 1 states. For some 
examples, considering the 2nd order can yield more 
accurate results as in the case of probability of transition 
from A → B is 70% but the probability of transitioning 
from B → A → B is 81%. This could be explained by a 
situation where A was a Shop and B was Home. If the shop 
was on the main road from Home then the probability of 
going from A to B (Shop to Home) is 70%. However, if the 
journey started at home and went to the shop, return to 
home could be more probable (perhaps getting something 
for dinner?). This demonstrates a situation when higher 
order models are useful and give extra information. It raises 
the question of which order of model is suitable for 
prediction. Ashbrook and Starner (2002) conclude that this 
depends on the quantity of data available. Other factors 
affecting their probabilities were due to the large distances 
travelled and the fact that their tests took place outdoors. 
They also found that changes in routine would take a long 
time to show up in their model and they suggested a 
possible method of weighting certain updates, but warned 
that this could lead to model that was somewhat skewed. 
Han (2004) attempts to build upon the work of Ashbrook 
and Starner (2002) by using a self-organising map (SOM) as 
a means of learning without pre-knowledge. To use a 
supervised learning method to learn patterns of movements, 
pre-knowledge of the person is required, however a SOM 
can overcome this. An SOM is an ‘unsupervised learning 
neural network’ which can preserve the topology of a map 
as it creates it. Sang uses an SOM to convert sequences of 
raw GPS data into meaningful patterns which are in turn  
 
 

applied to a Markov chain approach. They used the output 
from the SOM to learn a first order Markov model and to 
try and make predictions of next location from it. Their data 
was gathered based on a university campus. While their 
method looks promising, their results are very sparse and 
their conclusion of ‘acceptable’ prediction accuracy is of 
little value. 

In indoor localisation, the area of movement prediction 
is sparsely researched. This is due to the fact that any sort of 
indoor localisation is a relatively recent phenomenon, 
however a number of research studies have been conducted 
in this area. One of the first research projects that 
considered future movement was Microsoft Research’s 
RADAR project (Bahl and Padmanabhan, 2000). This was 
the first significant attempts to track indoors using 802.1 
Wi-Fi signals. Due to the severe problem of signal 
attenuation it was difficult to get an accurate fix on position 
using received signal strength (RSS) measurements alone. 
Position was occasionally reported in locations that were 
not possible or at least highly unlikely. An effort to 
overcome these problems is described in Bahl et al.’s (2000) 
paper. They concluded that the next location position should 
be close to the last reported one. Their Viterbi-like tracking 
algorithm deals with a situation of when two physically 
separate locations are close together in signal space (due to 
aliasing). The shortest path is depicted in bold. The likely 
trajectory is calculated based on the previous unambiguous 
location and a guess of somewhere in between the two is 
given. Between vertices i and j there is an edge dij whose 
weight is calculated based on the Euclidian distance 
between the locations i and j. This approach has been shown 
to significantly reduce the accuracy error in locating a user 
who is walking. They tested the Viterbi-like approach 
against a nearest neighbour in signal space (NNSS) and an 
NNSS-AVG (where the three nearest neighbours in signal 
space were averaged to estimate location) and it was found 
to significantly outperform the others. Median distance error 
for NNSS (3.59 m) and NNSS-AVG (3.32 m) are 51% and 
40% worse, respectively compared with Viterbi (2.37 m) 
(Bahl et al., 2000). 

2 Related work 

Using past movements to improve localisation is an under 
researched area, although a number of useful studies have 
been conducted. Mature technologies, such as GPS 
navigation, have used this approach to predict where and 
when a user will re-emerge from a tunnel. Also, the 
approach is used in cellular systems to predict which cell a 
mobile user will enter next. Petzold et al. (2006) used 
various machine learning techniques and mathematical 
methods to model indoor movement patterns. Using these 
models, predictions of the next location of a certain user 
have been made with 69% accuracy without pre-training 
and 96% accuracy with pre-training. Another study by Zhou  
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(2006) has shown that by using knowledge of previous 
movements, overall accuracy could be improved by 14.3% 
and estimations of the wrong room and wrong floor could 
be improved by 69.7% and 50%, respectively. A recent 
study (Song et al., 2010) of past locations from mobile 
phone records, found that general human mobility patterns 
over a wide area were predictable 94% of the time. A 
related, relatively new field of reality mining (Eagle and 
Pentland, 2006) has been developed which records 
movements of people throughout the day with the intention 
of predicting future behaviour. These studies on learning 
human movements for prediction show that the research 
community is beginning to utilise movement information in 
a new way. 

Figure 1 HABITS overcomes the need for extra APs (see online 
version for colours) 
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Using previous movements to help improve accuracy levels 
in Wi-Fi positioning has been attempted in a number of 
studies (Bahl and Padmanabhan, 2000; Bahl et al., 2000; 
Lassabe, 2009), but the focus has been on trying to improve 
the RSS-based problems. 

The HABITS framework which we introduce in the next 
section does not try and improve on the RSS methods but 
instead uses the movement habits of users as a means of 
adding intelligence to the system. This knowledge is then 

used to overcome signal black spots and to predict where 
the user will travel to next as Figure 3 shows. 

Previously, we have implemented and tested a number 
of real-time location system (RTLS) systems and the results 
of these can be found in the study on behalf of JANet  
UK – location awareness trails (Furey et al., 2008).  
Of these, the Ekahau RTLS utilizes the existing Wi-Fi 
network and in our tests was the best overall indoor tracking 
system. For this reason, it was the chosen platform for 
implementing HABITS. A number of stages are involved in 
implementing this system and these are outlined in the next 
section. 

3 HABITS 

Past movement habits have been shown to be repeated  
by humans, usually to do necessary tasks or just to take 
what is felt to be the path of least resistance. These habits 
are often linked to particular tasks that need to be done 
regularly. Movement habits are the same as other types of 
habits in that they tend to be regularly repeated. While each 
of us has a number of habits or patterns that appear to be 
unique to us, much more probable is that we share habits 
with others. In our approach, history aware-based indoor 
tracking system (HABITS) is use to enhance an existing 
tracking system from Ekahau. The technology of the 
underlying tracking system or the positioning methods used 
is not relevant. HABITS is designed to be generic with 
application to many potential domains. The three main 
components of HABITS are a connected graph, a discrete 
Bayesian filer and a set of logic rules. The focus of 
HABITS is to combine these three methods in a novel way, 
allowing for predictions of human movement habits. These 
predictions overcome the latency of updates from currently 
available systems and enable them to make predictions of 
likely future movement. 

Figure 2 Zones showing areas of interest (see online version for colours) 
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In order to collect historical movement data a topological 
map of the test area is created. A topological map is one 
which consists of a number of nodes representing places of 
interest which are connected by edges representing paths 
where a user may travel. These areas are covered by zones 
in Ekahau which allow for reporting of when a person 
carrying a mobile Wi-Fi device enters or leaves them. The 
zones shown in Figure 2 represent areas that are passed 
through frequently on the ground floor in the ISRC. Each of 
these zones can be considered to be a node in a connected 
graph. The positioning of these zones is a manual process 
based on expert knowledge of where a user is likely to stop 
and areas where they would pass through often. Also used 
are locations where a user has a number of options of where 
next to travel. The locations of these zones relative to one 
another can now be represented as an adjacency matrix and 
hence a connected graph. To do this each node in the graph 
representing a zone is given a unique ID between 1 and n, 
were n is the number of zones. 

The underlying principle of our approach involves 
representing the movement areas as a graph which in turn is 
represented by a number of matrices; incidence, distance 
and transition. 

These constraints show where it is possible for a user to 
go and where not, the distance between points of interest 
(for our purposes) and eventually represent the probability 
of going from one area to another. Methods of modelling 
the travel environment exist and of these, a graph structure 
closely represents the possible paths. The nodes in the graph 
can be positioned to represent areas of interest, decision 
points or places where the user stops. In between these 
locations are the paths that may be travelled. 

The paths are edges and those locations of interest are 
the nodes/vertices of a connected graph. The graph structure 
clearly represents the connections between nodes and 
therefore areas in the real building. It shows which locations 
are connected either directly or indirectly. 

Figure 3 Node positions in house (see online version  
for colours) 
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When studying a building plan or road map this information 
is normally clear to see however, in a new location, 
different methods need to be used to identify these areas of 
interest. Areas where a user stops for some reason may be 
thought of as ‘base nodes’. Stopping for reasons such as 

sleep, eating, call of nature or work are some of the main 
reasons why humans would habitually stop at the same 
location. While for many people these may be in the same 
room or adjacent rooms, in the developed world, relatively 
large houses exist and these functions often occur in a 
number of different rooms with travel paths between. 
Examples of these rooms could be bedroom, kitchen, 
bathroom and living room. Movement between these rooms 
is often only possible by one or two different routes. The 
layout of a typical house (in the developed world) may be 
represented as a connected graph. In Figure 3, the green 
nodes represent stopping locations and the blue nodes 
represent decision points. 

A connected graph or topological map of these nodes is 
shown in Figure 4. Learning the locations of these points 
can be performed automatically in a number of ways, all of 
which require an underlying tracking system to be installed. 

Learning these significant locations can be carried out 
automatically by computers. One methods of achieving this 
is to plot the locations where there was a significant delay 
between movements. These would indicate the areas where 
a person was stationary. Even within the same room these 
points are not all likely to be in the exact same location. To 
extract wait nodes from a large number of estimates, 
clustering techniques are used to group the updates together, 
revealing the main stopping locations. When the nodes have 
been discovered and coded with numbers for name they 
may be represented as an n × n adjacency matrix where n is 
the number of nodes and the matrix details specific 
information about the graph. If a connection exists between 
the nodes then in the matrix location ij which represents the 
connection from i to j place a 1, if no connection exists then 
place a zero. This enables the paths between nodes to be 
represented mathematically and the matrix can easily be 
processed by a computer program. 

Figure 4 Connected graph with node connections (see online 
version for colours) 
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When the node locations have been discovered and the 
distance between two nodes is known, travel time between 
nodes may also be calculated automatically by the 
underlying tracking system Ekahau. Average walking or 
travelling speed for each user is estimated by using:  
speed = distance/time. Knowledge of the relative travel 
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times between nodes is then used to generate a distance 
matrix with distances between each node being calculated 
based on average user speed. The distance matrix values are 
in the same positions in the matrix as the 1’s are in the 
adjacency matrix. A transition matrix showing the 
probabilities of travelling from one node to the other is built 
up by monitoring the person’s travel through the nodes. 
Again, a number of methods exist to solve this, but a 
straight forward method is to use the sequence of all nodes 
traversed for a day, a week or all travel time (depending on 
the application). String identification tools can be used 
giving the sequences of nodes and from this mathematical 
functions can generate a transition matrix. As before, the 
size of the matrix corresponds to n × n and at each location 
(node) a count is kept of the movement through it and where 
it goes to next. In the sample house scenario, consider 
movement from the kitchen, through a decision point  
to either the bedroom or another decision point. 
Hypothetically, it could be found that the probability of 
going from the kitchen to the bedroom was 12/50. This 
would equate to a situation where out of 50 times leaving 
the kitchen, 12 of these journeys were to the bedroom. 
12/50 would give a probability of 0.2 of travelling to the 
bedroom meaning that 0.8 or 38 journeys went the other 
way to the next decision point. This is how transition 
matrices are created and knowledge of them gives a first 
order Markov chain. 

By querying the EPE the list of zones is retrieved and 
each zone is allocated a unique ID. For the two floors in the 
MS building there are 19 zones in total. Using the zone 
map, an adjacency matrix of size n × n is manually created. 
The corresponding zone-node list allows all zone data from 

the EPE to be manipulated as if each zone was the node in 
the connected graph. Figure 5 shows a connected graph 
representation of the two floors in the ISRC. The edges 
between nodes show paths that may be travelled and 
represent the movements of Wi-Fi tracked people in the 
building. The numbers on the nodes are those used by the 
zone to node conversion table. 

In addition to the adjacency matrix, the distance 
between nodes is required to allow for dead reckoning when 
HABITS is in operation. Two methods are available to 
calculate this. The first involves manually taking 
measurements from the ESS. The second involves manual 
measurement of the distance from one node to another. By 
timing an averaged paced walk over this distance the speed 
of movement is calculated by the standard formula  
speed = distance/time. When this guide for speed is 
calculated, a standard walk is taken around the whole 
building with the time to move from one node to the next 
recorded. With the travel time from one node to the next 
available a simple calculation can convert this into distance 
measurements and the distance matrix is created with values 
in the same locations as the ones in the adjacency matrix. 

At any time along the chain, only the current location 
gives the probability of going to the next location. A simple 
Markov chain like this gives some idea of the next node but 
alone it would not be enough to model real human 
movement habits. Raising the order of the model to consider 
the previous two nodes would help in some locations but 
(Froehlich and Krumm, 2008) proved this needs to be done 
with a large dataset which takes a considerable time to 
generate. 

Figure 5 MS building represented as a graph (see online version for colours) 
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Maintaining a separate transition matrix for each day and/or 
each time period would improve the accuracy slightly but 
the system would not be expandable to a large area due to 
becoming overly complex. To predict the most likely next 
location with a useful degree of accuracy requires more than 
just a simple one state Markov chain. The movement habits 
of people are dependent on a variety of factors and to 
improve the accuracy of any model requires that more of 
these factors are considered. 

The underlying Ekahau tracking system gives the initial 
location, bel(xt–1). The transition matrix provides the belief, 
bel(xt) when combined with the information in the 
perceptual model and the system dynamics. This outputs the 
probability of moving to the next node when given just the 
previous one and no other information. HABITS uses more 
information than just that provided by the first order 
Markov chain. As a Bayesian filter only works, for 
instances, that hold to the Markov assumption (meaning 
only a single order model), substantial information is being 
left out about commonly travelled paths or sequences of 
nodes. Froehlich and Krumm (2008) found that the more 
nodes they had information about (previously travelled), the 
higher the chances of predicting their final location. If an 
order (3 for example) Markov model was used, then for 
some paths, the predicted location probability would be 
much higher, however it would also take into account 
shorter journeys and could have sequences like 2-4-2 which 
would include changing direction completely. Taking into 
account higher order models results in overcomplicated 
calculations. The notion of ‘preferred paths’ (PPs), however 
allows for the same information to be gathered without 
keeping track of every path. 

As part of the definition of a habit, it states that they are 
routines of behaviour that are repeated regularly. An 
approach to viewing habits could be that they take places 
between distinct locations, but it does not mean that those 
locations are necessarily adjacent locations. The paths may 
go through a number of intermediate nodes and a common 
journey could be kitchen to toilet in the example in  
Figure 2. This would involve travelling through fur different 
nodes but may be repeated a number of times a day. If a 
pattern occurred more often than a set number of times then 
it could be considered habitual. Habitual journeys of this 
sort we call ‘PPs’ and they can be mined from the string of 
all nodes visited. There could also be a temporal link 
between taking these PPs and a certain time period. This 
information can be used to adjust the output of HABITS 
prediction. It can also help with the identification of final 
destination which is another aim of HABITS. A PP is also 
stored as a vector and may be temporally linked to a specific 
time period if required. Some would be more frequently 
travelled at particular times than others. When on a PP, the 
information is used to increase the accuracy of the future 
location estimate. A last influencing factor to be considered 
in some instances is a rule that takes into account when 
people change their habits depending on who they are  
with. In largely populated environments certain people’s 
movements have an influence on others. In, for example, 

going for lunch it may be that a particular person is a 
common factor in most locations. This is discovered by 
checking to see if people travel routes matched up 
temporally and if so, was one dominant over the other? 
When this is the case, a rule is applied in the same manner 
as the PPs, influencing the prediction. HABITS combines a 
number of different elements to produce future location 
predictions. The inputs to the Bayesian filter include the 
motion model showing where it is possible to go in the next 
step, the sensor model giving the accuracy of the updates 
from the underlying tracking system, the learnt historical 
belief and the location updates from the base system. When 
the filter has all the necessary information to give a 
prediction, it is run through a set of rules to improve the 
accuracy of its estimates. HABITS is designed to be able to 
operate on any type of tracking system to allow it to track 
between its updates and to give future predictions 

Figure 6 HABITS overcomes need for extra APs (see online 
version for colours) 
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HABITS does not attempt to improve the underlying Wi-Fi 
positioning system but is used in conjunction with it to 
improve overall performance. While HABITS uses the same 
radio signals and equipment as other systems, it enables 
positioning and continuous real-time tracking with 
increased accuracy, and in areas that were not previously 
possible. However, HABITS will only work in certain 
environments where people follow particular habitual 
movement patterns. Examples include work environments 
such as factories or hospitals. When a mobile device is 
tracked by the Ekahau RTLS and the HABITS algorithm is 
applied, it can still be tracked when it is no longer within 
line of sight (LOS) of three or more access points (AP). 
This is normally the minimum required for accurate 
localisation. The highest frequency rate of position updates 
from the Ekahau RTLS has been found to be 5 s. These 
updates are often up to 15 seconds apart. Each update is sent 
to HABITS along with the learnt historical movement data 
and from this an intelligent prediction of the next likely 
location is given. Short-term predictions effectively fill in 
the blanks in between updates from the Ekahau system. 
HABITS does not try and improve on the RSS positioning 
methods currently in use, but instead uses knowledge of the 
movement habits of users as a means of adding intelligence 
to existing tracking systems. This knowledge is then used to 
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overcome signal black spots where existing systems fail 
(Figure 6) and to predict where the tracked user will travel 
to next. 

At time, t1 (Figure 6) the Ekahau RTLS can give a 
position estimate that is close to the true position. At time t2 
both the standard Ekahau RTLS and the HABITS system 
also give an accurate estimate. However, at time t3, the 
Ekahau system is no longer accurate due the user travelling 
through a signal black spot. This is where HABITS can 
dramatically improve standard location tracking systems 
and provide accurate updates of where the user is located. 

4 Evaluating predictions with HABITS 

The various inputs to HABITS are combined using a 
number of artificial intelligence techniques. The first is an 
idea described by Fox (2003), which is extensively used in 
robotics – that of a discrete Bayesian filter. This filter works 
in conjunction with the graph matrices and gives out a 
probability estimate for the next location or a number of 
possible locations when at a particular node. Pseudo code in 
Figure 7 shows the basic operation of a discrete Bayesian 
filter. 

Figure 7 Discrete Bayesian filter (see online version for colours) 

  General Algorithm for Bayes Filtering 
1  Algorithm_filter(bel(xt-1), ut, zt): 
2    for all xt do 

3       bel (xt) = ∑ p(xt | ut, xt-1) bel (xt – 1)  (PREDICTION STEP) 

4        bel (xt) = η p(zt | xt) bel (xt) (UPDATE STEP) 
5     end for 
6     return bel (xt) 
 
Inputs belief bel(xt-1) at t-1; most recent control ut + measurement zt.  
Output is the belief bel (xt) at time t. 

 

It is basically a data fusion technique which uses Bayes 
theorem as a means of predicting the probability of moving 
from one node to the next. The various movement and 
sensor constraints are represented as mathematical models 
(ut) which work along with the updates from Ekahau (zt) 
and the transition matrix data, p(xt | xt–1) to give a prediction 
of next location. The n symbol in Figure 11 – line 4 is used 
to normalise the result to 1. However, this prediction alone 
is not sufficient to model a user’s movement habits 
accurately. 

Fuzzy logic is derived from fuzzy set theory and is a 
technique used when reasoning is approximate rather than 
precise. Fuzzy rules are similar to normal rules except that 
there are degrees of correctness. In this way, we can 
represent ideas like “John often goes to the canteen for 
lunch”. The addition of the fuzzy rule base is to overcome 
one of the weaknesses of the Bayesian filter. This weakness 
is that it is tied to the Markov assumption which states that 
all the necessary information needed to predict the next step 
is located in the current step. This makes the discrete 
Bayesian filter into a Markov chain, which is any random 

process that is bound by the Markov assumption. As the 
Markov assumption does not hold true in our case, it has 
been overcome by the creation of a hybrid Bayesian-fuzzy 
filter/rule base. This gives us the best of both and allows for 
extra habits, such as being on PPs, to be included which do 
not fit into the discrete Bayesian filter. 

4.1 Operational scenario 

The scenario next describes HABITS’ operation in a real 
world scenario. The user is travelling from his desk to leave 
the building for lunch. The code and accompanying 
diagrams (Figures 8 to 10) show what the probabilities are 
of going to a particular node. This shows how the 
knowledge of a user’s movement habits can be used to give 
predictions to a useful degree of accuracy. A possible use of 
these predictions is explained in the last section. 

1 If tag = Eoghan 

2 node = 5 and previous node = 4 

3 node 5 NOT = wait node 

4 Action = calc next node 

5 Next node = Either 2, 3, 6, 7, 8 (All have non-zero 
Probability) – Figure 13) 

6 Check time period = Lunch 

7 If time = Lunch THEN next node is 6 or 3  
(Probability > 80%) – Figure 14 lunch temporal rule 

8 Check other users in area 

9 If with John THEN next node = 6 (John does not go to 
the canteen!) – Figure 15 other user rule 

10 If with Mary THEN next node = 3 (Mary usually goes 
to the canteen!) 

11 If alone then next node = 6(40%) OR 3 (40%) – wait 
for more info! 

12 Use speed and distance to calculate position at time t 

13 Calc and show positions at t + 1, t + 2 .. t + n. 

Long-term predictions are related to the likelihood that a 
particular node will be visited during a particular time 
period. This could be later the same day or later in the week. 
For example, HABITS tells us with 85% confidence that 
during the lunchtime period that users 1, 2 and 5 will all 
leave their base nodes and will exit the building through the 
front door. To calculate these movements, the repeatability 
of a PP within a time period (TP) is considered. Table 2 
shows the frequency of each PP in each TP for User 1. The 
frequency tables for all users are automatically extracted 
from the learning data by HABITS. This works on the 
principle that if a journey has occurred every Tuesday 
morning for three weeks, then there is a high probability 
that it will occur the next Tuesday, all else being equal. 
There is no guarantee that this will occur but evidence from 
the tests show that it is highly probable. Users 3 and 4 both 
travel to node 3 (canteen in test area) on 13 out of the 15 
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days used for testing. These patterns allow HABITS to 
predict who will go where, when, for commonly repeated 
journeys with a useable degree of accuracy. The green 
boxes in Table 2 show PPs that have occurred twice during 
the same TP on the same day and the yellow boxes show 
those that have occurred on three or more occasions. 

Figure 8 Probability from Bayesian filter (see online version  
for colours) 
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Figure 9 Probability from temporal fuzzy rule (see online 
version for colours) 
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Figure 10 Probability from other user fuzzy rule (see online 
version for colours) 

 

MS Ground Floor

MS First Floor

1

2

3

6

4

5

7

8

9

10

14 17

15

19
16

18
13

11

12

Wait Ekahau

E1

E3

E2
p5=0.02

p4=0.10
p3=0.8

p2=0.02

p1=0.06

Ekahau Update

Standard Node

Possible next node

Decision Node

Node passed through

Ekahau UpdateEkahau Update

Standard NodeStandard Node

Possible next nodePossible next node

Decision NodeDecision Node

Node passed throughNode passed throughJohn

MS Ground Floor

MS First Floor

1

2

3

6

4

5

7

8

9

10

14 17

15

19
16

18
13

11

12

Wait Ekahau

E1

E3

E2
p5=0.02

p4=0.10
p3=0.8

p2=0.02

p1=0.06

Ekahau Update

Standard Node

Possible next node

Decision Node

Node passed through

Ekahau UpdateEkahau Update

Standard NodeStandard Node

Possible next nodePossible next node

Decision NodeDecision Node

Node passed throughNode passed through

MS Ground Floor

MS First Floor

1

2

3

6

4

5

7

8

9

10

14 17

15

19
16

18
13

11

12

Wait Ekahau

E1

E3

E2
p5=0.02

p4=0.10
p3=0.8

p2=0.02

p1=0.06

Ekahau Update

Standard Node

Possible next node

Decision Node

Node passed through

Ekahau UpdateEkahau Update

Standard NodeStandard Node

Possible next nodePossible next node

Decision NodeDecision Node

Node passed throughNode passed through

Ekahau UpdateEkahau Update

Standard NodeStandard Node

Possible next nodePossible next node

Decision NodeDecision Node

Node passed throughNode passed through

Ekahau UpdateEkahau Update

Standard NodeStandard Node

Possible next nodePossible next node

Decision NodeDecision Node

Node passed throughNode passed throughJohn

 

Applying this data to the test data for User 1 yields the 
results shown in Figure 11. 

These show that when a PP has only been observed 
twice, the successful predictions occur 64% of the time 
meaning that 36% of the time the predictions are incorrect. 
However, when a PP has been observed three or more times 
within a time period during a particular day, then the 
predictions are correct 78% of the time. Table 2 lists the 
overall average predictions for all of the test subjects. These 
are compiled by running HABITS on the test data available. 
Overall User 2, an RA is the most predictable. The short and 
medium term predictions for all subjects are similar, 
however, the long-term predictions are much lower for  
User 3 (student) and User 5 (academic). 

Figure 11 Long-term predictions from user 1 (see online version 
for colours) 

 
Long term predictions

36

21

64

78

0

10

20

30

40

50

60

70

80

90

Observed twice Observed three or more times

Number of Times PP observed

Pe
rc

en
ta

ge

Incorrect
Correct

 

The users base node (desk) is the key to making predictions 
with HABITS. Of the total number of journeys made during 
the test period, 42% had the base node as the destination 
and 47% had the base node as the starting point. This means 
that 89% of all journeys undertaken by our test subjects 
involved travel to or from their base node. All of the test 
subjects showed very high (> 89%) predictability when 
travelling to their own work station. When travelling from 
the base station, the final destination was more difficult to 
predict. However, HABITS still predicted the correct 
destination over 60% of the time for all users.  
User 4, the RA, was still predictable in over 90% of their 
journeys from their base station. 

Other journeys in the building had a much lower 
predictability. Some small patterns were apparent such as 
going to the toilet after the canteen, but overall these 
journeys proved to be beyond the predictability of  
HABITS. The average predictability of final destination of 
any of the test subjects was almost 80%. This means, in our 
test week, for four out of every five journeys taken, 
HABITS correctly predicted the final destination. It must be 
noted that these results are for journeys of greater than two 
nodes. 
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Table 1 Frequency of PPs during time periods for user 1 (see online version for colours) 

 PP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Morning 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 3 
Lunch 0 0 0 0 4 3 0 0 0 0 0 0 4 3 1 1 2 3 2 0 0 0 Mon 

Evening 0 0 0 0 2 2 0 0 0 1 0 0 2 2 1 1 1 1 3 2 3 2 
Morning 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 
Lunch 0 0 0 0 2 2 0 0 0 0 1 1 2 2 0 0 2 2 0 0 0 1 Tue 
Evening 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 2 2 4 2 
Morning 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
Lunch 0 1 0 0 3 3 0 0 0 0 0 0 3 3 0 0 3 3 1 1 1 1 Wed 
Evening 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 2 
Morning 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
Lunch 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 1 1 0 0 0 1 0 Thur 
Evening 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 2 0 
Morning 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 2 
Lunch 0 0 0 0 1 3 0 1 0 1 0 0 1 3 0 0 2 1 0 0 1 0 Fri 
Evening 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 

Table 2 Predictions for all test subjects 

Predictability 
Test subject Job 

Short Medium Long (3 or more) 

User 1 Research student 82% 83% 78% 
User 2 Research associate 85% 88% 82% 
User 3 Research student 81% 77% 55% 
User 4 Research associate 87% 82% 76% 
User 5 Academic 80% 78% 62% 
Average  83% 81% 70% 

 
The testing of HABITS revealed a number of interesting 
facts. HABITS is suitable in environments where people 
follow particular movement patterns. The two RAs (User 2 
and User 4) proved to have much more predictable habits 
than the other three test subjects. It was concluded that this 
was because they were paid to sit in the same spot each day 
and had set times for breaks. User 5 (academic) and Users 1 
and 3 (PhD students) did follow repeating movement 
patterns but these did not follow a rigid timetable. The 
conclusion from this was that the academic had a 
changeable meeting schedule, whereas the student made 
particular journeys when he/she felt like it. 

5 Conclusions 

Widely used techniques such as the Kalman and particle 
filters are probabilistic approaches to taking educated 
guesses of the future given relevant information. This paper 
outlines a system HABITS which aims at overcoming 
weaknesses in existing RTLSs by using the human approach 
of making educated guesses about future location. The 
hypothesis of this proposal is that knowledge of a person’s 
historical movement habits allows for future location 
predictions to be made in the short, medium and long-term. 

The research questions that were foremost are whether the 
tracking capabilities of existing real-time locating systems 
can be improved automatically by knowledge of historical 
movement and by the application of a combination of 
artificial intelligence approaches. We also considered 
whether this approach can allow for intelligent prediction of 
future locations. We conclude that HABITS improves on 
the standard Ekahau RTLS in term of accuracy (overcoming 
black spots), latency (giving position fixes when Ekahau 
cannot), cost (less APs are required than are recommended 
by Ekahau) and prediction (short, medium and longer term 
predictions are available from HABITS). These are features 
that no other indoor tracking system currently provides. 
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