Predictive Indoor Tracking by the Probabilistic Modelling of Human Movement Habits

Eoghan Furey, Kevin Curran, Paul Mc Kevitt Intelligent Systems Research Centre (ISRC), University of Ulster, Magee Campus

I. Research Aim

- The aim of this research is to create an algorithm that enhances Wi-Fi tracking capability in an indoor environment.
- The **HABITS** (History Aware Based wi-fi Indoor Tracking System) algorithm will allow for real-time continuous tracking in areas where this was not previously possible due to signal black spots. Historical movement patterns will be used to probabilistically facilitate this.

II. Positioning Systems

- Positioning is a process to obtain the spatial position of a target.
- In recent years the need has arisen for the development of Location Based Services (LBS) which work in an indoor environment. Large public buildings; universities, hospitals and shopping centres have become target areas.
- Due to the poor performance of Satellite and Cellular systems indoors, a separate system is required.
- 802.11 Wi-Fi networks as specified by the IEEE are available in many large buildings. The signals transmitted by the Access Points (APs) provide a readily available network of signals which may be used for positioning

III. Ekahau

- The Ekahau RTLS (Real Time Location System) is used to provide the position of a Wi-Fi device.
- It does not rely on proprietary infrastructure or readers in order to track devices.
- The existing 802.11 Wi-Fi network is used for all tracking with signal strengths of the Access Points (APs) being recorded as shown in fig 1.

Fig 1: Heat Map showing areas of similar RSS values

- Ekahau Site Survey records RSSI data of the test area.
- This data is mapped to a model which shows the areas where a Wi-Fi enabled device may travel (Fig 2).

Fig 2: Map showing areas where a user may travel

• The observed Wi-Fi signal strength data is recorded at each location. A probability is then assigned to each location based on this data as Fig 3 shows.

Fig 3: Probabilistic estimation in Ekahau

IV. Multisensor data Fusion

- Multi sensor data fusion can facilitate bringing together data from different sources.
- Using a combination of the live data from Ekahau, historical movement data and dead reckoning information, an enhanced live track may be produced which would be continuous (Ekahau has 5 sec updates at its fastest) and would continue to track when signals were poor black spots.
- A number of filtering techniques may be used to produce a new estimate of the state of a system.

V. Bayesian Filtering

- Bayes filter is commonly used in robotics as a method to infer the position of a robot.
- This recursive algorithm enables a position estimate to be continuously updated by including the most recent sensor readings.
- A general form of the Bayes filter, which may be used for a discrete case like this, is outlined in pseudo code below.

General Algorithm for Bayes Filtering

- 1 Algorithm_filter(bel(x_{t-1}), u_t , z_t):
- 2 for all xt do
- $3 \qquad \overline{bel} (x_t) = \sum p(x_t | u_t, x_{t-1}) \text{ bel } (x_{t-1}) \text{ (PREDICTION STEP)}$
- bel $(x_t) = \eta p(z_t | x_t) bel(x_t) (UPDATE STEP)$
- 5 end for
- 6 return bel (x_t)

Inputs belief bel(x_{t-1}) at t-1; most recent control u_t + measurement z_t . Output is the belief bel (x_t) at time t.

VI. HABITS Overview and Context

Fig 4: HABITS overview

Figure 4 gives the flow of data in HABITS.

- The Ekahau API enables a position estimate from the Ekahau system to be fed into the fusion algorithm.
- This information will then be compared to the data stored in the historical database.
- From this a prediction of the movement steps for the next 5 seconds will be calculated.
- These predicted positions will be plotted on the map. Figure 5 shows the context in which HABITS will be used.

Fig 5: Context of HABITS

VII. Implementation Graphing/

- The test area would need to be mapped in a similar way to Ekahau. These maps would contain all the possible routes that a person may travel.
- A graph may be used as a means of representing the movement of people indoors (Fig 6).
- This graph of the area will be used along with the historical movement data of a person (Fig 7) in order to calculate the transition matrix

Movement History of User 1 Morning **Afternoon Evening Day 1** 12467 5645,5467 76421 **Day 2** 12467 768,867 76421 **Day 3** 12467 768,867 76421 **Day 4** 12467 5421 7645

Fig 7: Historical movement sequences through the nodes.

VIII. Probablistic Matrices

- The more HABITS is used the more accurate it should become.
- When a critical set of historical movement data has been gathered it can be analysed for patterns.
- Probabilistic functions can be calculated for the decision points. Fig 8 shows the initial probability of moving from one state to a neighbouring one.
- This data will then be used to update the various weights/inputs to the HABITS algorithm.
- Movement patterns of a particular user or type of user can facilitate profiling which can be used for a number of ambient intelligent applications.

Fig 8: Transition Matrix

• HABITS can be tested by comparing its tracking capability with the standard Ekahau system in terms of Accuracy, Precision, Yield and Latency.

IX. Publications

- Curran, K., Furey, E., (2007). "Pinpointing Users with Location Estimation Techniques and Wi-Fi Hotspot Technology". Int Journal of Network Management
- Furey, E., Curran, K., Mc Kevitt, P., (2008) "HABITS: A History Aware Based Wi-Fi Indoor Tracking System". PGNET 2008 The 9th Annual Postgraduate Symposium: The Convergence of Telecommunications, Networking and Broadcasting 2008. Liverpool, John Moores University, UK
- Petzold, J., Bagci, F., Trumler, W. And Ungerer, T.,
 2006. "Comparison of Different Methods for Next Location Prediction". Lecture Notes In Computer Science, pp. 909