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Abstract - The arrival of new devices and techniques has 

brought tracking out of the investigation stage and into the 

wider world.  Using Wi-Fi signals is an attractive and 

reasonably affordable option to deal with the currently unsolved 

problem of widespread tracking in an indoor environment.  Here 

we present a system called HABITS (History Aware Based 

Indoor Tracking System) which aims at overcoming weaknesses 

in existing Real Time Location Systems (RTLS) by using 

approach of making educated guesses about future locations of 

humans.  The primary research question that is foremost is 

whether the tracking capabilities of existing RTLS can be 

improved automatically by knowledge of previous movement 

especially in the short term in the case of emergency first 

responders by the application of a combination of artificial 

intelligence approaches, a key contributor being Bayesian 

filters. We conclude that HABITS improves on the standard 

Ekahau RTLS in term of accuracy (overcoming black spots), 

latency (giving position fixes when Ekahau cannot), cost (less 

APs are required than are recommended by Ekahau) and 

prediction (short term predictions are available from HABITS). 

These are features that no other indoor tracking system 

currently provides and could provide crucial in future 

emergency first responder incidents.  
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I.   INTRODUCTION 

 

Our fire service personnel have an unenviable job. 

Frequently, their primary task at times is to enter a 

burning building equipped only with air, two-way radios 

and laden down with heavy outfits. The increasing fire 

and smoke intensity along with the possible destruction of 

escape paths can result in life threatening situations. There 

therefore exists a requirement to develop real-time 

location tracking systems to assist fire-fighters and other 

personnel in navigating a building safely.  Recent 

advances in technology and integrated electronics have 

now made such a system feasible.  What is needed to 

achieve such a system is some wearable device which will 

help pinpoint the current location of each rescue team 

member for an incident command post outside the 

building in addition to providing emergency exit guidance 

to each team member and a "homing" signal to guide 

searchers in finding any fire-fighters in trouble. 

 

It turns out that to achieve tracking some sort of frame of 

reference is normally required and a number of waypoints 

need to be established.  In satellite positioning the 

satellites themselves provide these waypoints, their 

position relative to each other and relative to the ground is 

known, therefore location of an unknown device can be 

calculated relative to these.  The same principle applies in 

the majority of positioning systems.  Problems arise when 

these reference points are either too few in number, or 

those that are there do not have a clear line of sight to the 

object being tracked. Occlusion, attenuation, reflection 

and refraction are the cause of many errors in RTLS.  

While no solution works perfectly in all environments, 

within reason, almost anything can be tracked to any 

desired resolution if enough resources are available. 

These resources can be quantified in terms of financial 

cost and vastly reduce the scalability of the RTLS.  

Innovative methods are required to improve accuracy 

levels and to enable positioning to be achieved for a 

reasonable cost in terms of time and infrastructure. The 

recent proliferation of mobile communications devices is 

enabling tracking and analysis of large groups of people 

to be conducted. Where available, this data is being mined 

searching for patterns and trends which facilitate 

prediction [1,2,3].  

 

This paper outlines a system which aims at overcoming 

weaknesses in existing RTLS by using the approach of 

making educated guesses about people’s location.  The 

hypothesis here is that knowledge of a person’s historical 

movement habits enables future location predictions to be 

made in the short, medium and long term.   The research 

questions that are foremost are whether the tracking 

capabilities of existing RTLS can be improved 

automatically by knowledge of historical movements and 

by the application of a combination of artificial 

intelligence approaches. A practical application of our 

system would be for use by first-responders inside 

buildings. 

 

 

II.  PREDICTING LOCATION 

 

To accurately position an object, a degree of intelligence 

is required.  Outdoors, using GPS traces to try and learn 

next location has been attempted by Han [4] for someone 
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on foot and in [5] for vehicles on a road. More recently 

data gathered from mobile phone records has been mined 

to try and find patterns of movement which could be used 

to try and make next location predictions [6].  Indoors, 

this is a largely under researched area, however a number 

of ‘smart environments’ have been set up such as the 

work [1]. Here specific sensors on doors were utilised to 

provide movement patterns.  A Hidden Markov Model 

(HMM) and a Neutral Network (NN) were applied to the 

data and successful predictions were made.  Since around 

2006, due to its commercial value, most of the leading 

research in next location prediction is not being conducted 

by academic institutions and therefore everything that has 

been learnt may not be in the public domain.  Ashbrook 

and Starner [7], used a markov chain model and k-means 

clustering algorithm to attempt to predict future 

movement. They clustered GPS data to find significant 

locations and then built a first and second order markov 

models using location as state to try and predict future 

movement. It is possible to create an nth order Markov 

model where probability of the next state is dependent not 

only on the current state but on the previous n-1 states.  

For some examples, considering the 2nd order can yield 

more accurate results as in the case of probability of 

transition from A   B is 70% but the probability of 

transitioning from B   A   B is 81%.  This could be 

explained by a situation where A was a Shop and B was 

Home. If the shop was on the main road from Home then 

the probability of going from A to B (Shop to Home) is 

70%. However, if the journey started at home and went to 

the shop, return to home could be more probable (perhaps 

getting something for dinner?).  This demonstrates a 

situation when higher order models are useful and give 

extra information.  It raises the question of which order of 

model is suitable for prediction.  Ashbrook and Starner 

[7] conclude that this depends on the quantity of data 

available.  Other factors affecting their probabilities were 

due to the large distances travelled and the fact that their 

tests took place outdoors. They also found that changes in 

routine would take a long time to show up in their model 

and they suggested a possible method of weighting certain 

updates, but warned that this could lead to model that was 

somewhat skewed.  Han [4] attempts to build upon the 

work of [7] by using a Self Organising Map (SOM) as a 

means of learning without pre-knowledge.  To use a 

supervised learning method to learn patterns of 

movements, pre-knowledge of the person is required, 

however a SOM can overcome this.   

 

One of the first research projects that considered future 

movement was Microsoft Research’s RADAR project [8].  

This was the first significant attempts to track indoors 

using 802.1 Wi-Fi signals. Due to the severe problem of 

signal attenuation it was difficult to get an accurate fix on 

position using Received Signal Strength (RSS) 

measurements alone.  Position was occasionally reported 

in locations that were not possible or at least highly 

unlikely. An effort to overcome these problems is 

described in Bahl and Padmanabhan [9]. They concluded 

that the next location position should be close to the last 

reported one.  Their Viterbi-like tracking algorithm deals 

with a situation of when two physically separate locations 

are close together in signal space (due to aliasing). The 

shortest path is depicted in bold. The likely trajectory is 

calculated based on the previous unambiguous location 

and a guess of somewhere in between the two is given. 

They tested the Viterbi-like approach against an NNSS 

(Nearest Neighbour in Signal Space) and an NNSS-AVG 

where the three nearest neighbours in signal space were 

averaged to estimate location and it was found to 

significantly outperform the others.  Median distance 

error for NNSS (3.59 m) and NNSS-AVG (3.32 m) are 

51% and 40% worse, respectively compared with Viterbi 

[9].  Hidden Markov Models (HMM) are a popular 

technique which have been successfully applied in 

numerous different fields. The application of HMM to 

speech recognition has been examined by Rabiner [10].  

In speech recognition predicting the next possible words 

can greatly increase accuracy.  Rabiner examined HMM 

from their simplest form (discrete Markov chain) to more 

sophisticated approaches such as continuous density 

models and those of variable duration.  These techniques 

have been in widespread use for many years in speech 

recognition software. Computational biology is another 

field that has seen widespread application of predictive 

machine learning. The use of HMM for gene prediction in 

sequences of DNA has been reviewed by Birney [11].  A 

new method for predicting the secondary structure of 

RNA using HMM was proposed by Yoon and 

Vaidynathan [12].  They demonstrated very accurate, 

secondary structure prediction using their proposed model 

with a low computational cost. [13] converted algorithms 

normally used as “branch prediction techniques for 

current high performance microprocessors” to handle next 

context prediction of a person.  These were applied to 

previously gathered behaviour patterns.  The predictors 

were stimulated with patterns of behaviour of people 

walking indoors as the workload.   

 

III.    MODELLING A TRACKING SYSTEM 

 

The three main components of HABITS (History Aware 

Based Indoor Tracking System) are (1) a connected graph, 

(2) a discrete Bayesian filter and (3) a set of logic rules. A 

key focus of this work involves combining these three 

methods in a novel way, enabling predictions of human 

movement habits.  These predictions overcome the 

latency of updates from currently available systems and 

enable them to make predictions of likely future 

movement. The underlying principle of our approach 

involves representing the movement areas as a graph 

which in turn is represented by a number of matrices; 
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incidence, distance and transition.  These constraints show 

where it is possible for a user to go and where not, the 

distance between points of interest (for our purposes) and 

eventually represent the probability of going from one 

area to another.  The graph enables us to represent this 

information in mathematical terms and as numbers which 

may then be processed by a machine/computer. Methods 

of modelling the travel environment exist and of these, a 

graph structure closely represents the travelable paths. 

The nodes in the graph can be positioned to represent 

areas of interest, decision points or places where the user 

stops.  In between these locations are the paths that may 

be travelled between.  The paths may be considered as 

edges and those locations of interest could be the 

nodes/vertices of a connected graph. The graph structure 

clearly represents the connections between nodes and 

therefore areas in the real building.  It shows which 

locations are connected either directly or indirectly.  

When studying a building plan or road map this 

information is normally clear to see. However, in a new 

location, different methods need to be used to identify 

these areas of interest.  Areas where a user stops for some 

reason may be thought of as base nodes.  Stopping for 

reasons such as sleep, eating, call of nature or work are 

some of the main reasons why humans would habitually 

stop at the same location.  While for many people these 

may be in the same room or adjacent rooms, in the 

developed world, relatively large houses exist and these 

functions often occur in a number of rooms with travel 

paths between.  Examples of rooms could be bedroom, 

bathroom and living room.  Movement between rooms is 

often only possible by one or two different routes.  

 

Kitchen

Bathroom

Living Room

Bedroom

Front Door

Kitchen

Bathroom

Living Room

Bedroom

Kitchen

Bathroom

Living Room

Bedroom

Front Door

Figure 1: Node positions in house 
 

The layout of a typical house (in the developed world) 

may be represented as a connected graph (see Figure 2), the 

green nodes represent stopping locations and the blue 

nodes represent decision points. Learning the locations of 

these points can be done automatically in a number of 

ways, all of which require an underlying tracking system 

to be installed.  Learning these locations can be performed 

automatically by computers.  One method of achieving 

this is to plot the locations where there was a significant 

delay between movements. These would indicate the 

areas where a person was stationary. Even within the 

same room these points are not all likely to be in the exact 

same location.  To extract wait nodes from a large number 

of estimates, clustering techniques are used to group the 

updates together, revealing the main stopping locations.   

When the nodes have been discovered and coded with 

numbers for names (Figure 2) they may be represented as 

an n x n adjacency matrix where n is the number of nodes 

and the matrix details specific information about the 

graph.  
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Figure 2: Node names replaced with numbers

 

Figure 3 shows the adjacency matrix corresponding to the 

connected graph which in turn corresponds to the node 

positions in the sample house (Figure 2). If a connection 

exists between the nodes then in the matrix location ij 

which represents the connection from i to j place a 1, if no 

connection exists then place a zero.  This enables the 

paths between nodes to be represented mathematically 

and the matrix can easily be processed by a computer 

program. 
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Figure 3: Adjacency matrix for nodes in sample house 

 

 

When the node locations have been discovered and the 

distance between two nodes is known, travel time 

between nodes may also be calculated automatically by 

the underlying tracking system.  Average walking or 

travelling speed for each user is estimated by using the 

formula speed = distance/time. Knowledge of the relative 

731



   

travel times between nodes facilitates generation of a 

distance matrix with distances between each node being 

calculated based on average user speed. The distance 

matrix values are in the same positions in the matrix as 

the 1’s are in the adjacency matrix. A transition matrix 

showing the probabilities of travelling from one node to 

the other is built up by monitoring the person’s travel 

through the nodes.  At any time along the chain, only the 

current location gives the probability of going to the next 

location.  A simple Markov chain like this gives some 

idea of the next node but alone it would not be enough to 

model real human movement habits.  Raising the order of 

the model to consider the previous two nodes would help 

in some locations but [5] proved this needs to be done 

with a large dataset which takes a considerable time to 

generate.   Maintaining a separate transition matrix for 

each day and/or each time period would improve the 

accuracy slightly but the system would not be expandable 

to a large area due to becoming overly complex. To 

predict the most likely next location with a useful degree 

of accuracy requires more than just a simple one state 

Markov chain.  The underlying tracking system gives the 

initial location, bel(xt-1). The transition matrix provides 

the belief, bel(xt) when combined with the information in 

the Perceptual Model and the System Dynamics. This 

outputs the probability of moving to the next node when 

given just the previous one and no other information.  

HABITS uses more information than just that provided by 

the first order markov chain. As a Bayesian filter only 

works for instances that hold to the markov assumption  

(meaning only a single order model), a great deal of 

information is being left out about commonly travelled 

paths or sequences of nodes. Froehlich and Krumm [5] 

found that the more nodes they had information about, 

(previously travelled) the higher the chances of predicting 

their final location.  If an order (3 for example) markov 

model was used, then for some paths, the predicted 

location probability would be much higher, however it 

would also take into account shorter journeys and could 

have sequences like 2-4-2 which would include changing 

direction completely.   Taking into account higher order 

models makes the calculations overcomplicated. The 

notion of preferred paths (PP), however allows for the 

same information to be gathered without keeping track of 

every path. As part of the definition of a habit, it states 

that they are routines of behaviour that are repeated 

regularly.  Preferred paths are stored as a vectors and may 

be temporally linked to a specific time period if required 

(some would be more frequently travelled at particular 

times than others).  When on a preferred path, the 

information is used to increase the accuracy of the future 

location estimate. If we assume it is known that Node 1 

was the node visited at time, t-3.  This would now give a 

sequence of nodes 1-3-4 leading up to the decision point.  

The preferred path vector for that particular sequence 

would be the probability of going to node 5 or 6 from that 

point.  We assume that preferred paths only consider 

movement to new nodes and do not consider backward 

movement. We now have a vector showing: 
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This tells us that when the sequence of nodes visited was 

1-3-4, the likelihood of being on the preferred path 1-3-4-

5 is 0.66 and the likelihood of being on the preferred path 

1-3-4-6 is 0.33.  The method combining these two 

probabilities multiplies them together and adds the results 

to the initial belief from the Bayesian filter. The new 

belief gives a much higher probability of going to node 5 

next than of going to node 6. A last influencing factor to 

be considered in some instances is a rule that takes into 

account when people change their habits depending on 

who they were with. In largely populated environments 

certain people’s movements have an influence on other 

peoples. If, for example, the habit is going for lunch it 

may be that a particular person is a common factor in 

most locations.  This is discovered by checking to see if 

people travel routes matched up temporally and if so, was 

one dominant over the other? When this is the case, a rule 

is applied in the same manner as the preferred paths, 

influencing the prediction. HABITS combines a number 

of different elements to produce future location 

predictions. The inputs to the Bayesian filter include the 

Motion Model showing where it is possible to go in the 

next step, the Sensor model giving the accuracy of the 

updates from the underlying tracking system, the learnt 

Historical belief and the location updates from the base 

system. When the filter has all the necessary information 

to give a prediction, it is run through a set of rules to 

improve the accuracy of its estimates. When a mobile 

device is tracked by the Ekahau RTLS and HABITS is 

applied, it can still be tracked when it is no longer within 

line of sight (LOS) of three or more Access Points (AP). 

This is normally the minimum required for accurate 

localisation.  The highest frequency rate of position 

updates from the Ekahau RTLS has been found to be 5 s. 

HABITS can dramatically improve standard location 

tracking systems and provide accurate updates of where 

the user is located.  

 

IV.   MOVEMENT INDOORS WITH HABITS 

 

Ekahau RTLS is a commercial WiFi localisation system. 

For Ekahau to work, an existing 802.11 wireless network 

must be in place in the test area.  Ekahau contains a 

number of components.  The Ekahau Positioning Engine 

(EPE acts as a server controlling all location updates.  It 

needs to be located on a server which has access to the 

existing WLAN.  Once the server is in place, the Ekahau 

Site Survey (ESS) model is created.  A number of steps 
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are required for this.  First, a map (Jpeg file) of each floor 

is uploaded to the ESS application. Figure 4 shows a 

signal strength map for the University MS Building.  The 

dark green colour indicates areas of good signal strength 

where tracking capability should be accurate. These heat 

maps also show areas of accurate signal strength are 

weak.  These are target areas for HABITS. 

Signal black spotsSignal black spots
 

Figure 4: First Floor Plan - Signal Strength map 

 

In order to collect historical movement data a topological 

map of the test area is created.  A topological map is one 

which consists of a number of nodes representing places 

of interest which are connected by edges representing 

paths where a user may travel. Each of these zones can be 

considered to be a node in a connected graph. The 

positioning of these zones is a manual process based on 

expert knowledge of where a user is likely to stop and 

areas where they would pass through often.  Also used are 

locations where a user has a number of options of where 

next to travel. The locations of these zones relative to one 

another can now be represented as an adjacency matrix 

and hence a connected graph. To do this each node in the 

graph representing a zone is given a unique ID between 1 

and n, were n is the number of zones. By querying the 

EPE the list of zones is retrieved and each zone is 

allocated a unique ID.  For the two floors in the MS 

building there are 19 zones in total. Using the zone map, 

an adjacency matrix of size n x n is manually created.  

The corresponding zone-node list allows all zone data 

from the EPE to be manipulated as if each zone was the 

node in the connected graph. Figure 5 shows a connected 

graph representation of the two floors in the ISRC. The 

edges between nodes show paths that may be travelled 

and represent the movements of Wi-Fi tracked people in 

the building.  The numbers on the nodes are those used by 

the zone to node conversion table.  Knowledge of where 

the user is, whether they are in motion or not and the 

exact time are essential for HABITS to function.  This is 

the only live information that HABITS processes.  Once 

the live user information is received, HABITS checks the 

matrices to see what constraints on movement exist. 

Combining these constraints with the data from Ekahau 

allows an initial probability prediction to be made from 

the transition matrix. For instance, if an update is now 

received from the Ekahau RTLS.  This update is not in a 

zone so using the nearest neighbour search the closest 

node is found to be node 16.  Given that the last zone 

entered update was from the wait node 18, HABITS now 

possesses three bits of new information.  

 

xt = node 16, xt-1 = node 18 & user Eoghan is ‘in-motion’. 

 

From this new information HABITS can offer only a 

general prediction of the next possible node that will be 

visited. Eight different options are possible at this stage.  

Node 16 is not a ‘wait node’ therefore HABITS does not 

consider this to be the end of the current journey. The 

options at node 16 are listed in Table 1. 

 
Table 1: Probabilities from transition matrix at node 16 

Node 

no 
15 13 12 11 14 17 19 5 

Bel(xt) 0.27 0.05 0.05 0.01 0.05 0.05 0.01 0.01 

 

While node 15 is given as having a much higher 

probability that the other possible next nodes, 0.27 is too 

low to make any kind of reasonable prediction so 

HABITS must wait for more information from Ekahau. If 

another location update is received between nodes 15 and 

4. HABITS knows from the previous bel(xt) that node 15 

was one of the last possible nodes, therefore, even though 

node 15 is slightly closer to the update than node 4 (from 

the k-nearest neighbours search, 15 closest, followed by 

4), it chooses node 4 as the next node from which to make 

a calculation.  At this point due to a lack of other options 

and the fact that HABITS has information about the 

previous four nodes 18-16-15-4, a fairly confident 

prediction can be made that the next node to be visited is 

will be node 5. When a third update is received which is 

very close to node 5.   

 

Table 2: Probabilities from the transition matrix at node 5 

Node Number 3 2 6 7 8 

Bel(xt) 0.17 0.02 0.31 0.15 0.02 

 

Given the previous nodes sequence, the distance from the 

third update to node 5 and the previous prediction, 

HABITS carries out the next prediction based on node 5 

as its current node. As node 5 is also a transition node, 

possible predictions from the transition matrix give five 

possible next nodes as Table 2 shows. At this stage no 

prediction can be made as node next node has a clear 

higher probability. Probabilities change when the 

preferred paths for the current time period are checked. 

Here, as the time period is equal to ‘lunch’ and the 

previous node sequence is quite extensive at this stage, 
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two nodes, 3 and 6 now possess a significantly higher probability that the other possible nodes.  
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Figure 5: Checking other users rule 

 

 

HABITS can now say with over 80% confidence that the 

next node to be visited will be either node 3 or node 6.  To 

further increase the accuracy of the predictions, HABITS 

checks to see if there are any other users in the area. 

Figure 5 depicts a position update being received from 

John. Examining the preferred path of John reveals that 

John does not go to node 3.  As the paths of Eoghan and 

John are regularly together, combining John’s ‘preferred 

path’ probability with Eoghan’s gives a new prediction 

that Eoghan will go to node 6 with 80% confidence. 

 

 

V.   CONCLUSION 

 

This paper outlines a system (History Aware Based 

Indoor Tracking System) which aims at overcoming 

weaknesses in existing RTLS by using the approach of 

making educated guesses about people’s future locations.  

We conclude that HABITS improves on the standard 

Ekahau RTLS in term of accuracy (overcoming black 

spots), latency (giving position fixes when Ekahau 

cannot), cost (less APs are required than are 

recommended by Ekahau) and prediction (short term 

predictions are available from HABITS). These are 

features that no other indoor tracking system currently 

provides and could provide crucial in emergency first 

responder incidents. 
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