

Work-in-Progress – Towards an Emotional Learning Model for Intelligent Gaming

Karla Muñoz ¹, Julieta Noguez², Paul Mc Kevitt¹, Tom Lunney¹ & Luis Neri²

^{1.}Intelligent Systems Research Centre University of Ulster, Derry, Northern Ireland

² Faculty of Engineering & Architecture
Tecnológico de Monterrey, Distrito Federal, Mexico

28th October, 2010

Outline of presentation

- Related work
- Emotional Learning Model
- PlayPhysics Design & Implementation
- Evaluation & Results
- Conclusion & Future Work

Background & related work

- Game-oriented learning
 - Interactive and emotional link
 CHALLENGE: Achieving Knowledge & Understanding
- Following Design Principles (Malone & Lepper, 1987) & Providing Adaptable Guidance
 - Intelligent Tutoring Systems (ITSs)
 (Conati & Maclaren, 2009; Blanchard & Frasson, 2006)
- Student Modelling (Wolf, 2009; Sucar & Noguez, 2008)
- Affective Gaming (Sykes, 2006)

- Approaches for recognising emotion
 - Recognising Physical effects (Sarrafzadeh et al., 2008; D' Mello et al., 2008)
 - Reasoning about emotion from its origin (Jaques & Vicari, 2007)
 - OCC Model (Ortony et al., 1990)
 - Hybrid approach (Conati & Maclaren, 2009)
- Recognising students' motivation (Rebolledo-Mendez, et al., 2006) & self-efficacy (McQuiggan et al., 2008)
- Control-Value theory of Achievement Emotions (Pekrun et al., 2007)

Research aim

 Creating an emotional student model to reason about the learners' emotions from observable behaviour during game-play using cognitive & motivational variables

Emotional Student Model

- Student modelling involves uncertainty (Sucar & Noguez, 2008)
 - Which emotions must be recognised?
 - Which factors & features must be taken into account

Research Approach

Control-value theory

Probabilistic Relational Models approach

Dynamic Bayesian Networks

The Control-Value Theory

- Achievement Emotions
 - Defined according to the focus & time frame
 - Prospective-outcome, activity & retrospective-outcome
 - Domain dependent
- Appraisals of control & value are the most relevant when determining & emotion
 - Motivational, cognitive & physiological variables

FIE 2010

Time frame/ focus on	Value appraisal	Control appraisal	Emotion
Prospective/ Outcome	Positive (Success) Negative (Failure)	High Medium Low Low Medium High	Anticipatory Joy Hope Hopelessness Hopelessness Anxiety Anticipatory relief

Table 1. Fragment of the Control-Value Theory by Pekrun et al. (2007)

FIE 2010

Figure 1. PRM based on the control-value theory.

Figure 2. PRM instance according to the time frame 'Before'.

FIE 2010

Figure 3. Prospective-outcome emotions DBN

Figure 2. Fragment of PlayPhysics game dialogue based on the AEQ

PlayPhysics design

- Students find it difficult to understand & apply the underlying principles of Physics
- PlayPhysics uses Olympia architecture (Muñoz et al., 2009)
- Olympia will be modified to recognise the students' emotions & provide pedagogical actions, which involve emotional responses delivered through game elements
- The most difficult topics in an introductory Physics course were identified through an online survey
 - Trinity College Dublin & Tecnológico de Monterrey .
- The story-line of PlayPhysics is a space adventure

First Challenge

- Involves piloting a spaceship to Athena by applying knowledge about vectors, principles of linear and circular kinematics and Newton's laws for particles and rigid bodies.
- Unity Game Engine, 3D Studio Max, JSPs, Servlets, Elvira & Hugin Lite

Figure 4. PlayPhysics first challenge GUI

Figure 5. PlayPhysics Player-characters

Evaluation & Results

Pre-test & Knowing result

Answering Gamedialogue Comparison between reported emotion & inferred emotion

Evaluation of the Prospective-outcome emotions DBN

- Some students did not know how to classify the emotion that they were feeling (confidence & effort)
- The confidence reported by the student correlated poorly with question 5 of the game-dialogue, therefore question 2 will be used, which improves the correlation.
- Some probabilities in the Conditional Probability Tables (CPTs) need improvement. Therefore the data obtained from this test will be used to adjust the probabilities.
- Also the data obtained is being analysed with Discriminant Analysis to remove variables and dependency links that are not necessary.
- Further tests with a larger population of students are necessary

Conclusion & future work

- Design of an Emotional student model that reasons about emotion during game-play using cognitive and motivational variables
- A PRM approach & as a basis the Control-Value theory of achievement emotions
- The results show promise when evaluating the prospectiveoutcome emotions DBN. However it will be necessary to conduct further tests with a larger population of students and with the other DBNs once the implementation of the first challenge is completely finished

Questions

http://www.infm.ulst.ac.uk/~karlam
munoz_esquivel-k@email.ulster.ac.uk