

Adding features of educational games for teaching Physics

Karla Cristina Muñoz Esquivel 1, Julieta Noguez 2, Paul Mc Kevitt 1, Luis Neri 2, Victor Robledo-Rella 2 & Tom Lunney 2

University of Ulster, Magee ¹ Tecnológico de Monterrey, Campus Ciudad de México²

E-mail: munoz_esquivel-k@email.ulster.ac.uk, jnoguez@itesm.mx, p.mckevitt@ulster.ac.uk, fnoguez@itesm.mx, tf.lunney@ulster.ac.uk, fnoguez@itesm.mx, tf.lunney@ulster.ac.uk, fnoguez@itesm.mx, tf.lunney@ulster.ac.uk, fnoguez@itesm.mx, tf.lunney@ulster.ac.uk, fnoguez@itesm.mx, tf.lunney@ulster.ac.uk

19th October

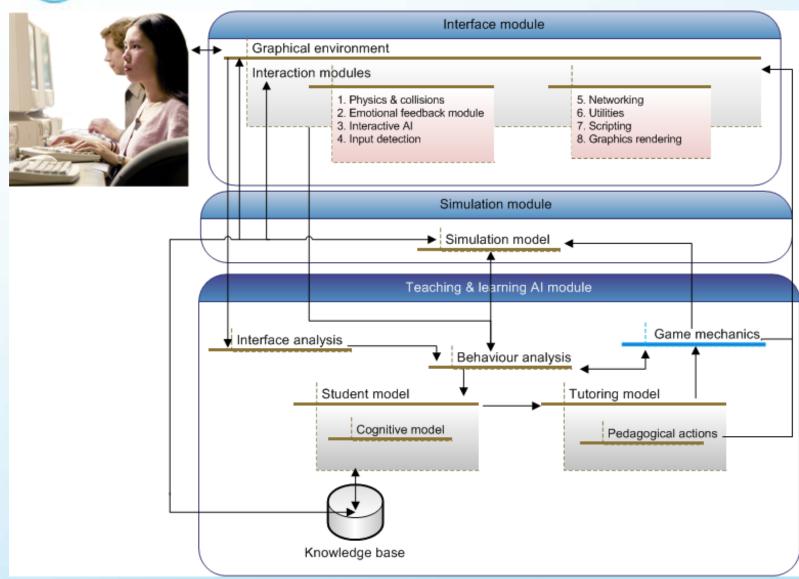
Outline

- Background & related work
- Research
 - Aims & objectives
 - Olympia architecture
 - Case study & methodology
 - GUI design
 - Design & student model
 - Evaluation
- Conclusion & future work

Background & related work

- Understand the coherent structure underpinning Physics
- Virtual laboratories (VLs) provide significant learning experiences (Reilly, 2008)
 - Link objects & events (Virtual Learning Environments VLEs)
 with real world concepts & phenomena
- Open Learning Environments
- Positive effects are attained by enhancing Human Computer Interaction (HCI) (Conati, 2008; D'Mello, 2008)
- Educational games more easily attain students' attention (Conati, 2002)

Aims & objectives


- Improve student understanding & motivation through adding features of educational games & AI techniques to VLs
- Test hypothesis in specific case study -> teaching
 Physics (e.g. linear momentum) at undergraduate level
- Evaluating the performance of Olympia
 - Improved Probabilistic Relational Model (PRM)
 - Tutorial videos
 - Feedback refined

Olympia architecture

- Olympia combines features of VLEs & educational games (Adams & Rollings, 2007; Sherrod, 2007; Bergeron, 2005) With Intelligent Tutoring Systems (ITSs)
- Based on research work of Noguez et al. (2007)
- Student Model is a PRM
 - infers student's cognitive state through interacting with the system

Case study & methodology

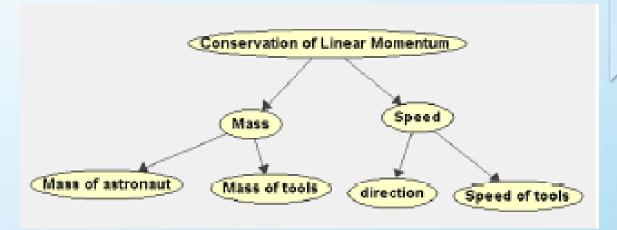
Design & implement traditional VL & Game VL (GVL) using Olympia for teaching linear momentum

Analysis of results based on research work of Hake (1998)

Pre-phase – pre-test
 Interaction
 (Control , VL & GVL)

3. Post-phase – post-test

Design & student model

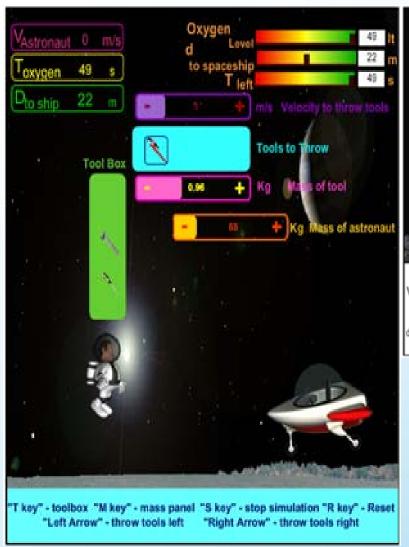

Problem selection

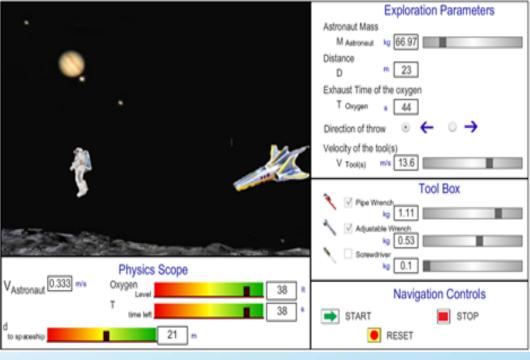
GUI design

Exploration
parameters &
assessment

Knowledge inference

Feedback




Bayesian net derived from relational student model

Evaluation

GROUP	N	Pre-Test	Post-Test	G _{rel}	G	Efficiency
VL	11	59 ±23	73 ±26	0.27±0.33	14 ±13	0.28±0.15
GVL	12	65 ±27	79 ±18	0.57±0.20	15 ±14	0.49±0.38
CONTROL	34	71 ±23	74 ±16	0.19±0.15	3 ±10	

$$G_{\text{rel}} = \frac{(PostTest - PreTest)}{(100 - PreTest)}$$

G = (PostTest - PreTest)

Conclusion & future work

- Olympia -> teaching introductory Physics at undergraduate level
- Students using GVL have better performance than students using traditional VL
- Students using GVL are more engaged -> higher efficiency
- Additional experimentation
- Validation of best pedagogical action in the tutor model
- Provide suitable affective & pedagogical learning responses
- Implement educational games for teaching Physics

Questions

