
Artificial Intelligence Review 10: 235-252, 1996. 
© 1996 Kluwer Academic Publishers. Printed in the Netherlands. 

Automatic Reconstruction of Vasculature 

PAUL MC K E V I T T  

Department of Computer Science, Regent Court, University of Sheffield, 
211 Portobello Street, GB- S1 4DP, Sheffield, England, U.K., E.U.; 
E-maih p.mckevitt@dcs.sheffield.ac.uk 

and 

PETER H A L L  

Department of Computer Science, P.O. Box 600, Victoria University Wellington, 
Wellington, New Zealand; E-maih peter@comp.vuw.ac.nz 

Abstract. Two of the most difficult problems in Artificial Intelligence are processing 
visual scenes and processing natural languages. There has been a large amount of 
research in each of these fields but little on their integration. This is surprising given 
the potential importance of integrated systems, not only for understanding human 
cognition but also for the range of practical applications that will be enabled. We review 
previous work and provide an overview of our own work. We focus upon the medical 
application of reconstructing complicated cerebral blood vessel structures and asso- 
ciated pathologies from images and medical reports. This gives our work a clear and 
significant practical aim. We show how the ostensibly disparate technologies can be 
married using a single knowledge representation. Previous attempts at reconstruction 
have used images alone and no satisfactory solution exists. We believe that the synergy 
provided by integrating vision and natural language processing provides an informa- 
tion-rich environment that will enable progress toward an efficient and robust solution. 
Such an integration will have not only have important practical uses but also impli- 
cations for Artificial Intelligence, Cognitive science, Philosophy, and Psychology. 
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i. INTRODUCTION 

Humans are able to combine  the processing o f  vision and language,  apparently 
with ease. For instance, humans  can use words to describe a picture and can repro- 
duce a picture f rom a language description. Moreover ,  humans  can exhibit this 
kind of  behaviour over a very wide range o f  input pictures and language descrip- 
tions. Even  more  impress ive  is the fact  that humans  can look at images  and 
describe not just the picture itself but a set o f  emotions evoked by it. Al though 
there are theories o f  how we process vision and language there are few theories 
about  how such process ing  is integrated.  There  have been large debates in 
Phi losophy and Psycho logy  with respect to the degree with which people store 
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knowledge as propositions or pictures (see Pylyshyn 1973; Kosslyn and 
Pomerantz 1977). 

There has been much research in Artificial Intelligence (AI) on the processing 
of natural language like English and on the processing of visual scenes (see 
Ballard and Brown 1982; Partridge 1991). However, there has been little work 
on linking natural language processing (NLP) and vision processing (VP). There 
are at least two advantages of linking the processing of natural languages to 
the processing of visual scenes. First, investigations into the nature of human 
cognition may benefit. Such investigations are being conducted in the fields of 
Psychology, Cognitive Science, and Philosophy. Computer implementations of 
integrated VP and NLP can she light on how people do it. Second, there are 
advantages for real-world applications. The combinations of two powerful tech- 
nologies promises new applications that include: automatic production of text 
from images; automatic production of images from text; and the automatic 
interpretation of images with text. Research into any of these must be regarded 
as AI, but other disciplines may benefit. For example, the first of these appli- 
cation areas would benefit the discipline of scientific visualization and its 
applications, the second would benefit computer graphics and its applications, 
the third would benefit AI itself, specifically in machine learning and informa- 
tion acquisition. The theoretical and practical advantages of linking natural 
language and vision processing have also been described in Wahlster (1988). 

We believe that the way forward for developing general theories of language 
and vision processing is to focus on specific applications such as the medical 
domain. We are building a system that processes x-ray projections (angiograms) 
and their associated medical reports. The angiograms are separated by an angle 
of about ninety degrees making them biplane angiograms. The medical reports 
are prepared by expert radiologists as they examine the angiograms and describe 
the appearance of the vasculature in them. A typical pair of angiograms are shown 
in Figure 1, and an associated medical report in Figure 2. Each of these input 
datum relate to blood vessel structures (vasculature) and arteriovenous malfor- 
mations (AVMs) within the human body. AVMs are congenital abnormalities of 
the vasculature. These AVMs are dangerous because if they hemorrhage the results 
can be fatal. The clinical reasons for acquiring angiograms are fully explained 
in Hall et al. (1995b). 

Our goal is to reconstruct vasculature and AVMs in three-dimensional space 
given biplane angiograms and associated medical reports. Previously this problem 
has been addressed using images alone and work has concentrated on recon- 
structing coronary vasculature around the heart. The cerebral vasculature 
comprises many vessels which are smaller than the coronary vessels; and there 
are wide variations in the branching structure between individuals. So recon- 
struction of cerebral vasculature is much harder than of coronary vasculature. Our 
work differs in two important ways: (1) it provides a unique representation of 
a collection of vasculature and, (2) it uses information acquired from medical 
texts in addition to images. We believe that our approach provides an informa- 
tion-rich environment that will enable reconstruction of vasculature in the brain 
in an efficient and robust manner. 
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Fig, I. An example angiogram pair. 
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Fig. 2. An example medical report. 

In this paper we first give the background necessary to understand our problem 
and discuss previous work on medical image and report analysis, and the inte- 
gration of NLP and VP (see section 2). Next, we present our contribution. The 
knowledge representation which is a representation of a collection of vascula- 
ture is described in section 3.1. We then show how this knowledge is used by 
the VP module in section 3.2 and the NLP module in section 3.3. We outline 
an architecture that integrates the knowledge representation with both the VP 
and NLP modules in section 3.4. In that section we also discuss the implica- 
tions and benefits of integration. We conclude in section 4. 

2. BACKGROUND 

Reconstruction of vasculature and AVMs given x-ray angiograms is impossible 
unless some information prior to the angiograms is used. This can be seen when 
it is realised that reconstruction from angiograms may be likened to recovering 
a matrix from its row sums and column sums; the problem is under-determined. 
Traditional techniques that were developed in the computer vision literature 
deal with images that are separated by an angle of just a few degrees (for example, 
see Marr 1982; Mayhew and Frisby 1981) and cannot be used here. Prior 
information is required so that the ostensibly disparate images can be matched. 
We begin by describing existing systems for reconstruction of vasculature from 
angiograms, systems that process medical reports, and systems that integrate NLP 
and VP. 

2.1. Reconstruction of vasculature from angiograms 

There are many problems associated with reconstructing vasculature and AVMs 
from x-ray angiograms (see Hall 1993a). Previously we have considered the 
problem of reconstructing AVMs from angiograms (see Hall et al. 1993). Here, 
we confine our discussion to reconstructing vasculature. A full review of systems 
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is available in Hall (1993b) and now we describe a representative subset of 
systems. 

Stansfield (1986) describes an early system that recognises individual vessels 
within angiograms. Her system, called ANGY, is composed of three major parts: 
a low-level image processing model for segmenting images; a mid-level module 
that combines segments into large-scale cohesive units; and a high-level module 
that recognises these large-scale units and labels them according to standard 
clinical terminology. Suetens et al. (1987) follow an almost identical line as do 
Rake and Smith (1987) though the latter authors use a blackboard architecture. 
Delaere et al. (1990) not only label features in angiograms with clinical names 
but use a Boolean expression to specify those sets of labels that are self con- 
sistent. Some control over variance in vascular topology is gained this way. 
Garreau et al. (1991 ) use a three-dimensional model that contains qualitative rather 
than quantitative descriptions. A Prolog program provides rules that drive recon- 
struction. 

The common characteristic of most of these attempts is that they tend to be 
very domain specific. They describe angiograms of the coronary vasculature from 
specific views. In short, they use rules to describe angiograms. Rules seem ill- 
suited for reconstruction of the cerebral vasculature. This is principally because 
the wide variation of branching patterns observed in cerebral vasculature between 
individuals makes it a complex structure not easily described by rules. Garreau 
et al. (1991) provide an exception in that their model is three dimensional. 
However, their model does not appear to make anatomy explicit. 

Our representation differs because (1) it explicitly represents physical vascu- 
lature in three-dimensions and is therefore less domain specific, and (2) is an 
adaptive representation that can learn. Not all vascular branching patterns are 
documented, and it is unclear that they can be, so an adaptive model is essen- 
tial. In short, our model of a collection of vasculature is an information repository 
that is designed to handle the level of complexity manifested by the cerebral 
vasculature. So far as we are aware our representation is unique. 

2.2. Medical report processing 

Schr~)der (1992a, 1992b, 1992c) has built a natural language system called 
METEXA (MEdical TEXt Analysis) that can process radiological reports that are 
spoken. METEXA is used for analysis of such reports. Another goal of the project 
is to conduct continuous speech recognition. METEXA centres on a solution to 
speech analysis by the use of domain-specific knowledge and contains a lexicon 
of about 1000 forms that specify the syntax and semantics of words. METEXA 
has 100 grammar rules and semantic analysis is conducted by constructing a 
conceptual graph (see Sowa 1984). Knowledge about the domain is encoded in 
canonical graphs of anatomical objects, pathological alterations, radiological 
terms, and other more general concepts. The knowledge-base contains about 
400 concept types. A rule-base is used to answer questions about radiological 
reports. Plan (see Wilensky 1983) and script (see Schank and Abelson 1977) 
knowledge structures are used to generate expectations about the next incoming 
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utterance. These structures contain knowledge about typical contents of radio- 
logical reports. 

With respect to domain knowledge there is a lattice of concept types and 
relations are defined between them. Concept types important for radiological 
applications are ANAT (anatomical), PATHO ALT (pathological), and ATTRIBUT 
(anatomical, pathological and radiological attributes). The definitions of valid 
connections or relations between concept types and relations are provided by 
canonical graphs (see sowa 1984, p. 91). The definitions express restrictions 
and some relations used are shown in Table I below. 

Table 1. METEXA concepts and their relationships. 

concept type relation type concept type 

[ANAT] PATHO [PATHO ALT] 

[ANAT] SIDE [SIDE] 

[ANAT] LOC [ANATLOC] 

[ANAT] AATrR [AATrRIBUTE] 

Schr6der (1992c) points out that the language style found in radiological reports 
shows characteristics of being a sublanguage. It is also important that such 
sublanguages have a restricted and simplified structure compared to full natural 
languages. Reports are written in t e l e g r a p h i c  style where standard phrases are 
used and where verbs may be omitted. The semantics or meaning of utterances 
is more important than .their structure or syntax. Utterances often consist of 
constituents without syntactic glue. Specialised domain knowledge is important 
for understanding and producing such clinical reports. Certain anatomical loca- 
tions and their characteristics are expected to occur in order to remove ambiguity 
of meaning. Although Schr6der has considered the possibility of applying NLP 
to medical reports there has been no proposal to link this work to the processing 
of visual data. 

Other work on NLP of clinical reports includes the Linguistic String Project 
(see Sager et al. 1987), a system for acquiring medical facts from radiological 
reports (see Ranum 1988), knowledge-based processing of radiological reports 
(see Baud et al. 1991), and a dialogue system for querying and updating medical 
databases (see Mery et  al. 1987). Scherrer et al. (1989) present work on knowl- 
edge acquisition and a compilation of other work is found in Kingsland (1989). 
Again, none of this work is linked to any vision processing. In contrast, we 
apply NLP to medical reports to assist our VP module in locating AVMs and 
vascular reconstruction. 
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2.3. Integrated language and vision processing 

A number of natural language systems for the description of image sequences 
have been developed (see Herzog and Retz-Schmidt 1990; Neumann and Novak 
1986). These systems verbalise the behaviour of human agents in image sequences 
about football and describe the spatio-temporal properties of the behaviour 
observed. Retz-Schmidt (1991) and Retz-Schmidt and Tetzlaff (1991) describe an 
approach that yields plan hypotheses about intentional entities from spatio- 
temporal information about agents. The results can be verbalised in natural 
language. The system called REPLATI-II takes observations from image 
sequences as input. Moving objects from two-dimensional image sequences 
have been extracted by a vision system (see Herzog et al. 1989) and spatio- 
temporal entities (spatial relations and events) have been recognised by an 
event-recognition system. A focussing process selects interesting agents to be 
concentrated on during a plan-recognition process. Plan recognition provides a 
basis for intention recognition and plan-failure analysis. Each recognised inten- 
tional entity is described in natural language. A system called SOCCER (see 
Andr6 et al. 1988; Herzog et al. 1989) verbalised real-world image sequences 
of soccer games in natural language and REPLAI-II extends the range of capa- 
bilities of SOCCER. Here, NLP is used more for annotation through text 
generation whereas we are interested in analysis. 

MaaB et al. (1993) describe a system, called VITRE GUIDE, that generates 
mutlimodal route descriptions for computer assisted vehicle navigation. 
Information is presented in natural language, maps and perspective views. Three 
classes of spatial relations are described for natural language references: (1) topo- 
logical relations (e.g. "in,", "near"), (2) directional relations (e.g. "left," "right") 
and (3) path relations (e.g. "along," "past"). The output for all presentation modes 
relies on one common three-dimensional model of the domain. Again, VITRA 
emphasises annotation through generation of text, rather than analysis, and the 
vision module considers interrogation of a database of digitized road and city 
maps rather than vision analysis. 

3. VASCULAR RECONSTRUCTION 

There have been efforts devoted to reconstructing vasculature from angiograms, 
analysis of medical texts, and the integration of vision and language processing. 
This section describes our contribution to all three areas. Because our repre- 
sentation of a collection of individual vasculature is central to our approach we 
begin with that. We then describe VP and NLP processing separately, and finally 
bring all of these together with the description of a single architecture. 

3.1. Knowledge representation 

Our model of a collection of vasculature is the knowledge representation (KR) 
used by all other modules in our overall system. We have diverted from all 
previous representations of vasculature by providing a KR that models many vas- 
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culature, that models the physical anatomy of individual vasculature, that is 
capable of adaptive modification, and that can be used for many purposes. Indeed, 
we have succeeded in using our KR to simulate the complete angiographic pro- 
cedure which involves animating blood flow through the vasculature (see Hall 
1994a, 1994b, 1994c). Our KR partitions the vasculature into three parts: topo- 
logical (branching structure), geometric (such as shapes of vessels), statistical 
(such as variances in shape or the frequency at which a given vessel appears). 
Our KR was influenced by ModelVisual which is a program for visualisation 
developed by Kunii and Shinagawa (1991). Hall and McGregor (1993) give a full 
description of our KR. An overview is given here. 

3.1.1. Topology 
In our model the topology of any given individual vasculature is represented 
by a labelled graph: 

G i ~ (Vi, E l ) ,  

where Vi is a set of vertices and El is a set of edges. The vertices correspond to 
vascular points that are branches (furcations) and vessel ends. The edges are vessel 
segments that connect these points. A vessel, as defined in clinical texts (see 
Salamon and Huang 1976) corresponds to a path through our total graph. The 
vertices and edges are labelled with geometric and statistical information as 
discussed below. 

A collection, L, of such graphs, each representing a distinct individual, con- 
stitutes the supposed initial state of the knowledge base and we write: 

L ~ {G;}. 

The individual graphs are 'added' together to generate a prom-graph: 

G ÷= U G i (U V i, UEi)==(V +,E+), 

where U runs over all G~, and in which the individual graphs appear as subgraphs. 
Notice that union distributes over the individual sets that comprise the graph. This 
is a valid step provided that the symbols are all drawn from the same alphabet, 
say @ for the vertices and g~2 for the edges. We note two things: (1) the union 
can be performed incrementally which is the basis of the adaptive modelling 
and (2) to generate such an alphabet between arty pair of graphs is equivalent 
to solving a maximal common sub-graph (MCS) problem where the alphabet 
symbols are correspondences between nodes. In the general case the problem 
is NP- complete which makes the MCS problem intractable and our method 
untenable. Read and Corneil (1977) give an excellent discussion on such 
problems. We note that solving the MCS problem is made feasible because the 
graphs are richly labelled so we are dealing with a special rather than the general 
case. 

The proto-graph is insufficient as a KR because there is no way to distin- 
guish between its subgraphs that are elements of L and sub-graphs that are not. 
We wish to make this distinction because we cannot be sure that an arbitrary 
sub-graph of the proto-graph represents a valid vasculature. To overcome this 
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problem we might label the nodes and arcs of the proto-graph with references 
that identify which graphs they came from and in many cases there will be 
more than one such graph. Although these labels are a sufficient representation 
we choose instead to use a matrix in which columns are labels of the proto- 
graph and the rows are valid sub-graphs (elements of L) of the proto-graph. 
Let's consider an example. 

Consider the vasculature depicted in Figure 3, which shows both geometric 
and topological aspects. The following sub-structures can identified 

G l = ({a, b, c, d, 
G2 = ({f, i, j, m, 
G3 = ({h, k, 1, n, 

To form the proto-graph for 

e, g}, (ab, bc, bd, ce, dg}) 
o }, (fi, fj, fm, mo }) 
p }, {hk, hl, hn, np }) 

these three graphs we construct: 

G +=G2 U G2 U G3 
= ((a, b, c, d, e, f, g, h, i, j, k, 1, m, n, o, p}, 

{ab, bc, bd, ce, dg, fi, fj, fm, hk, hl, hn, mo, rip}) 

and a matrix as shown below in Table II. 

Table H. Matr ix  representa t ion  o f  the example .  

G + a b c d e f g h i j k I m n o p ab bc bd ce dg fl 0 fm hk hi hn mo np 

G 1 I 1 1 1 1 0  1 0 0 0 0 0 0 0  0 0  I I I I I 0 0 0 0 0 0 0 0 

G2 0 0 0 0 0  1 0 0  I 1 0 0  I 0 i 0 0  0 0 0 0 I I 1 0 0 0 I 0 

G 3 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0  0 0 0 0 0 0 0 1 1 1 0 I 

Note that columns of the matrix are equivalent to the labels on the nodes and 
arcs of the protograph. We can use this matrix to generate a Boolean valued 
expression by reading rows: 

B (G ÷, G) = 
( a b A b c A b d A c e A d g A  f iA f jA  f m A h k A h l A h n A m o A n p )  V 
( a b A b c A b d A c e A d g A f i A  f jA  f m A h k A  h l A h n A m o A n p )  V 
( a b A b c A b d A c e A d g A f i A f j A f m A h k A h l A h n A m o A n p )  

which can be reduced to" 

B(G +, G) -- ((ab A bc A bd Ace  A dg) 
;~(f iA fj A f m A m o ) ¢ ( h k A  h l A h n A  np)) 

where ;~ is the exclusive OR (XOR) proposition. We call B(G÷,G) the discrimi- 
nation proposition because it discriminates between valid and invalid sub-graphs 
of the proto-graph. Notice that if we wish to add a new graph to the KR then 
we need to update both the proto-graph and the discrimination proposition. This 
addition may be regarded as form of machine learning. 

This example serves to illustrate the essential features of our KR. We have 
carefully defined the meaning of the matrix and derived the discrimination 
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3.1.2. Geometry and statistics 
Geometrical information is held in labels associated with graph features. These 
labels may be retrieved from the feature symbols. Labels are used to fix the three- 
dimensional shape of the vasculature. We define the geometric model: 

F(G) ~ (Fv(V), Fe(E)) 

where Fv and FE are bijective functions. The set Fv(V) contains geometric descrip- 
tions of furcations and Fe(E) are geometric descriptions of vessel fragments. 
Typically, elements of both these sets comprise generalised cylinders (see Ballard 
and Brown 1982). Hall (1994a, 1994b, 1994c) gives a full account of geometry. 

Statistical information is also held in feature labels and we define the statis- 
tical model: 

S(G) = (Sv(V), SE(E)) 

where Sv and Se are bijective functions. Statistical information is used to allow 
the shapes of vessels and furcations to vary and may also count the frequency 
with which a particular geometric element is observed to occur in a given 
population. 

3.2. The vision module 

The VP module uses the KR to enable it to predict what vessels will appear in 
an angiogram and to recognise them should they appear. Because the KR is 
three-dimensional this prediction and recognition can occur from any view- 
point. In short, reconstruction is driven on a hypothesise and test basis. In 
particular, vascular reconstruction can be considered as an attempt to prove that 
some arbitrary graph, H, is a valid sub-graph of the proto-graph. Hence, recon- 
struction can be regarded as graph matching. The description we give here is 
expanded upon in Hall et al. (1995a). 

We use a search algorithm for the match. Nodes in the search space are 
propositions that a particular vessel fragments in the KR corresponds to partic- 
ular vessel fragments that have been segmented from the angiograms from 
different points of view. For example, 

CORR(AB, ab, a'b') 

is a proposition that vessel AB in the KR corresponds to vessel ab in one 
angiogram and a'b' in another. The value of this correspondence is taken to be 
the minimum of the individual correspondences. This is determined by geomet- 
rically matching the projected model vessel, AB, to the relevant vessel in the 
angiogram. We note that this match requires the vessel being matched to be 
oriented in space so that a plausible projection occurs. We assume that there is 
some heuristic available that enables a root node to be decided, otherwise we will 
appeal to the expert user to determine the correspondence. Given this initial 
correspondence a 'root' vessel can be oriented; and this gives an initial orien- 
tation to the whole KR. 

The expansion of the search is controlled by the KR. The KR is consulted 
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so that an hypothesis of which vessels should appear next in the angio- 
grams can be generated. Vessels that are predicted to appear simultaneously 
are combined into a single proposition headed by AND. For example, 
AND(CORR(BC, bc, b'c'), CORR(BD, bd, b'd') would indicate that vessels BC 
and BD in the model must simultaneously correspond to vessels bc and b'c', 
and bd and b'd" respectively, in an angiogram pair. Such constructions are used 
where the model furcates. Where the model offers a choice between possibili- 
ties that were component to the proto-graph we use NAND rather than XOR 
because this admits the possibility of no component of the KR being present in 
the angiograms. 

As the search space expands the raw correspondences are pushed to the leaves 
of the search space leaving propositioned operators at the branches. At each 
step in the expansion vessels in the KR are locally re-oriented so that the vessels 
that are predicted to appear have a high chance of matching a counter-part in 
the angiogram. The hypothesis can then be tested against the real angiograms 
by geometric matching, as explained above. 

At any stage in the search the tree can be parsed to reveal which compo- 
nents of the KR currently best account for the angiograms. Those components 
that fail to meet a threshold can be disregarded in future expansions and this 
prunes the search space. The expansion stops whenever the KR or the angiograms 
are exhausted of data. In the ideal case this exhaustion occurs in both at the 
same time. The final reconstructed vasculatures are determined by a simple 
parse of the search tree. 

3.3. The natural language module 

The NLP module is concerned with reconstructing the vasculature and AVMs 
from text. This module does this by mapping natural language text into a meaning 
representation which can be used to extract a labelled graph from the knowl- 
edge base. We propose a computational model for translating medical reports into 
a meaning representation. The model is similar in spirit to that incorporated 
in the OSCON (Operating System CONsultant) system that answers English 
questions about computer operating systems (see Mc Kevitt 1986, 1991a, 1991b, 
1992; and Mc Kevitt and Wilks 1987; and Mc Kevitt et al. 1992a, 1992b, 1992c, 
1992d). 

The NLP module will generate hypotheses about the component of vascula- 
ture under scrutiny independent of the VP module. Central to the NLP module 
is the meaning representation that is a formal description of the medical reports. 
The format of the meaning representation reflects the format of the medical report 
representing all of the immediate features mentioned. 

We note that there are a number of standard phrases that the NLP module 
can search for in a medical report. First, there are standard phrases referring to 
specific objects such as AVMs or particular vessels. Second, there are refer- 
ences to attributes of these objects that describe their shape or size. Third, there 
are typically specifications of the spatial or topological relationships between 
objects. Finally, there are references to whether treatment is recommended or 

92 



AUTOMATIC RECONSTRUCTION OF VASCULATURE 247 

not. We propose the meaning representation template shown below. There is 
one root object: 

[[Object(l) Attributes] 
[Object(2) Attributes] 
[Spatial/TopologicalRelationship] 

[Object(N) Attributes] 
[Spatial/TopologicalRelationship] 
[treatment]] 

and many sibling objects: 

[[Object(I) Attributes] 
[Object(J) Attributes] 
[Spatial/TopologicalRelationship] 

[Object(M) Attributes] 
[Spatial/TopologicalRelationship] ] 

This meaning representation is intended to be recursive in nature. We have 
constructed a set of rules that will map the medical text into this meaning rep- 
resentation. 

The terms in the meaning representation will be matched to the KR in order 
to build a graph reconstruction from the medical report. This matching process 
will require a search that is analogous to that described for the vision module. 
The principle difference is the way in which individual matches are performed. 
In the vision module matches between vasculature are determined on a geo- 
metrical basis but here such matches are determined by comparison of text. We 
note also that the NLP module can facilitate learning of medical terminology. 

medical 
reports 

angiograms 

r-1 © v 

d a t a  communication channel process 

Fig. 4. The integrated system architecture. 

reconstruction] 
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3.4. An integrating architecture 

The architecture of the integrated vision and language system is shown in 
Figure 4. 

So far the KR, VP, and NLP modules have all been outlined. We now briefly 
discuss the operation of the decision module and the purpose of the communi- 
cation channels. 

Suppose the VP and NLP modules each worked independently to produce a 
set of reconstructions. Each of these reconstructions should be regarded as an 
hypothesis. We can discover where the modules agree by intersection of  
hypotheses. More generally we can consider Table III below. 

Table i11. Decision table for integrated language and vision. 

(Glang n Gvls) (Glang / Gvis) (Gvl s / Gl~g) Row interpretation 

0 ~ no reconstruction 

0 0 match vision only 

match O language only 

O match match no agreement 

match O ~ full agreement 

match O match vision dominant 

match match O language dominant 

match match match inconclusive 

where Gvis and GI~ 8 are the hypotheses from the VP and NLP modules respec- 
tively, O is the empty set, and "match" denotes a non-empty set. Thus we see 
that the benefit of combining NLP and VP is that they disambiguate one another. 
Of the possibilities shown above the most useful has the interpretation "full 
agreement". In this case and when (G~a.g N Gvis) is a singleton set we have an 
optimal result because then there is a unique solution. We argue that if the NLP 
and VP are allowed to communicate directly then this analysis will not be altered. 
This is because we have added no new information into the overall system so that 
no further ambiguity resolution is possible. Rather, the system will become 

more efficient. 

4. CONCLUSION 

We have described an architecture under which the power of NLP and VP are 
harnessed, via a single KR, for the purpose on reconstructing vasculature. Our 
contributions to this application are (1) a KR that is flexible and robust, (2) a 
novel reconstruction algorithm that is intended to yield more than one plausible 
result and (3) the proposal that medical reports can be used to assist reconstruction. 
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Future work involves closely addressing the issues of geometric matching and 
of learning geometrical shapes, implementing the natural language processor, and 
interfacing it to the visual processor. 

Integrated models of vision and language processing will increase the speed 
and effectiveness of practical applications. More importantly, each processing 
module will help resolve ambiguities raised in the other. It is concluded that 
such investigations will not only aid in the development of practical systems 
but may shed light on the way in which humans integrate language and vision. 

ACKNOWLEDGEMENTS 

We would like to acknowledge: Ulf Bergvall of the Department of Radiology 
at the Royal Hallamshire Hospital; Lee Walton of the Department of Medical 
Physics at the Weston Park Hospital; Jim McGregor at the Department of 
Computer Science at the University of Sheffield; and Peter Andreae at Victoria 
University of Wellington for their comments on this work. 

REFERENCES 

Andr6, E., Herzog, G. & Rist, T. (1988). On the Simultaneous Interpretation of Real-world Image 
Sequences and their Natural Language Descriptions: The System SOCCER. In Proceedings of 
The 8th European Conference on Artificial Intelligence, 449-454, Munich, Germany. 

Ballard, D. H. & Brown, C. M. (1982). Computer Vision. Prentice-Hall, Englewood Cliffs, NJ, U.S.A. 
Baud, R. H., Rassinoux, A.-M. & Scherrer, J.-R. (1991). Knowledge Representation of Discharge 

Summaries. In Proceedings of The Third Conference on Artificial Intelligence in Medicine (AIME 
91), 173-182, Maastricht, June. 

Delaere, D., Smets, C., Suetens, P. & Marchal, G. (1990). A Knowledge-based System for the 
Angiographic Reconstruction of Blood Vessels from Two Angiographic Projections. In 
Proceedings of The North Sea Conference on Biomedical Engineering, Nov. 1990. 

Garreau, M., Coatrieux, J. L., Colleree, R. & Chardenon, C. (1991). A Knowledge Based Approach 
for Reconstruction and Labelling of Vascular Networks from Biplane Angiographic Projections. 
IEEE Transactions on Medical Imaging 10(2): 122-131. 

Hall, P. M. (1993a). Problems in Reconstructing Vasculature and Lesions from Angiograms. 
Technical Report. CS-93-05, Department of Computer Science, University of Sheffield, GB- 
SI 4DP, Sheffield, England, U.K., EU. 

Hall, P. M. (1993b). A Review of Procedures for Reconstruction of the Vasculature from Angiograms. 
Technical Report CS-93-06, Department of Computer Science, University of Sheffield, GB- 
S1 4DP, Sheffield, England, U.K., EU. 

Hall, P. M. (1994a). Simulating and Animating Flow Through a Network of Tubes. Technical 
Report CS-TR-94-13. Department of Computer Science, Victoria University of Wellington, 
Wellington, New Zealand. Or, via ftp.comp.vuw.ac.nz/doc/vuw-publications/CS-TR-94-13, or 
http://www.comp.vuw.ac.nz/Publications/CS -TR-94-13. 

Hall, P. M. (1994b). Simulating Angiography. Technical Report CS-TR-94-15. Department 
of Computer Science, Victoria University of Wellington, Wellington, New Zealand. Or, via 
ftp.comp.vuw.ac.nz/doc/vuw-publications/CS-TR-94-15, or http://www.comp.vuw.ac.nz/ 
Publications/CS-TR-94-15. 

Hall, P. M. (1994c). Simulating Angiography, a User Manual. Technical Report CS-TR-94-17. 
Department of Computer Science, Victoria University of Wellington, Wellington, New Zealand. 

95 



250 PAUL MC KEVITT AND PETER HALL 

Or, via ftp.comp.vuw.ac.nz/doc/vuw-publications/CS-TR-94-17, or http://www.comp.vuw.ac.nz/ 
Publications/CS-TR-94-17. Source code available from: ftp.comp.vuw.ac.nz/pub/graphics/ 
peter/xras- 1.0.tar.gz. 

Hall, P. M., Brady, J., Watt, A. H., Walton, L. & Bergvall, U. (1993). Segmenting and Reconstruction 
of Vascular Lesions from Biplane Angiograms. In Proceedngs of DICTA 1993, Sydney, Macquarie 
University, 802-809. 

Hall, P. M. & McGregor, J. J. (1993). A Graph Based Model of a Collection of Physical Vasculature. 
In Proceedngs of DICTA '93, Sydney, Macquarie University, 414-421. 

Hall, P. M., Andreae, P. & Ngan, M. (1995a). Reconstruction of Blood Vessel Networks from a 
Few Perspective Projections. Artificial Neural Networks and Expert Systems '95, Dunedin, 
New Zealand. 

Hall, P. M., Feltham, R. & Fitzjohn, T. (1995b). Automated analysis of x-ray angiograms. New 
Zealand Computer Society Conference, 1995, Wellington, New Zealand. Also in Technical 
Report CS-TR-94-14, Department of Computer Science, Victoria University of Wellington, 
Wellington, New Zealand. Or, via ftp.comp.vuw.ac.nz/doc/vuw-publications/CS-TR-94-14, or 
http://www.comp.vuw.ac.nz/Publications/CS-TR-94-14. 

Herzog, G., Sung, C.-K., Andrt, E., Enkelmann, W., Nagel, H.-H. & Wahister, W. (1989). 
Incremental Natural Language Description of Dynamic Imagery. In Freksa, C. & Brauer, W. 
(eds.), Wissenbasierte Systeme. 3. lnternationaler GI-Kongress, 153-162. Springer-Verlag: Berlin. 

Herzog, G. & Retz-Schmidt, G. (1990). Das System SOCCER: Simultane Interpretation und 
naturalichsprachliche Beschreibung zeitveranderlicher Szenen. In Perl, J. (ed.), Sport und 
lnformatik, 95-119. Hofmann: Schorndorf. 

Kingsland, L. C. (ed.) (1989). The 13th Annual Symposium on Computer Applications in Medical 
Care, IEEE Computer Society Press, November. 

Kosslyn, S. M. & Pomerantz J. R. (1977). Imagery, Propositions and the Form of Internal 
Representations. Cognitive Psychology 9: 52-76. 

Kunii, T. L. & Shinagawa Y. (1991). New Concepts and techniques to Integrate Diverse Application 
Areas. In Patrikalakis, N. M. (ed.), Scientific Visualization of Physical Phenomena, Proc. 
Computer Graphics International, 3-24. Springer-Verlag: Tokyo. 

Marc, D. (1982). Vision. Freeman: San Francisco. 
Mayhew, J. E. W. & Frisby, J. P. (1981). Physcophysical and Computational Studies Towards a 

Theory of Human Stereopsis. Artificial Intelligence 17: 349-385. 
Maag, W., Wizinski, P. & Herzog, G. (1993). VITRA GUIDE: Multimodal Route Descriptions for 

Computer Assisted Vehicle Navigation. Bereich Nr. 93, Universitat des Saarlandes, FB 14 
Informatik IV, Im Stadtwald 15, D-6600, Saarbrticken 11, Germany, EU, February. 

Mc Kevitt, P. (1986). Building Embedded Representations of Queries about UNIX. Memorandum 
In Computer and Cognitive Science, MCCS-86-72, Computing Research Laboratory, Dept. 3CRL, 
Box 30001, New Mexico State University, Las Cruces, NM 88003-0001, U.S.A. 

Mc Kevitt, P. (1990). Acquiring User Models for Natural Language Dialogue Systems through 
Wizard-of-Oz Techniques. In Proceedings of The Second International Workshop on User 
Modeling, University of Hawaii at Manoa, Honolulu, Hawaii, U.S.A., March. 

Mc Kevitt, P. (1991a). Principles and Practice in an Operating System Consultant. In Partridge, Derek 
(ed.), Artificial Intelligence and Software Engineering, Vol. 1 Chapter on 'A! Mechanisms and 
Techniques in Practical Software', Ablex Publishing Corporation: New York. 

Mc Kevitt, P. (1991h). Analysing Coherence of lntention in Natural-language Dialogue. Ph.D. Thesis, 
Department of Computer Science, University of Exeter, Exeter, GB- EX4 4PT, England, EU, 
September. 

Mc Kevitt, P. (ed.) (1992). Natural Language Processing. Artificial Intelligence Review 6(4): 327-332, 
Dec. Kluwer-Academic Publishers: Dordrecht, The Netherlands. 

Mc Kevitt, P. & Wilks, Y. (1987). Transfer Semantics in an Operating System Consultant: The 
Formalization of Actions Involving Object Transfer. In Proceedings of The Tenth International 
Joint Conference on Artificial Intelligence (IJCAI-87) 1: 569-575, Milan, Italy, EU, August. 

Mc Kevitt, P., Partridge, D. & Wilks, Y. (1992a). Analysing Coherence of Intention in Natural 
Language Dialogue. Technical Report 227. Department of Computer Science, University of 
Exeter, GB- EX4 4PT, Exeter, England, EU. 

96 



AUTOMATIC RECONSTRUCTION OF VASCULATURE 251 

Mc Kevitt, P., Partridge, D. & Wilks, Y. (1992b). Why Machines should Analyse Intention in Natural 
Language Dialogue. Technical Report 233. Department of Computer Science, University of 
Exeter, GB- EX4 4PT, Exeter, England, EU. 

Mc Kevitt, P., Partridge, D. & Wilks, Y. (1992c). Experimenting with Intention in Natural Language 
Dialogue. Technical Report 234. Department of Computer Science, University of Exeter, GB- 
EX4 4PT, Exeter, England, EU. 

Mc Kevitt, P., Partridge, D. & Wiiks, Y. (1992d). Approaches to Natural Language Discourse 
Processing. Artificial Intelligence Review 6(4): 333-364, Dec. Kluwer-Academic Publishers: 
Dordrecht, The Netherlands. 

Mery, C., Normier, B. & Ogonowski, A. (1987). INTERMED: A Medical Language Interface. In 
Proceedings of The Third Conference on Artificial Intelligence in Medicine (AIME 87), 3-8. 
Springer-Verlag: Berlin. 

Neumann, B. & Novak, H.-J. (1986). NAOS: Ein System zur naturalichsprachlichen Beschreibung 
zeitveranderlicher Szenen. Informatik. Forschung und Entwicklung 1(1): 83-92. 

Partridge, D. (1991). A New Guide to Artificial Intelligence. Ablex Publishing Corporation: Norwood, 
New Jersey. 

Pylyshyn, Z. (1993). What the Mind's Eye Tells the Mind's Brain: A Critique of Mental Imagery. 
Psychological Bulletin 80: 1-24. 

Rake, S. T. & Smith, L. D. R. (1987). The interpretation of x-ray Angiograms using a Blackboard 
Control Architecture. In Proceedings of Computer Assisted Radiology 1987, 681-685. 

Ranum, D. L. (1988). Knowledge Based Understanding of Radiology Text. In Greenes, R. A. 
(ed.), The 12th Annual Symposium on Computer Applications in Medical Care, IEEE Computer 
Society Press, November. 

Read, R. C. & Corneil, D. G. (1977). The Graph Isomorphism Disease. J. Graph Theory 1: 339-363. 
Retz-Schmidt, G. (1991). Recognizing Intentions, Interactions and Causes of Plan Failures. User 

Modelling and User-Adapted Interaction 1: 173-202. 
Retz-Schmidt, G. & Tetzlaff, M. (1991 ). Methods for the Intentional Description of Image Sequences. 

Bereich Nr. 80, Universitat des Saarlandes, FB 14 Informatik IV, Im Stadtwald 15, D-6600, 
Saarbrucken 11, Germany, EU, August. 

Sager, N., Friedman, C. & Lyman, M. S. (1987). Medical Language Processing: Compute'r 
Management of Narrative Data. Addison-Wesley: Reading, MA. 

Salamon, G. & Huang, Y. P. (1976). A Radiological Anatomy of the Brain. Springer-Verlag: Berlin. 
Schank, R. C. & Abelson, R. P. (1977). Scripts, Plans, Goals and Understanding: An Inquiry into 

Human Knowledge Structures. Lawrence Erlbaum Associates: Hillsdale, NJ. 
Scherrer, L R,, Cote, R, A. & Mandil, S. D. (1989). (eds.) Computerized Natural Language 

Processing for Knowledge Representation. North-Holland: Amsterdam. 
Schr6der, M. (1992a). Knowledge-based Processing of Medical Language: A Language Engineering 

Approach. In Ohlbaeh, Hans-Jurgen (ed.), Preprints of the Proceedings of The German Conference 
on Artificial Intelligence (GWAI-92), 190-199, Technical Report MP-1-92-232, Max-Planck- 
lnstitut fur lnformatik, July. 

Schr6der, M. (1992b). Supporting Speech Processing by Expectations: A Conceptual Model of 
Radiological Reports to Guide the Selection of Word Hypotheses. In Gunther Gorz (ed.), 
KONVENS 92-1 Konferenz, Verarbeitung naturlicher Spracher, 119-128, Informatik aktuell, 
Nurnberg, October. Springer-Verlag: Berlin. 

Schr'Oder, M. (1992c). Knowledge based Analysis of Radiology Reports using Conceptual Graphs. 
In Pfeiffer, Heather (ed.), Proceedings of The Seventh Annual Workshop on Conceptual Graphs, 
213-222. New Mexico State University (NMSU), Las Cruces, New Mexico, U.S,A., July. 

Sowa, J.F. (1984). Conceptual Structures: Information Processing in Mind and Machine. Wesley: 
Addison. 

Stansfield, S.A. (1986): ANGY: A Rule Base Expert System for Automatic segmentation of Coronary 
Vessels from Digital Subtracted Angiograms. IEEE Transactions on Pattern Analysis and 
Machine Intelligence 8(2): 188-199. 

Suetens, P., van Cleynenbreugel, J., Fierens, F., Smets, C., Oosterlink, A. & Wilms, G. (1987). 
An Expert System for Blood Vessel Segmentation on Subtraction Angiogram. SPIE 767 Medical 
Imaging, 454-459. 

97 



252 PAUL MC KEVITT AND PETER HALL 

Wahlster, W. (1988). One Word Says More than a Thousand Pictures. On the Automatic 
Verbalization of the Results of Image Sequence Analysis. Bereich Nr. 25, Universitat des 
Saarlandes, FB 14 Informatik IV, Im Stadtwald 15, D-6600, Saarbrucken l 1, Germany, EU, 
February. 

Wilensky, R. (1983). Planning and Understanding. Addison-Wesley: Reading, MA. 

98 


