
A general effect representation for operating system commands∗

Paul Mc Kevitt and Zhaoxin Pan

Computing Research Laboratory
Dept. 3CRL, Box 30001

New Mexico State University
Las Cruces, NM 88003-0001, USA

E-mail: INTERNET: {paul,zpan}@nmsu.edu; Phone: 505-646-5109

0. Abstract
OSCON (Operating System CONsultant) is a computer program

which answers, in English, English queries about computer operating sys-
tems. The program answers queries in less than 2.5 seconds.The program
accepts input in the form of typed English queries and answers queries
queries on over 40 commands. OSCONis intended to be a consultant for
various types of users who may ask vague and detailed queries. OSCON is
programmed in Quintus Prolog. Unique to this operating system consultant
is the fact that it answers queries on more than one operating system. This is
enabled by the general effect representation used for describing the effects of
commands. The representation contains information about the effect name,
objects of the effect, and the location where the effect will apply. The repre-
sentation is used for describing commands from the UNIX† and MS-DOS†
operating systems.

1. Intr oduction
This paper describes the representation of operating system commands

used in the OSCON (Operating System CONsultant) program
(OSCON[1.2]). OSCON is a natural language interface which answers
English queries about computer Operating Systems (see Mc Kevitt 1986; Mc
Kevitt 1988; Mc Kevitt & Wilks 1987; Guthrie, Mc Kevitt & Wilks 1989).
OSCON allows the user to enter English queries and then answers them in
English. The program is written in Quintus Prolog and the maximum time
taken to answer a query is 2.5 seconds. OSCON runs on a Sun-3/ME-4 com-
puter and answers on over 40 commands from the UNIX and MS-DOS
Operating Systems. There are four basic types of queries that users tend to
ask and the system handles all of these. OSCON will also answer queries
about options on UNIX commands and complex queries about command
compositions. Thesystem is intended to be used by varying types of users
with different levels of expertise. The architecture of OSCON is modular so
that it can be easily updated and mapped over to new domains.

One of the characteristics of Operating Systems is that they all incor-
porate basic operations like displaying, removing and transferring data.
There are a number of commands which are primitive to different Operating
Systems. For example, the command ‘‘copy’’ in M S-DOS basically per-
forms the same function as ‘‘cp’’ in UNIX. The function is to copy files from
one location to another.

∗ This research is currently funded by U SWESTAdvanced Technolo-
gies, Denver, Colorado, under their Sponsored Research Program.
† UNIX is a trademark of AT&T Bell Laboratories.
† MS-DOS is a trademark of Microsoft Corporation.

The representation of information about commands in OSCON con-
sists of (a) Effects or Postconditions, (b) Preconditions, (c) Command Syn-
tax, and (d) Command Names. For different Operating Systems one would
expect different Preconditions, Syntax and Command Names.However, the
description of the Effect of a command should basically remain the same.
This happens because of the similarity of function for command primitives
from different systems.

2. Knowledge representation in OSCON
One of the problems in building natural language interfaces is to

organise the knowledge of the domain in some form which will be effective.
There are two types of knowledge stored in OSCON: (1) knowledge about
Operating Systems, and (2) knowledge about language.

Detailed knowledge about Operating Systems is contained in a module
of OSCON called DataCon. This type of knowledge includes, command
effects, command preconditions, command syntax and the names of com-
mands. Also, stored here is (1) knowledge about options for commands, (2)
English text description of Operating System concepts like ‘‘files’’ and
‘‘ directories’’, and (3) knowledge about plans or possible command combi-
nations. Knowledge is stored here for the the UNIX and MS-DOS Operating
Systems.

Also, OSCON has stored knowledge about language which includes
words used to refer to command actions.For example, a user may use the
words ‘‘remove’’ , ‘‘delete’’ and ‘‘get rid of’’ , and so on to ask a query about
deleting files and directories. These words must be stored under the general
category of remove. Also, there are many ways in which people ask queries
about actions. A user asking about copying a file will probably specify the
file which must be copied. A user asking about displaying will most likely
specify the location of display. This type of knowledge is called ‘‘under-
standing knowledge’’ and is stored within a module of OSCON called
KnowCon.

3. Knowledge for solving (DataCon)
The knowledge for solving in OSCON consists of files of data that

describe detailed information about Operating Systems.There are four types
of knowledge stored here: (1) Basic command representation, (2) Option
representation, (3) Concept representation, and (4) Plan representation.We
shall discuss the first type of representation here. The others are described in
Guthrie, Mc Kevitt & Wilks (1989).

For both UNIX and MS-DOS commands there are basically four types
of information stored. These are (1) Effects or postconditions, (2) Precondi-
tions, (3) Syntax, and (4) Command Names. In this paper we are mainly

concerned with the Effects or postconditions of commands.

3.1. Effects
Effects, or postconditions, are definitions of the outcome of com-

mands. The effect is defined by a predicate which has a name and three argu-
ments. Thepredicate name is the action and the arguments are (1) object,
(2) object modifier, and (3) location. It turns out that this representation is
useful for both the UNIX and MS-DOS operating system. This happens
because in all operating systems there is a basic set of actions and objects
that they act upon. Shown below are Prolog predicates for the effects of
some UNIX commands. Rule [1] shows the effect for the command ‘‘more’’.
The object for ‘‘more’’ is ‘ ‘file’ ’ and and its modifier ‘‘contents’’. The loca-
tion of output of more is the ‘‘screen’’. One case of the ‘‘cat’’ command [2]
has the same effect as ‘‘more’’. The other effect case of ‘‘cat’’ [3] is defined
as concatenate and describes the concatenation of files.The command ‘‘ls’’
will either display directory contents [4], or file information [5] on the
screen. Thedisplaying information command ‘‘users’’ w ill display user-
names on the screen. Rule [7] describes the ‘‘gemacs’’ command which cre-
ates files, and rule [8] the ‘‘rm’’ command which deletes them.

[1] unixeffect(more, display(file, contents, screen)).
[2] unixeffect(cat, display(file, contents, screen)).
[3] unixeffect(cat, concat(file1, file2, file3)).
[4] unixeffect(ls, display(directory, contents, screen)).
[5] unixeffect(ls, display(file, info, screen)).
[6] unixeffect(users, display(usernames, @, screen)).
[7] unixeffect(gemacs, create(file, @, loc)).
[8] unixeffect(rm, remove(directory, @, loc)).

We show below the Effect similarities for some commands from
UNIX and MS-DOS. Effect representations are predicates with two argu-
ments. The predicate name depicts the relevant Operating System. The first
predicate argument is the Command Name and the second argument the
Effect of the command. Each Command Effect consists of a predicate with
three arguments: (1) Object, (2) Object Modifier, and (3) Object Location.
There are three sets of commands below. These represent examples of (1)
displaying, (2) copying, and (3) removing commands respectively.

The first Command Effect specification below [1] describes the effect
for displaying files. More specifically, the effect specification describes the
displaying of files on the screen. Note that the effect specification is the
same for both the UNIX and MS-DOS Operating Systems.The difference is
in the command names.The second Command Effect specification
describes the effect for copying files.Both files and directories can be
copied and there are Effect specifications for each case here. In UNIX the

command is ‘‘cp’’ while in MS-DOS it is ‘‘copy’’. The third [3] Command
Effect representation represents the removal of fi les in Operating Systems.
The Effect representation for remove declares that a file can be removed
from some location. The command in UNIX is ‘‘rm’ ’ while in MS-DOS it is
‘‘ del’’.

[1] unixeffect(more,display(file,contents,screen)).
doseffect(type,display(file,contents,screen)).

[2] unixeffect(cp,copy(file,x,loc1)).
unixeffect(cp,copy(directory,x,loc1)).
doseffect(copy,copy(file,x,loc1)).
doseffect(copy,copy(directory,x,loc1)).

[3] unixeffect(rm,remove(file,x,loc0)).
doseffect(del,remove(file,x,loc0)).

Therefore, it is possible to define generic Effect definitions for Operat-
ing Systems and use these definitions for different command names in differ-
ent Operating Systems.We hope to add in more information about other
Operating Systems such as VAX VMS† to further demonstrate the generality
of OSCON.

3.2. Preconditions
Preconditions are lists of objects which are necessary for a command

to be executed. Hereare some examples of preconditions for commands
from UNIX. Rules [1] and [2] show that ‘‘more’’ and ‘‘cat’’ hav ethe precon-
dition ‘‘file’ ’. The command ‘‘mkdir’ ’ has the precondition ‘‘directory’’ and
‘‘ cp’’ has no precondition.

[1] precon(more, [file]).
[2] precon(cat, [file]).
[3] precon(mkdir, [directory]).
[4] precon(cp, []).
Of course the preconditions for MS-DOS commands have different com-
mand names. Shown below are the equivalent MS-DOS commands.

[1] dosprecon(type, [file]).
[2] dosprecon(type, [file]).
[3] dosprecon(md, [directory]).
[4] dosprecon(copy, []).

† VAX VMS is a Trademark of the Digital Equipment Corporation.

3.3. Syntax
The syntax of commands is defined as a structure which contains the

name of the command and then its syntactic definition of use. Shown below
are some examples of the syntax for UNIX commands. The syntax rules are
three place lists containing (1) Command name, (2) Optionname (filled in
from context), and (3) Syntax description.

[1] unixsyn(more, Optionname, "[more <filename>]").
[2] unixsyn(cat, Optionname, "[cat <filename>]").
[3] unixsyn(lpr, Optionname, "[lpr <filename>]").
[4] unixsyn(ls, "[ls <filename>]").
[5] unixsyn(ls, -l, "[ls -l <directoryname>]".
The equivalent syntax for commands from MS-DOS are shown below.

[1] dossyn(more, X, [more, X, "< <filename>"]).
[2] dossyn(type, X, [type, X, "<filename>"]).
[3] dossyn(type, X, [type, X, "<filename> > prn"]).
[4] dossyn(dir, X, [dir, X, " <filename>"]).
[5] dossyn(dir, X, [dir, X, " <directoryname>"]).

4. Thearchitecture of OSCON
The architecture of the OSCON system is defined as six distinct mod-

ules. There are two arguments for modularising any system: (1) It is much
easier to update the system at any point, and (2) it is easier to map the sys-
tem over to another domain. The six modules in OSCON are as follows: (1)
ParseCon: natural language syntactic grammar parser which detects query-
type, (2) MeanCon: a natural language semantic grammar which determines
query meaning, (3) KnowCon: a knowledge representation for understand-
ing, (4) DataCon: a knowledge representation for solving, (5) SolveCon: a
solver for resolving query representations against knowledge base represen-
tations, and (6) GenCon: a natural language generator for generating answers
in English.
ParseCon consists of a set of predicates which read natural language input
and determine the type of query being asked by the user. For each type of
query there are tests for characteristic ways of asking that query.
MeanCon consists of predicates which check queries for important informa-
tion. There are predicates which check for mentioned (1) command names
(e.g. ‘‘ls’ ’, ‘ ‘more’’), (2) command-effect specifications (e.g ‘‘see a file’’),
and (3) concepts (e.g. ‘‘file’ ’, ‘ ‘directory’’). In case (2) there are specific
types of information searched for: (1)verb specifying action (e.g. ‘‘see’’,
‘‘ remove’’), (2) object of action (e.g. ‘‘file’ ’), (3) modifier of object (e.g.
‘‘ contents’’), and (4) location of object (e.g. ‘‘screen’’). MeanCon also

checks for option verbs (e.g ‘‘number’’) and option verb objects (e.g.
‘‘ lines’’). MeanConcontains a dictionary of English words that define cate-
gories such as ‘‘person’’, ‘ ‘modifier’’, ‘ ‘article’’, ‘ ‘quantifier’’ and ‘‘preposi-
tions’’.
KnowCon consists of a set of data files to represent the knowledge about the
domain language used for understanding English queries. Files contain
information about verbs which categorise types of command or action.
Examples of categories of action are: (1) creating, (2) screenlisting, (3) print-
erlisting, (4) sending, (5) transferring, and (6) removing. KnowCon also con-
tains grammar rules for Operating System objects like ‘‘date’’, ‘ ‘file’ ’ and
‘‘ directory’’. The grammar rules encode characteristic ways in which people
talk about the objects in English.
DataCon consists of a set of data files defining detailed information about
Operating System commands.This information is stored for the UNIX and
MS-DOS Operating Systems.The data for UNIX is split among seven files:
(1) command effects, (2) command preconditions, (3) command syntax, (4)
command names, (5) command precondition options, (6) command effect
options, and (7) command name options. The first four files contain basic
data about commands while the last three contain data for options.For MS-
DOS, data is contained in just four files which are similar to the first four
here.
SolveCon is a solver which constructs and matches representations of user
queries (called Formal Queries) against DataCon and produces an instanti-
ated Formal Query which serves as an answer for the query. SolveCon is the
driver of the OSCON program because it contains the information for map-
ping English sentences into instantiated answers. It contains a set of complex
rules which call other OSCON modules to determine (1) query type, and (2)
the instantiated Formal Query for that query.
GenCon is the natural language generator for OSCON and maps instantiated
information from SolveCon into English answers. Here, there are algorithms
for printing out (1) effects, (2) preconditions, and (3) syntax of commands.
Also, there are predicates for printing out examples of the use of commands
and command compositions.The type of query asked by the user deter-
mines the information mapped to the user.

5. Querycoverage of OSCON
The problem with building effective natural language interfaces is that

there are many ways of asking English queries. The system must attempt to
capture all the different possibilities. One way to do this is to capture the
basic types of queries that people ask. This gives the system the power of
answering a large number of queries when it caters for each type.

There are four basic types of query that people ask about Operating
Systems. These are: (1) request-for-attribute of mentioned command (e.g.
‘‘ What does rm do?’’), (2) request-for-explanation(command) (e.g. ‘‘What is
more?’’), (3) request-for-command for mentioned effect (e.g. ‘‘How do I see
my file on the printer?’’), and (4) request-for-explanation(concept) (e.g.
‘‘ What is a file?’’). There are three cases of type (1): (1) request-for-
attribute(effect) (e.g. ‘‘What does rm do?’’), (2) request-for-attribute(syntax)
(e.g. ‘‘What is the syntax of cp?’’), and (3) request-for-attribute(precondi-
tion) (e.g. ‘‘What is needed for rm?’’). Eachof these basic query types can
also be asked in terms of options. Examples are, ‘‘What option of ‘ls’ shows
the number of bytes in my files?’’ (request-for-option + mentioned com-
mand), ‘‘What does ls -l do?’’ (request-for-effect + option), ‘‘How do I
rename a file without having reported errors?’’ (request-for-command +
option), ‘‘What are the options on ls?’’ (request-for-options of command),
‘‘ What does the -i option normally do?’’ (request-for-explanation(concept)).
Users can also ask queries involving command compositions. An example is,
‘‘ How do I list my files and print them on the printer?’’ This query involves a
query about listing files (request-for-command) and then printing them on
the printer (request-for-command).

The OSCON program currently answers (1) the four basic query
types, (2) queries about options, and (3) command composition queries for
both the UNIX and MS-DOS Operating Systems.The fact that queries are
of a given type aids in understanding and generating answers to them. For
example, queries of type (1) above will always include a command name.
Therefore, the parser for OSCON could check for command names and if it
found them, then discover that the query was of type (1). Also, the generator
would generate an answer, in a particular format, depending on the type of
query. Rules of thumb such as these also speed up the time it takes OSCON
to answer queries. Although one can add such rules of thumb into the inter-
face it does not reflect a short-cut to natural language parsing.For example,
there is no such short cut to understanding the query, ‘‘How do I print a file
on the Imagen with no page burst?’’ Understanding queries is a combination
of both (1) filtering the query type, and then (2) understanding the query.
Examples of queries answered by OSCON[1.2] are shown in Appendix A.
These examples are listed by query type.

6. Thesolving algorithm
The Solver basically searches queries for three types of information:

(1) Command Names, (2) English Descriptions of command effects, and (3)
Concepts. The search process in conducted in the following order.
[1] SolveCon checks to see if a command name is mentioned in the query.
Then, (a) SolveCon checks if an option (e.g. -l) is mentioned. If (a) fails
then (b) SolveCon checks if the query is request-for-option. This check is

done by having ParseCon check the syntax of the query, having MeanCon
check for an English Description of an option effect. If either (a) or (b) are
satisfied SolveCon will retrieve from the database Option Preconditions,
Option Effect, Option Syntax, and Option Name.

If (a) and (b) have both failed then (c) SolveCon checks if the query is
a request-for-attribute(precondition), request-for-attribute(effect) or request-
for-attribute(syntax) query. Here, SolveCon checks the syntax again using
ParseCon. If(c) fails, then (d) SolveCon checks the query for request-for-
explanation(command) query. ParseCon is involved here too.If either (c) or
(d) are satisfied SolveCon will retrieve Command Preconditions, Command
Effect, Command Syntax, and Command Name from the database.If (d)
fails then SolveCon moves on to step [2].

[2] SolveCon checks the query semantics. In this case the user must
have asked an English query with no command names. (i) SolveCon has
ParseCon check the syntax of the query. (ii) Then, SolveCon calls MeanCon
to check for a Primary Verb, Verb Object, Modifier, and Location.SolveCon
will retrieve Command Preconditions, Command Effect, Command Syntax,
and Command Name from the database.Next, (iii) SolveCon has MeanCon
check for a Secondary Verb (option action), and Secondary Verb Object.
SolveCon will retrieve from the database Option Preconditions, Option
Effect, and Option Syntax.If step [2] fails then SolveCon goes on to step
[3].

[3] SolveCon checks the query semantics. In this case the user must
have asked an English query involving no command names. Also, the query
must be about command combinations, or pipes, otherwise step [2] would
have passed. SolveCon checks for the existence of a command combination
in the user query. SolveCon has MeanCon check for the existence of a sen-
tence connector like ‘‘and’’. If this occurs then is it possible that the query
involves command combination.SolveCon then calls the SolveCon algo-
rithm again for (1) the piece of the query before the connector, and (2) the
piece of the query after the connector. The data returned from (1) and (2) is
integrated. If[3] fails then SolveCon tries step [4].

[4] SolveCon checks query syntax through ParseCon. ThenMeanCon
searches for concepts mentioned in the query. Examples of such concepts are
‘‘ ada’’ and ‘‘protection’’.

6.1. Structures returned
The step of SolveCon which succeeds will return an instantiated For-

mal Query to the generator. In step [1], if cases (a) or (b) succeed, an instan-
tiated Formal Query will be returned containing the following: (1) Option
Preconditions, (2) Option Effect, (3) Option Syntax, (4) Option Name, and
(5) Query Type. In step [1], if cases (c) or (d) succeed, the instantiated

Formal Query contains: (1) Command Preconditions, (2) Command Effect,
(3) Command Syntax, (4) Command Name, and (5) Query Type.

In step [2] the Formal Query returned will contain slots for: (1) Com-
mand Preconditions, (2) Command Effect, (3) Command Syntax, (4) Option
Preconditions, (5) Option Effect, (6) Option Syntax, and (7) Query Type.
The complete structure will be instantiated when step [2] involves options.
However, only parts (1),(2),(3), and (7) are instantiated when there is no
mention of options.

With step [3] a list containing two instantiated Formal Queries is
returned. Eachformal query will contain: (1) Command Preconditions, (2)
Command Effect, (3) Command Syntax, (4) Command Name, and (5) Query
Type.

In step [4] a Formal Query with three pieces of information is
returned. Thestructure contains (1) the Concept Name, (2) Concept
Description, and (3) Query Type.

7. Natural language generation (GenCon)
The final phase of the OSCON program is to map an instantiated for-

mal representation into an English answer. There are two types of answer
which may be returned to the user: (1) Stored English sentences describing
some concept which are contained in the DataCon knowledge base, and (2)
English sentences mapped out from instantiated Formal Queries.

The natural language generator for the OSCON system is used to map
instantiated formal queries into English answers. The generator has five pri-
mary components:
[1] psyntax: gives the syntax for a command
[2] peffect: gives the effect of some command
[3] pexample:gives an example on the use

of some command
[4] ppre: gives the preconditions for some command
[5] ppipe: gives the commands involved in some

piping example and an example of the piping
For each of the major query types various configurations of printing

components are used. There are three types of request-for-attribute query:
(1) request-for-attribute(precondition), (2) request-for-attribute(effect), and
(3) request-for-attribute(syntax). Inthese cases the components [1], [2], [3]
and [4] are combined in order. Printing out the syntax for some command is
trivial. Thesyntax is already stored in the DataCon knowledge base. This is
just returned to the user. Printing out preconditions is quite trivial too as all
GenCon has to do is to print those preconditions retrieved from the DataCon
precondition information.

Generation for request-for-attribute(effect) queries is more complex.
GenCon will print command effects by (1) checking to see if the output
should be in plan/pipe form, and if it is, then generating the answer in
plan/pipe form; (2) generating the (a) Command Syntax, (b) Effect and (c)
Preconditions for the command.The Effect is generated from the instanti-
ated Formal Query produced by SolveCon which contains action, object,
object modifier and object location. The latter information is generated in
sentence form. Some interleaving information such as the output of preposi-
tions between object modifier and location are handled too.

For request-for-command queries the latter algorithm is used.For
request-for-explanation(command) components [1], [2], [3] and [4] are used.
For request-for-explanation(concept), the answer is output from a stored
piece of text. Often users ask queries about commands as concepts.The
generation of these is simple as the definitions of such concepts are just
stored as English descriptions in the first place. Therefore, all GenCon has
to do is to map the stored sentences into English answers. We hav ewritten a
simple algorithm which maps the English text into pretty format on the
screen.

8. An example
In this section we show an example of how the query ‘‘How do I see

my files with numbered lines?’’ i s understood and answered by OSCON.
First, SolveCon attempts to find out the type of query being asked. Initially,
SolveCon tries step [1] to match the query as one mentioning a command
and there is no match.Then step [2] is tried and a match occurs. The query
is a semantic one. ParseCon is called forth and a syntactic match is found.
‘‘ How do I’’ matches the syntactic form [how, do, i] for what-command
queries.

Next, SolveCon calls MeanCon which analyzes the meaning of the
sentence. (i) Findverb checks for a verb and gets ‘‘see’’. From KnowCon,
‘‘ display’’ is marked as the action. Then, (ii) findobj checks ‘‘How do I’’
and ‘‘my files with numbered lines’’ f or objects. ‘‘Files’’ is matched as an
object. Datafrom the query (i.e.display(file,contents,*)) is matched against
the DataCon database Effects and a match is found withdisplay(file,con-
tents,screen). This effect match from the query data to DataCon will allow
SolveCon to retrieve (1) Command Preconditions ([file]), (2) Command
Effect (display(file,contents,screen)), (3) Command Syntax (cat -n <file-
name>), and (4) Command Name (cat).

Next, the query is checked for existence of a secondary action. The
findverb predicate retrieves ‘‘numbered’’ as a secondary action and its object
is retrieved as ‘‘lines’’. This representation is matched against the option
database and number(lines) from the query matches number(lines) in the

Option Effect definition in the database. The DataCon database is refer-
enced and (1) Option Preconditions, (2) Option Effect, and (3) Option Name
are returned. The data retrieved is integrated to form an instantiated Formal
Query which is passed to the generator. The representation for this query is
as shown below.

cquery(display(file,contents,screen), %Command Effect
"with numbered lines", % Option Effect
[cat -n <filename>], % Syntax
[file]), % Preconditions
cat), % Command Name
-n). % Option Name

The GenCon generator takes the Formal Query and maps it into an
English answer. (i) psyntax will print out ‘‘cat -n <filename>’’, (ii) peffect
will display ‘‘will display file contents on the screen.’’ , and (iii) popeffect
will display ‘‘with numbered lines.’’ T herefore, the complete answer gener-
ated for this query is:

‘cat -n <filename>’ will display file contents
on the screen with numbered lines.

9. Current state of the implementation
OSCON can answer queries in 2.5 seconds when the Sun computer is

at low load. OSCON answers four major types of query (1) request-for-
attribute of mentioned command, (2) request-for-explanation(command), (3)
request-for-command for mentioned effect, and (4) request-for-explana-
tion(concept). Thereare three cases of type (1): (1) request-for-
attribute(precondition) (2) request-for-attribute(effect), and (3) request-for-
attribute(syntax). Inreal terms this brings the query types covered up to six.
The system answers the latter three query types with options and will soon
answer the other types with options.OSCON’s database contains informa-
tion on 40 UNIX and 40 MS-DOS commands with their respective precondi-
tions, effects, syntax and command names. OSCON has 20 grammar rules
for understanding the ways that users ask queries about categories of com-
mands. OSCONalso contains 10 plan sets for possible combinations of
commands.

10. Comparisonto other systems
There are basically two other natural language consultants for Operat-

ing Systems.These are the Unix Consultant (UC), and the Sinix Consultant
(SC).

The Unix Consultant (UC) (see Chin 1988, Wilensky et al. 1984,
1986, 1988) is a natural language consultation system for UNIX, and is in
many ways similar in scope and intent to OSCON.However, there are some
key differences: (1) While OSCON is a specialised system with the sole goal
of providing detailed expert help, UC has the broader goal of studying
knowledge representation and planning (as well as natural language under-
standing) at a basic level. As such, UC takes a fundamentally different
approach to knowledge representation, in that employs a much more general
knowledge representation and planning mechanism, with a somewhat cogni-
tive flavor. UC contains only one knowledge base of Operating System con-
cepts which must serve both the understanding and the solving phases of
query resolution, while OSCON incorporates specialised representations for
each function.Hence, UC must sacrifice some of the specialisation built
into OSCON.

(2) Not unexpectedly, an examination of the examples presented in
Wilensky et al. (1986) suggests that UC will have to perform far more exten-
sive procedures to solve a giv en query, and that it may not be able to answer
some of the very detailed queries that OSCON will address; (3) UC is not
intended to be a consultant which will help users migrating from one system
to another. UC is a consultant for the UNIX Operating System. We do not
claim that the UC system could not act as a consultant on other Operating
Systems. We claim that the Berkeley team have not concerned themselves
with putting information from more than one Operating System in their pro-
gram; (4) It is a characteristic of computer Operating Systems that com-
mands can be combined in various ways to execute complex processes. In
Wilensky et al. (1986, p. 6-10) there are a number of examples of the queries
which the UC system handles. These examples are intended to show the
kinds and scope of requests answered by the system. None of the examples
involve command compositions but operations of single commands.The
UC system has no capability for answering complex natural language
queries which involve command sequencing; UC and OSCON are not truly
competitors, but rather systems with different emphases.

The Sinix Consultant (SC) (see Kemke 1986, 1987; Hecking et al.,
1988) is a broad-based UNIX help system It is similar to OSCON in that it is
designed from the start to be an Operating System consultant rather than a
more general system into which a UNIX model is embedded.Although SC
contains a rich knowledge base, which reflects the technical aspects of the
domain as well as the users view of the system, the focus of SC, like UC, is
to provide help on the use of individual commands, rather than the intercon-
nection of several. Our knowledge representation of plans has more empha-
sis on answering complex queries. Thereis no mechanism whereby the SC
system will understand complex command sequences. However, the authors
do predict in Hecking et al. (1988) that future development of the SINIX

Knowledge Base will include ‘‘combinators’’ f or I/O-redirection and
pipelining. TheSC system has a dialogue modeling component, for (1) han-
dling elliptical queries, and (2) anaphora.

There are several other consultation systems for Operating Systems,
including CMS-HELP developed by Yun (1984), TVX by Billmers & Garifo
(1985), Wizard (see Shrager & Finin 1982; Finin 1983), and USCSH by
Matthews & Pharr (1987).However, all of these systems appear to be either
far less ambitious in scope than OSCON, or else have a totally different
emphasis. Inparticular, all appear to employ rather simple surface models
of UNIX.

11. Conclusionand further work
It is concluded that it is possible to build a computer program which

will answer natural language user queries about Operating Systems. We hav e
shown how this is done by the OSCON system. The OSCON program
answers English queries in English. Each query is answered within seconds.

The development of any program like OSCON is enhanced if the pro-
gram is built in a modular form where each module has a distinct function.
This has been done for OSCON which is divided up into six distinct mod-
ules. This methodology allows for easy update of the program and also will
allow the possibility of mapping the program over to a new domain.

In comparing OSCON to the other three systems available today
OSCON turns out to have a different emphasis. The OSCON system is more
concerned with the detail of Operating Systems and natural language pro-
cessing rather than an experiment on cognitive modeling. Also, OSCON is
the only system which answers queries involving command combinations.

There are three areas of further work proposed for OSCON which are
all part of a dialogue interface to be added to the system. These are: (1) con-
text storage mechanisms, (2) reference determination algorithms, and (3)
user modeling capabilities (see Chin, 1988). Dialogue management is
important and it will permit the user to ask queries without having to spell
out queries in elaborate English.Initial thoughts on this research are
reported in Ball et al. (1989).

12. Acknowledgements
We would like to thank Yorick Wilks for guidance on the natural lan-

guage aspects of OSCON and Louise Guthrie for programming parts of the
system. Also,Catherine Marshall, Hans Brunner, Andy Parng and Scott
Wolff of the Intelligent Customer Assistance Project at U SWESTAdvanced
Technologies are thanked for consultations on this research.

13. References
Ball, Jerry, John A. Barnden, Sylvia Candelaria de Ram, David Farwell,

Louise Guthrie, Cheng-Ming Guo, Stephen Helmreich, Paul Mc
Kevitt, and Liu Min (1989)The need for belief modelling in natural
language processing. In Proc. of the International Conference on
Cross-Cultural Communication (ICC-CC-89), Trinity University, San
Antonio, Texas, March.

Billmers, Meyer A. & Michael G. Carifio (1985)Building knowledge-based
operating system consultants. Proceedings of the Second Conference
on Artificial Intelligence Applications, pp. 449-454, Miami Beach,
December.

Chin, David (1988) ‘‘Exploiting user expertise in answer expression’’ I n
Proceedings of the Seventh National American Conference on Artifi-
cial Intelligence (AAAI-88), St. Paul, Minnesota, Vol. 2, 756-760,
August.

Guthrie, Louise, Paul Mc Kevitt & Yorick Wilks (1989)OSCON: An operat-
ing system consultant. In Proc. of the Fourth Annual Rocky Mountain
Conference on Artificial Intelligence (RMCAI-89), Subtitled ‘‘A ug-
menting Human Intellect By Computer’’, 103-113, Registry Hotel,
Denver, Colorado, June.

Hecking, M. C. Kemke, E. Nessen, D. Dengler, M. Gutmann & G. Hector
(1988) ‘‘The SINIX consultant —a progress report’’ M emo Nr. 28,
Universitat des Saarlandes, FB 10 Informatik IV, Im Stanwald 15, D
— 6600 Saarbrucken 11, Fed. Rep. of Germany, August.

Kemke, Christel (1986)The SINIX Consultant — Requirements, Design, and
Implementation of an intelligent Help System for a UNIX Derivative.
Universitat des Saarlandes, KI-Labor (SC-Project), Bericht Nr. 11,
October.

Kemke, Christel (1987)Representation of domain knowledge in an intelli-
gent help system. In Human-Computer Interaction — INTERACT
’87, H.J. Bullinger and B. Shakel (Eds.), pp. 215-220.Amsterdam:
Elsevier Science Publications B.V. (North-Holland).

Matthews, Manton & Walter Pharr (1987)Knowledge acquisition for active
assistance.Preprints of the First International Workshop on Knowl-
edge representation in the UNIX help domain, University of Califor-
nia, Berkeley, California, December.

Mc Kevitt, Paul (1986)Formalization in an English interface to a UNIX
database. Memoranda in Computer and Cognitive Science,
MCCS-86-73, Computing Research Laboratory, Dept. 3CRL, Box
30001, New Mexico State University, Las Cruces, NM 88003-0001.

Mc Kevitt, Paul (1988)Rules of inference in an operating system consul-
tant. In Proc. of the First Irish National Conference on Artificial
Intelligence and Cognitive Science (AI/CS-88), Vol. 1, University
Industry Center, University College Dublin, Dublin, Eire (Republic of
Ireland), European Community (EC), September.

Mc Kevitt, Paul & Yorick Wilks (1987)Tr ansfer Semantics in an Operating
System Consultant: the formalization of actions involving object trans-
fer.. In Proceedings of the Tenth International Joint Conference on
Artificial Intelligence (IJCAI-87), Vol. 1, 569-575, Milan, Italy,
August.

Shrager, Jeff & T im Finin (1982)An expert system that volunteers advice.
Proceedings National Conference on Artificial Intelligence
(AAAI-82), pp. 339-340.

Wilensky, Robert; Arens, Yigal & Chin, David (1984)Talking to UNIX in
English: An overview of UC. Communications of the ACM, Vol. 27,
No. 6, June, 574-593.

Wilensky, Robert; Mayfield, Jim; Albert, Anthony; Chin, David; Cox,
Charles; Luria, Marc; Martin, James and Wu, Dekai (1986)UC — a
progress report. Report No. UCB/CSD 87/303, Computer Science
Division (EECS), University of California, Berkeley, California
94720, July.

Wilensky, Robert; David N. Chin, Marc Luria, James Martin, James May-
field and Dekai Wu (1988) The Berkeley UNIX Consultant project.
Computational Linguistics, Vol. 14, No. 4, 35-84, December.

Yun, David Y & David Loeb (1984)The CMS-HELP expert system. Pro-
ceedings International Conference on Data Engineering, IEEE Com-
puter Society, 459-466, Los Angeles.

14. Appendix A
This appendix contains a list of some of the queries which

OSCON[1.2] currently answers. The maximum time taken to answer any
query is 2.5 seconds.The query sets have been divided into four major types
(1) request-for-attribute of mentioned command, (2) request-for-explana-
tion(command), (3) request-for-command for mentioned effect, and (4)
request-for-explanation(concept).

| ?- oscon.
OSCON Program 1.0 (Sun-3, Sun Unix 4.2)
Copyright (C) 1988, Computing Research Laboratory.

All rights reserved.
Dept. 3CRL, Box 30001, NMSU, Las Cruces, NM (505) 646-5466
U S WEST Advances Technology
Please input your question ending with with a ‘?’
Write ‘quit.’ when you are finished

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; request-for-attribute(effect)

--> what does ls do?
‘ls <directoryname>’ will display directory contents on the screen.

--> what happens with rm?
‘rm <filename>’ will remove a file from your current directory.

--> what is the effect of date?
‘date’ will display a date on the screen.

--> what does more -c do?
‘more -c’ will display each page after clearing the screen.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; request-for-attribute(syntax)

--> what is the syntax of rm?
It has the syntax ‘rm <filename>’.

--> How do i use cp?
It has the syntax ‘cp <file1> <file2>’.

--> how does he use more?
It has the syntax ‘more <filename>’.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; request-for-explanation(command)

--> what is ls?
‘ls’ is a command.
It has the syntax ‘ls <directoryname>’.
‘ls <directoryname>’ will display directory contents on the screen.

--> what is more?
‘more’ is a command.
It has the syntax ‘more <filename>’.
‘more <filename>’ will display file contents on the screen.
‘more’ only takes the argument ‘file’

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; request-for-command for mentioned effect

--> how do i see my file?
‘more <filename>’ will display file contents on the screen.

--> how do i see my file on the screen?
‘more <filename>’ will display file contents on the screen.

--> how do i see my file on the printer?
‘lpr <filename>’ will display file contents on the printer.

--> how do i see all my files?
‘more <filename>’ will display file contents on the screen.

‘ls <directoryname>’ will display directory contents on the screen.

--> how do i see this file?
‘more <filename>’ will display file contents on the screen.

--> how do i see that file?
‘more <filename>’ will display file contents on the screen.

--> how do i see his files?
‘more <filename>’ will display file contents on the screen.
‘ls <directoryname>’ will display directory contents on the screen.

--> how do i read my files?
‘more <filename>’ will display file contents on the screen.
‘ls <directoryname>’ will display directory contents on the screen.

--> how do i list my files and print my files?
‘more <filename>’ will display file contents on the screen.
‘lpr <filename>’ will display file contents on the printer.
To display file contents on the printer use ‘more <filename> | lpr’

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; request-for-explanation(concept)

--> what are aliases?
alias is the ability to establish shorthand names
for frequently used but long-winded commands.

--> quit.

over
yes
| ?-

