A general effect representation for operating system commandsL]

Paul Mc Kevitt and Zhaoxin Pan

Computing Research Laboratory
Dept. 3CRL, Box 30001
New Mexico State University
Las Cruces, NM 88003-0001, USA
E-mail: INTERNET: { paul ,zpan} @nmsu.edu; Phone: 505-646-5109

0. Abstract

OSCON (Operating System CONsultant) is a computer program
which answers, in English, English queries about computer operating sys-
tems. The program answers queries in less than 2.5 secbhdgrogram
accepts input in the form of typed English queries and answers queries
gueries on wer 40 mmmands. OSCONs intended to be a consultant for
various types of users who may ask vague and detailed queries. OSCON is
programmed in Quintus Prolog. Unique to this operating system consultant
is the fct that it answers queries on more than one operating system. This is
enabled by the generafedt representation used for describing the effects of
commands. The representation contains information about the effect name,
objects of the effect, and the location where the effect will apfine repre-
sentation is used for describing commands from the UNIXT and MS-DOST
operating systems.

1. Introduction

This paper describes the representation of operating system commands
used in the OSCON (Operating System CONsultant) program
(OSCONJ1.2]). OSCON is a natural language irateef which answers
English queries about computer Operating Systems (seeeMit K986; Mc
Kevitt 1988; Mc Kevitt & Wilks 1987; Guthrie, Mc Kvitt & Wilks 1989).
OSCON allows the user to enter English queries and then answers them in
English. The program is written in Quintus Prolog and the maximum time
taken to answer a query is 2.5 seconds. OSCON runs on a Sun-3/ME-4 com-
puter and answers onve 40 commands from the UNIX and MS-DOS
Operating Systems. There are four basic types of queries that users tend to
ask and the system handles all of these. OSCON will also answer queries
about options on UNIX commands and comptgieries about command
compositions. Theystem is intended to be used by varying types of users
with different levels of expertise. The architecture of OSCON is modular so
that it can be easily updated and mappesl t new comains.

One of the characteristics of Operating Systems is thatathacor-
porate basic operations dikdsplaying, removing and transferring data.
There are a number of commands which are pumit different Operating
Systems. Br example, the commandcbpy” in M S-DOS basically per
forms the same function dsp’’ in UNIX. The function is to copfiles from
one location to another.

OThis reseach is currently funded by U SWESTAdvanced Technolo-
gies, Dener, Colorado, under their Sponsored Research Program.

T UNIX is a trademark of AT&T Bell Laboratories.
T MS-DOS is a trademark of Microsoft Corporation.

The representation of information about commands in OSCON con-
sists of (a) Hects or Postconditions, (b) Preconditions, (c) Command Syn-
tax, and (d) Command Names. For different Operating Systems audd w
expect different Preconditions, Syntax and Command NarHesvever, the
description of the Effect of a command should basically remain the same.
This happens because of the similarity of function for command prasniti
from different systems.

2. Knowledge representation in OSCON

One of the problems inullding natural language interfaces is to
organise the knwledge of the domain in some form which will béeefive.
There are tw types of knowledge stored in OSCON: (1) Wwhedge about
Operating Systems, and (2) knowledge about language.

Detailed knavledge about Operating Systems is contained in a module
of OSCON called DataCon. This type of knowledge includes, command
effects, command preconditions, command syntax and the names of com-
mands. Also, stored here is (1) kvledge about options for commands, (2)
English text description of Operating System concepts files” and
“ directories’, and (3) knavledge about plans or possible command combi-
nations. Knowledge is stored here for the the UNIX and MS-DOS Operating
Systems.

Also, OSCON has stored knwtedge about language which includes
words used to refer to command actio®sx example, a user may use the
words ‘remove’, “delete’ and “get rid of’ , and so on to ask a query about
deleting files and directories. Theserds must be stored under the general
categyory of remae. Also, there are mgnways in which people ask queries
about actions. A user asking about copying a file will probably specify the
file which must be copied. A user asking about displaying will mostylik
specify the location of displayrhis type of knowledge is calleduhder-
standing knwledge’ and is stored within a module of OSCON called
KnowCon.

3. Knowledge for solving (DataCon)

The knowledge for solving in OSCON consists of files of data that
describe detailed information about Operating Systerhere are four types
of knowledge stored here: (1) Basic command representation, (2) Option
representation, (3) Concept representation, and (4) Plan represent&éon.
shall discuss the first type of representation here. The others are described in
Guthrie, Mc Kewtt & Wilks (1989).

For both UNIX and MS-DOS commands there are basically four types
of information stored. These are (1) Effects or postconditions, (2) Precondi-
tions, (3) Syntax, and (4) Command Names. In this paper we are mainly

concerned with the Effects or postconditions of commands.

3.1. Effects

Effects, or postconditions, are definitions of the outcome of com-
mands. The é&ct is defined by a predicate which has a name and tlgee ar
ments. Thepredicate name is the action and the arguments are (1) object,
(2) object modifierand (3) location. It turns out that this representation is
useful for both the UNIX and MS-DOS operating system. This happens
because in all operating systems there is a basic set of actions and objects
that thg act upon. Shovn belaw are Prolog predicates for the effects of
some UNIX commands. Rule [1] shows th&eef for the commandrhore”.

The object for‘more” is ‘*file’” and and its modifier'contents’. The loca-
tion of output of more is théstreen’. One case of thécat” command [2]
has the same effect amore”. The other effect case dtat” [3] is defined
as concatenate and describes the concatenation of Tilescommand'|s”

will either display directory contents [4], or file information [5] on the
screen. Theisplaying information commandusers’ will display user
names on the screen. Rule [7] describes‘tf@macs’ command which cre-
ates files, and rule [8] the “rircommand which deletes them.

[1] unixeffect(more, display(file, contents, screen)).
[2] unixeffect(cat, display(file, contents, screen)).

[3] unixeffect(cat, concat(filel, file2, file3)).

[4] unixeffect(ls, display(directory, contents, screen)).
[5] unixeffect(ls, display(file, info, screen)).

[6] unixeffect(users, display(usernames, @, screen)).
[7] unixeffect(gemacs, create(file, @, loc)).

[8] unixeffect(rm, remove(directory, @, loc)).

We dow below the Effect similarities for some commands from
UNIX and MS-DOS. BEkct representations are predicates witlo &ngu-
ments. The predicate name depicts thevealeOperating System. The first
predicate argument is the Command Name and the secguthemt the
Effect of the command. Each CommandeEt consists of a predicate with
three arguments: (1) Object, (2) Object Modjfigrd (3) Object Location.
There are three sets of commands welbhese represent examples of (1)
displaying, (2) copying, and (3) removing commands resmhgti

The first Command Edct specification belw [1] describes the fct
for displaying files. More specificallyhe efect specification describes the
displaying of files on the screen. Note that thieatfspecification is the
same for both the UNIX and MS-DOS Operating Systeitge difference is
in the command namesThe second Command Effect specification
describes the effect for copying fileBoth files and directories can be
copied and there are Effect specifications for each case here. In UNIX the

command is‘€p” while in MS-DOS it is ‘copy”. The third [3] Command
Effect representation represents the reshof files in Operating Systems.
The Efect representation for remwe declares that a file can be reved
from some location. The command in UNIX‘is1”” while in MS-DOS it is
“del”.

[1] unixeffect(more,display(file,contents,screen)).
doseffect(type,display(file,contents,screen)).

[2] unixeffect(cp,copy(file,x,locl)).
unixeffect(cp,copy(directory,x,locl)).
doseffect(copy,copy(file,x,locl)).
doseffect(copy,copy(directory,x,locl)).

[3] unixeffect(rm,remove(file,x,loc0)).
doseffect(del,remee(file,x,loc0)).

Therefore, it is possible to define generiteEf definitions for Operat-
ing Systems and use these definitions fded#iht command names in feh-
ent Operating Systems/Me hope to add in more information about other
Operating Systems such as VAX VMST to further demonstrate the generality
of OSCON.

3.2. Preconditions

Preconditions are lists of objects which are necessary for a command
to be eecuted. Hereare some xamples of preconditions for commands
from UNIX. Rules [1] and [2] she that “more” and “cat” havethe precon-
dition “file’’. The command‘imkdir’’ has the preconditioridirectory” and
“cp” has no precondition.

[1] precon(more, [file]).

[2] precon(cat, [file]).

[3] precon(mkdir, [directory]).

[4] precon(cp, []).

Of course the preconditions for MS-DOS commandge hdfferent com-
mand names. Shown bel@re the equident MS-DOS commands.

[1] dosprecon(type, [file]).

[2] dosprecon(type, [file]).

[3] dosprecon(md, [directory]).
[4] dosprecon(copy]]).

T VAX VMS is a Trademark of the Digital Equipment Corporation.

3.3. Syntax

The syntax of commands is defined as a structure which contains the
name of the command and then its syntactic definition of usevrShelav
are somexamples of the syntax for UNIX commands. The syntax rules are
three place lists containing (1) Command name, (2) Optionname (filled in
from context), and (3) Syntax description.

[1] unixsyn(more, Optionname, "[more <ilename>]").

[2] unixsyn(cat, Optionname, "[cat <filename>]").

[3] unixsyn(lpr, Optionname, "[lpr <filename>]").

[4] unixsyn(ls, "[Is <filename>]").

[5] unixsyn(ls, -1, "[Is -I <directoryname>]".

The eqwalent syntax for commands from MS-DOS are shownvelo

[1] dossyn(more, X, [more, X, "< <filename>"]).
[2] dossyn(type, X, [type, X, "<filename>"]).

[3] dossyn(type, X, [type, X, "<filename> > prn")).
[4] dossyn(dir, X, [dir, X, " <filename>"]).

[5] dossyn(dir, X, [dir, X, " <directoryname>"]).

4. Thearchitecture of OSCON

The architecture of the OSCON system is defined as six distinct mod-
ules. There are wvaguments for modularising srsystem: (1) It is much
easier to update the system ay anint, and (2) it is easier to map the sys-
tem over to another domain. The six modules in OSCON are asvistidl)
PaseCon: natural language syntactic grammar parser which detects query-
type, (2) MeanCon: a natural language semantic grammar which determines
guery meaning, (3) KnowCon: a knowledge representation for understand-
ing, (4) DataCon: a knowledge representation for solving, (5)e€alm: a
solver for resolving query representations against knowledge base represen-
tations, and (6) GenCon: a natural language generator for generating answers
in English.

ParseCon consists of a set of predicates which read natural language input
and determine the type of query being asked by the &®ereach type of
guery there are tests for characteristic ways of asking that query.

MeanCon consists of predicates which check queries for important informa-
tion. There are predicates which check for mentioned (1) command names
(e.g. ‘Is’’, ‘more”), (2) command-effect specifications (e:gee a file),

and (3) concepts (e.gfile’’, “‘directory”). In case (2) there are specific
types of information searched for: (@b specifying action (e.g.'see”,
“remove”), (2) object of action (e.g.‘file’’), (3) modifier of object (e.g.

“ contents), and (4) location of object (e.g. ‘screen’). MeanConalso

checks for option verbs (e.gnumber’) and option verb objects (e.g.
“lines”). MeanConcontains a dictionary of Englishonds that define cate-
gories such asperson’, ‘‘modifier”, ‘‘article”, ‘‘quantifier” and “preposi-
tions”.

KnowCon consists of a set of data files to represent the knowledge about the
domain language used for understanding English queries. Files contain
information about verbs which cagtrise types of command or action.
Examples of catgories of action are: (1) creating, (2) screenlisting, (3) print-
erlisting, (4) sending, (5) transferring, and (6) removing. KnowCon also con-
tains grammar rules for Operating System objects ‘|date’, ‘‘file’” and

“ directory’. The grammar rules encode characteristic ways in which people

talk about the objects in English.

DataCon consists of a set of data files defining detailed information about
Operating System command$his information is stored for the UNIX and
MS-DOS Operating Systemd.he data for UNIX is split among & files:

(1) command effects, (2) command preconditions, (3) command syntax, (4)
command names, (5) command precondition options, (6) commésd ef
options, and (7) command name options. The first four files contain basic
data about commands while the last three contain data for opfon#! S-

DOS, data is contained in just four files which are similar to the first four
here.

SolveConis a soler which constructs and matches representations of user
gueries (called Formal Queries) against DataCon and produces an instanti-
ated Formal Query which serves as an answer for the.damveCon is the

driver of the OSCON program because it contains the information for map-
ping English sentences into instantiated answers. It contains a set ofxcomple
rules which call other OSCON modules to determine (1) query type, and (2)
the instantiated Formal Query for that query.

GenConis the natural language generator for OSCON and maps instantiated
information from SoleCon into English answers. Here, there are algorithms
for printing out (1) dects, (2) preconditions, and (3) syntax of commands.
Also, there are predicates for printing oxaeples of the use of commands
and command compositionslhe type of query asked by the user deter
mines the information mapped to the user.

5. Querycoverage of OSCON

The problem with building &ctive matural language inteates is that
there are manways of asking English queries. The system must attempt to
capture all the diérent possibilities. One way to do this is to capture the
basic types of queries that people ask. Thiesgthe system the power of
answering a large number of queries when it caters for each type.

There are four basic types of query that people ask about Operating
Systems. These are: (1) requestdtiribute of mentioned command (e.g.
“What does rm do?”), (2) requestfexplanation(command) (e.g. “What is
more?’), (3) request-for-command for mentioned effect (€lgow do | see
my file on the printer?”), and (4) request-#planation(concept) (e.g.
“What is a file?). There are three cases of type (1): (1) request-for
attribute(efect) (e.g. “What does rm dad¥’ (2) request-forattribute(syntax)
(e.g. ‘What is the syntax of cp?”), and (3) request-&itribute(precondi-
tion) (e.g. “What is needed for rmi2’ Eachof these basic query types can
also be asked in terms of options. Examples ak#hdt option of ‘Is’ shavs
the number of bytes in my file§?(request-foloption + mentioned com-
mand), “What does Is -I do?’'(request-for-dect + option), ‘How do |
rename a file without Weng reported errors?’(request-focommand +
option), “What are the options on I5X request-fooptions of command),
“What does the -i option normally dbo%request-for-explanation(concept)).
Users can also ask queriegalving command compositions. An example is,
“How do | list my files and print them on the printéi?his query irolves a
guery about listing files (request-for-command) and then printing them on
the printer (request-for-command).

The OSCON program currently answers (1) the four basic query
types, (2) queries about options, and (3) command composition queries for
both the UNIX and MS-DOS Operating Systeniie fact that queries are
of a gven type aids in understanding and generating answers to th@m. F
example, queries of type (1) amwill always include a command name.
Therefore, the parser for OSCON could check for command names and if it
found them, then diswer that the query was of type (1). Also, the generator
would generate an answen a particular format, depending on the type of
guery Rules of thumb such as these also speed up the timeg @RCON
to answer queries. Although one can add such rules of thumb into the inter
face it does not reflect a short-cut to natural language parBmgxample,
there is no such short cut to understanding the gtieilgw do | print a file
on the Imagen with no pagenst?’ Understanding queries is a combination
of both (1) filtering the query type, and then (2) understanding the.query
Examples of queries answered by OSCON]J1.2] argvshia Appendix A.
These examples are listed by query type.

6. Thesolving algorithm

The Soler basically searches queries for three types of information:
(1) Command Names, (2) English Descriptions of commafedtsf and (3)
Concepts. The search process in conducted in the following order.

[1] SolveCon checks to see if a command name is mentioned in the query
Then, (a) SolveCon checks if an option (e.g. -I) is mentioned. Ifafs) f
then (b) SolveCon checks if the query is requesbtfition. This check is

done by haing ParseCon check the syntax of the qubaying MeanCon
check for an English Description of an optiofeet. If either (a) or (b) are
satisfied SolveCon will retnie from the database Option Preconditions,
Option Effect, Option Syntax, and Option Name.

If (a) and (b) hee loth failed then (c) SolveCon checks if the query is
a request-for-attribte(precondition), request-fattribute(efect) or request-
for-attribute(syntax) queryHere, SolveCon checks the syntax again using
PaseCon. If(c) fails, then (d) SolveCon checks the query for request-for
explanation(command) queriarseCon is wolved here toollf either (c) or
(d) are satisfied SolveCon will retvie Command Preconditions, Command
Effect, Command Syntax, and Command Name from the datalbfag®).
fails then SolveCon maes on to $ep [2].

[2] SolveCon checks the query semantics. In this case the user must
have asked an English query with no command names. (i) &&bn has
PaseCon check the syntax of the quefly) Then, SolveCon calls MeanCon
to check for a Primary Verb, Verb Object, Modifiand Location. SolveCon
will retrieve Command Preconditions, Commanddet, Command Syntax,
and Command Name from the databaNext, (iii) SolveCon has MeanCon
check for a Secondaryevb (option action), and Secondary Verb Object.
SolveCon will retriz’e from the database Option Preconditions, Option
Effect, and Option SyntaxIf step [2] fails then SolveCon goes on to step
[3].

[3] SolveCon checks the query semantics. In this case the user must
have asked an English querywlving no command names. Also, the query
must be about command combinations, or pipes, otherwise ste{d] w
have passed. SokCon checks for the existence of a command combination
in the user querysolveCon has MeanCon check for thaséence of a sen-
tence connector l&k “and”. If this occurs then is it possible that the query
involves command combinatiornSolveCon then calls the SolveCon algo-
rithm again for (1) the piece of the query before the conneatdr(2) the
piece of the query after the connectdhe data returned from (1) and (2) is
integrated. If[3] fails then SolveCon tries step [4].

[4] SolveCon checks query syntax througird@Con. TheiMeanCon
searches for concepts mentioned in the que@mples of such concepts are
“ada’ and “protection”.

6.1. Structures returned

The step of SokCon which succeeds will return an instantiated F
mal Query to the generaton gep [1], if cases (a) or (b) succeed, an instan-
tiated Formal Query will be returned containing the feilay: (1) Option
Preconditions, (2) Option Effect, (3) Option Syntax, (4) Option Name, and
(5) Query Ype. Instep [1], if cases (c) or (d) succeed, the instantiated

Formal Query contains: (1) Command Preconditions, (2) CommaiedtEf
(3) Command Syntax, (4) Command Name, and (5) Query Type.

In step [2] the Brmal Query returned will contain slots for: (1) Com-
mand Preconditions, (2) Command Effect, (3) Command Syntax, (4) Option
Preconditions, (5) Option f&ct, (6) Option Syntax, and (7) Querype.

The complete structure will be instantiated when step Mjlwies options.
However, only parts (1),(2),(3), and (7) are instantiated when there is no
mention of options.

With step [3] a list containing twinstantiated &rmal Queries is
returned. Eacliormal query will contain: (1) Command Preconditions, (2)
Command Effect, (3) Command Syntax, (4) Command Name, and (5) Query

Type.

In step [4] a Brmal Query with three pieces of information is
returned. Thestructure contains (1) the Concept Name, (2) Concept
Description, and (3) Query Type.

7. Natural language generation (GenCon)

The final phase of the OSCON program is to map an instantiated for
mal representation into an English answidrere are tw types of answer
which may be returned to the user: (1) Stored English sentences describing
some concept which are contained in the DataCowledge base, and (2)
English sentences mapped out from instantiated Formal Queries.

The natural language generator for the OSCON system is used to map
instantiated formal queries into English answers. The generator agsifiv
mary components:

[1] psyntax: gives the syntax for a command
[2] peffect: gives the effect of some command
[3] pexample:gives an &le on the use
of some command
[4] ppre: gives the preconditions for some command
[5] ppipe: gives the commands wolved in some
piping example and an example of the piping

For each of the major query types various configurations of printing
components are used. There are three types of requettrilaute query:
(1) request-fomttribute(precondition), (2) request-fattribute(efect), and
(3) request-foiattribute(syntax). Irthese cases the components [1], [2], [3]
and [4] are combined in ordePrinting out the syntax for some command is
trivial. Thesyntax is already stored in the DataCon knowledge base. This is
just returned to the usePrinting out preconditions is quite trivial too as all
GenCon has to do is to print those preconditions wettidom the DataCon
precondition information.

Generation for request-fattribute(efect) queries is more comple
GenCon will print command fefcts by (1) checking to see if the output
should be in plan/pipe form, and if it is, then generating the answer in
plan/pipe form; (2) generating the (a) Command Syntax, (b) Effect and (c)
Preconditions for the command.he Effect is generated from the instanti-
ated Formal Query produced by Ss@on which contains action, object,
object modifier and object location. The latter information is generated in
sentence form. Some interleaving information such as the output of preposi-
tions between object modifier and location are handled too.

For request-focommand queries the latter algorithm is uséar
request-for-gplanation(command) components [1], [2], [3] and [4] are used.
For request-for-gplanation(concept), the answer is output from a stored
piece of tat. Oftenusers ask queries about commands as concépis.
generation of these is simple as the definitions of such concepts are just
stored as English descriptions in the first place. Therefore, all GenCon has
to do is to map the stored sentences into English answerkaw®written a
simple algorithm which maps the English text into pretty format on the
screen.

8. Anexample

In this section we sl an example of hav the query ‘How do | see
my files with numbered lines?is understood and answered by OSCON.
First, SolheCon attempts to find out the type of query beinga@sKnitially,
SolveCon tries step [1] to match the query as one mentioning a command
and there is no matchlhen step [2] is tried and a match occurs. The query
IS a semantic one.aPseCon is called forth and a syntactic match is found.
“How do I” matches the syntactic form [Wwp do, i] for what-command
queries.

Next, SoheCon calls MeanCon which analyzes the meaning of the
sentence. (i) Findverb checks for erly and gets'see’. From KnowCon,
“display’ is marked as the action. Then, (ii) findobj checkdow do I”
and ‘my files with numbered line'sfor objects. ‘Files” is matched as an
object. Datdrom the query (i.edisplay(file,contents,*) is matched aginst
the DataCon databasefé&dts and a match is found withsplay(file,con-
tents,screen) This efect match from the query data to DataCon will\allo
SolveCon to retriee (1) Command Preconditions ([file]), (2) Command
Effect (display(file,contents,screen)), (3) Command Syntax (cat -n <file-
name>), and (4) Command Name (cat).

Next, the query is checked foxistence of a secondary action. The
findverb predicate retries “numbered’ as a £condary action and its object
is retrieved as ‘lines”. This representation is matched against the option
database and number(lines) from the query matches number(lines) in the

Option Efect definition in the database. The DataCon database is refer
enced and (1) Option Preconditions, (2) Option Effect, and (3) Option Name
are returned. The data retregl is integrated to form an instantiatearfal
Query which is passed to the generafbine representation for this query is
as shown belg.

cquery(display(file,contents,sceen), % Command Effect

"with numbered lines", % O ption Effect
[cat -n <filename>], % Syntax

[file]), % Preconditions

cat), % Command Name

-n). % Option Name

The GenCon generator takes tharrfRal Query and maps it into an
English answer(i) psyntax will print out “cat -n <filename>", (ii) péct
will display “will display file contents on the screén.and (iii) popefect
will display “with numbered lines. T herefore, the complete answer gener
ated for this query is:

‘cat -n <filename>’ will display file contents
on the screen with numbered lines.

9. Current state of the implementation

OSCON can answer queries in 2.5 seconds when the Sun computer is
at lov load. OSCON answers four major types of query (1) request-for
attribute of mentioned command, (2) requestégolanation(command), (3)
request-focommand for mentioned fett, and (4) request-f@xplana-
tion(concept). Thereare three cases of type (1): (1) request-for
attribute(precondition) (2) request-fattribute(efect), and (3) request-for
attribute(syntax). Irreal terms this brings the query types@ed up to six.

The system answers the latter three query types with options and will soon
answer the other types with option@SCONS database contains informa-

tion on 40 UNIX and 40 MS-DOS commands with their respegtiecondi-

tions, effects, syntax and command names. OSCON has 20 grammar rules
for understanding the ways that users ask queries abogbiatof com-
mands. OSCONMilso contains 10 plan sets for possible combinations of
commands.

10. Comparisonto other systems

There are basically wvother natural language consultants for Operat-
ing Systems.These are the Unix Consultant (UC), and the Sinix Consultant
(SC).

The Unix Consultant (UC) (see Chin 1988,léNsky et d. 1984,
1986, 1988) is a natural language consultation system for UNIX, and is in
mary ways similar in scope and intent to OSCORNowever, there are some
key differences: (1) While OSCON is a specialised system with the sole goal
of providing detailed xpert help, UC has the broader goal of studying
knowledge representation and planning (as well as natural language under
standing) at a basicud. As such, UC takes a fundamentally fdient
approach to knowledge representation, in that employs a much more general
knowledge representation and planning mechanism, with a somewhat cogni-
tive flavar. UC contains only one knowledge base of Operating System con-
cepts which must seevioth the understanding and the solving phases of
guery resolution, while OSCON incorporates specialised representations for
each function.Hence, UC must sacrifice some of the specialisatigh b
into OSCON.

(2) Not unepectedly an examination of the examples presented in
Wilensky et d. (1986) suggests that UC will bato perform far more xten-
sive procedures to sobsa gven query, and that it may not be able to answer
some of the very detailed queries that OSCON will address; (3) UC is not
intended to be a consultant which will help users migrating from one system
to anotherUC is a onsultant for the UNIX Operating SystemeWo rot
claim that the UC system could not act as a consultant on other Operating
Systems. W daim that the Ber&ley team ha&e ot concerned themsels
with putting information from more than one Operating System in their pro-
gram; (4) It is a characteristic of computer Operating Systems that com-
mands can be combined in various waysxecete complg processes. In
Wilensky et d. (1986, p. 6-10) there are a number of examples of the queries
which the UC system handles. These examples are intendedwottsho
kinds and scope of requests answered by the system. None ghthples
involve command compositions but operations of single commaiide
UC system has no capability for answering comphatural language
gueries which imolve command sequencing; UC and OSCON are not truly
competitors, but rather systems with different emphases.

The Sinix Consultant (SC) (seeeike 1986, 1987; Hecking et al.,
1988) is a broad-based UNIX help system It is similar to OSCON in that it is
designed from the start to be an Operating System consultant rather than a
more general system into which a UNIX model is embeddéthough SC
contains a rich knowledge base, which reflects the technical aspects of the
domain as well as the userswief the system, the focus of SC,dikJC, is
to provide help on the use of indlual commands, rather than the intercon-
nection of seeral. Our knowledge representation of plans has more empha-
sis on answering complequeries. Theres no mechanism whereby the SC
system will understand compleommand sequences. Wever, the authors
do predict in Hecking et al. (1988) that futurevelepment of the SINIX

Knowledge Base will include ‘combinators’ for |/O-redirection and
pipelining. TheSC system has a dialogue modeling component, for (1) han-
dling elliptical queries, and (2) anaphora.

There are seral other consultation systems for Operating Systems,
including CMS-HELP deeloped by Yun (1984), TVX by Billmers & Garifo
(1985), Wizard (see Shrager & Finin 1982; Finin 1983), and USCSH by
Matthevs & Pharr (1987).However, dl of these systems appear to be either
far less ambitious in scope than OSCON, or elsee lm btally different
emphasis. Imparticular dl appear to emphp rather simple surface models
of UNIX.

11. Conclusionand further work

It is concluded that it is possible toild a computer program which
will answer natural language user queries about Operating Systenmyvg/
shovn how this is done by the OSCON system. The OSCON program
answers English queries in English. Each query is answered within seconds.

The deelopment of ag program like OSCON is enhanced if the pro-
gram is lilt in a modular form where each module has a distinct function.
This has been done for OSCON which is divided up into six distinct mod-
ules. This methodology alls for easy update of the program and also will
allow the possibility of mapping the programeoto a rew domain.

In comparing OSCON to the other three systemwalable today
OSCON turns out to ka a dfferent emphasis. The OSCON system is more
concerned with the detail of Operating Systems and natural language pro-
cessing rather than an experiment on cogmitirodeling. Also, OSCON is
the only system which answers queria®iving command combinations.

There are three areas of further work proposed for OSCON which are
all part of a dialogue interface to be added to the system. These are: (1) con-
text storage mechanisms, (2) reference determination algorithms, and (3)
user modeling capabilities (see Chin, 1988). Dialogue management is
important and it will permit the user to ask queries withowirttato spell
out queries in elaborate EnglisHnitial thoughts on this research are
reported in Ball et al. (1989).

12. Acknonvledgements

We would like to thank Yorick Wilks for guidance on the natural lan-
guage aspects of OSCON and Louise Guthrie for programming parts of the
system. Also,Catherine Marshall, Hans Brunnekndy Parng and Scott
Wolff of the Intelligent Customer Assistance Project at WEESTAdvanced
Technologies are thanked for consultations on this research.

13. Refeences

Ball, Jerry John A. Barnden, Sylvia Candelaria de Ram, Davawell,
Louise Guthrie, Cheng-Ming Guo, Stephen Helmreich, Paul Mc
Kevitt, and Liu Min (1989)The need for belief modelling in nadlr
language pocessing In Proc. of the International Conference on
Cross-Cultural Communication (ICC-CC-89)inity University, San
Antonio, Texas, March.

Billmers, Meyer A. & Michael G. Carifio (19838uilding knowledg-based
opemating system consultantroceedings of the Second Conference
on Artificial Intelligence Applications, pp. 449-454, Miami Beach,
December.

Chin, David (1988) “Exploiting user expertise in answepression’ In
Proceedings of the 8enth National American Conference on Artifi-
cial Intelligence (AAAI-88), St. Paul, Minnesota, Vol. 2, 756-760,
August.

Guthrie, Louise, Paul Mc &utt & Yorick Wilks (1989) OSCON: An opext-
ing system consultantin Proc. of the Fourth Annual RogkMountain
Conference on Artificial Intelligence (RMCAI-89), Subtitled ug-
menting Human Intellect By Computer”, 103-113, dgistry Hotel,
Derver, Colorado, June.

Hecking, M. C. kemke, E. Nessen, D. Dengjdvl. Gutmann & G. Hector
(1988) ‘The SINIX consultant —a progress repbitlemo Nr 28,
Universitat des Saarlandes, FB 10 Informatik IM Stanwald 15, D
— 6600 Saarbrucken 11, Fed. Rep. of Genynamgust.

Kemke, Christel (1986 he SINIX Consultant — Regements, Design, and
Implementation of an intelligent Help System for a UNIX Derivative
Universitat des Saarlandes, Kl-Labor (SC-Project), Bericht 14r

October.
Kemke, Christel (1987Repesentation of domain knowleglgn an ntelli-
gent help system In Human-Computer Interaction — INTERA

'87, H.J. Bullinger and B. Shakel (Eds.), pp. 215-220nsterdam:
Elsevier Science Publications B orth-Holland).

Matthenvs, Manton & VWlter Pharr (1987Knowledg acquisition for active
assistance.Preprints of the First Internationaldkshop on Knwl-
edge representation in the UNIX help domain,drsity of Califor
nia, Berkelg, California, December.

Mc Kewtt, Paul (1986)Formalization in an English interface to a UNIX
database Memoranda in Computer and Cogviti Sience,
MCCS-86-73, Computing Research Laboratddept. 3CRL, Box
30001, Ne&v Mexico State Uniersity, Las Cruces, NM 88003-0001.

Mc Kewtt, Paul (1988)Rules of infegnce in an operating system consul-
tant In Proc. of the First Irish National Conference on Artificial
Intelligence and Cognite Sience (Al/CS-88), wl. 1, Unwversity
Industry CenterUniversity College Dublin, Dublin, Eire (Republic of
Ireland), European Community (EC), September.

Mc Kewtt, Paul & Yorick Wilks (1987)Transfer Semantics in an Oging
System Consultant: the formalization of action®iving object tans-
fer. In Proceedings of the Tenth International Joint Conference on
Artificial Intelligence (IJCAI-87), W¥l. 1, 569-575, Milan, Italy
August.

Shrager Jeff & Tim Finin (1982)An expert system that volunteedvice
Proceedings National Conference on Artificial Intelligence
(AAAI-82), pp. 339-340.

Wilensky, Robert; Arens, Ygal & Chin, David (1984)Talking to UNIX in
English: An @erviav of UC. Communications of the ACM, Vol. 27,
No. 6, June, 574-593.

Wilensky, Robert; Mayfield, Jim; Albert, Anthony; Chin, Bia; Cox,
Charles; Luria, Marc; Martin, James andiWekai (1986)UC — a
progress eport Report No. UCB/CSD 87/303, Computer Science
Division (EECS), Uniersity of California, Berkley, California
94720, July.

Wilensky, Robert; Daid N. Chin, Marc Luria, James Martin, James May-
field and Dekai W (1988) The Berkley UNIX Consultant prject
Computational Linguistics, Vol. 14, No. 4, 35-84, December.

Yun, David Y & David Loeb (1984Yhe CMS-HELP expert systeriro-
ceedings International Conference on Data Engineering, IEEE Com-
puter Society459-466, Los Angeles.

14. Appendix A

This appendix contains a list of some of the queries which
OSCON]J1.2] currently answers. The maximum timeetakko answer an
guery is 2.5 seconds he query sets ka been divided into four major types
(1) request-foattribute of mentioned command, (2) requestdrplana-
tion(command), (3) request-for-command for mentionef@cef and (4)
request-for-explanation(concept).

| ?- cscon.
OSCON Program 1.0 (Sun-3, Sun Unix 4.2)
Copyright (C) 1988, Computing Research Laboratory.

All rights reserved.

Dept. 3CRL, Box 30001, NMSU, Las Cruces, NM (505) 646-5466
U S WEST Advances Technology

Please input your question ending with with a ‘?’

Write ‘quit.” when you are finished

--> what does Is do?
‘Is <directoryname>’ will display directory contents on the screen.

--> what happens with rm?
‘rm <filename>’ will remae a fle from your current directory.

--> what is the effect of date?
‘date’ will display a date on the screen.

--> what does more -c do?
‘more -c’ will display each page after clearing the screen.

--> what is the syntax of rm?
It has the syntax ‘rm <filename>’.

--> How do i use cp?
It has the syntax ‘cp <filel> <file2>".

--> how does he use more?
It has the syntax ‘more <filename>’.

-->what is Is?

I’ is a command.

It has the syntax ‘Is <directoryname>’.

‘Is <directoryname>’ will display directory contents on the screen.

--> what is more?

‘more’ is a command.

It has the syntax ‘more <filename>’.

‘more <filename>’ will display file contents on the screen.
‘more’ only takes the argument ‘file’

--> how do i see my file?
‘more <filename>’ will display file contents on the screen.

--> how do i s2e my file on the screen?
‘more <filename>’ will display file contents on the screen.

--> how do i see my file on the printer?
‘Ipr <filename>’ will display file contents on the printer.

--> how do i se all my files?
‘more <filename>’ will display file contents on the screen.

‘Is <directoryname>’ will display directory contents on the screen.

--> how do i e this file?
‘more <filename>’ will display file contents on the screen.

--> how do i e that file?
‘more <filename>’ will display file contents on the screen.

--> how do i e his files?
‘more <filename>’ will display file contents on the screen.
‘Is <directoryname>’ will display directory contents on the screen.

--> how do i read my files?
‘more <filename>’ will display file contents on the screen.
‘Is <directoryname>’ will display directory contents on the screen.

--> how do i list my files and print my files?

‘more <filename>’ will display file contents on the screen.

‘Ipr <filename>’ will display file contents on the printer.

To dsplay file contents on the printer use ‘more <filename> | Ipr’

--> what are aliases?
alias is the ability to establish shorthand names
for frequently used but long-winded commands.

--> quit.

over

yes
|

