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ABSTRACT

When building knowledge representation schemes for particular domains we should real-
ize abstractions of relationships from those domains. Computer operating systems involve
numerous actions or commands which can transfer data from one state to another. It is
this process of transfer that should be formalized in any representation of such actions.
Transfer Semantics already exists as a knowledge representation scheme for operating
system commands (Mc Kevitt & Wilks, 1987). Yet, no such scheme is powerful without
inferencing. Axiomaticsemantic techniques have been applied in exploring the logical
foundations of computer programming.We can borrow axiomatic semantics as a lan-
guage for constructing abstract formalizations of inference rules for Transfer Semantics.
In particular, complex commands in operating systems such as UNIX∗ can be formalized
by this method.

†This research is currently funded by
U S WEST Advanced Technologies
under their Sponsored Research Program.

∗ UNIX is a trademark of AT&T Bell Laboratories.



0. Intr oduction

A knowledge representation scheme is never complete while there are no strategies
to manipulate that scheme. We hav edeveloped a knowledge representation for computer
operating systems called Transfer Semantics (see Mc Kevitt & Wilks, 1987). Transfer
Semantics is a powerful abstract semantics used in understanding natural language queries
about operating systems. The semantics is abstract because a detailed knowledge of operat-
ing systems is not necessary to understand user queries.It is the process of providing
answers for queries that requires specific detailed knowledge. Thework of answering natu-
ral language queries is performed by a formal knowledge base.

Transfer Semantics is a knowledge representation used to formalize operating system
actions and any objects affected by such actions.We use Transfer Semantics to represent
the means by which operating system commands transfer objects from one state to another.
In Transfer Semantics operating system objects are represented by object frames.The
object frames are structured in a tree-like representation. Action frames are used to specify
transfer relations among object frames.

Each action frame is a formal representation of operating system actions or com-
mands. Action frames consist of preconditions, postconditions, actions and actors. Precon-
ditions are sets of states of objects existing before commands take effect. Postconditions
involve sets of states of objects after a command is performed.Such conditions specifying
states of objects are ‘preferred’, i.e. we do not specify all conditions on frames, only those
that usually occur. Actions include the particular command(s) that cause(s) any transfer of
object states. An actor is any person capable of performing some action.Preconditions
and postconditions are mentioned in most of the literature on planning and have been used
for specifying plans and goals.For example, in Wilensky (1987) there is a description of
concernswhich are preconditions particularly relevant to a given plan. Theterm concern is
synonymous with our concept of preferred conditions.

As conditions on action frames are preferred, we choose those conditions typical for
some action. This is done for three reasons: (1) so that the correct frame will be selected
for a particular query, (2) frames would become very large if all possible transfer condi-
tions were specified and, (3) inherent requirements for specifying ‘weak’ preconditions and
‘strong’ postconditions on frames. What we mean by weak and strong will become appar-
ent later on. The very fact that frames contain only preferred conditions means that Trans-
fer Semantics is weak. That can be shown explicitly by various examples. Thepower of
Transfer Semantics must be increased by defining and applying various rules of inference.
Inference rules will be used to manipulate the preferred conditions in each frame so that the
scope of frame meaning can be expanded. This paper is about: (1) defining some rules of
inference, (2) how these rules can be used to strengthen Transfer Semantics, and more
important, (3) why we designed a weak semantics in the first place.

We begin in section one with a brief overview of the Operating System CONsultant
(OSCON) system and its relation to other work. We follow in section two with examples
of natural language queries that demonstrate problems in Transfer Semantics. Section three
describes a language for representing inference rules. In section four some general rules of
inference are defined to solve the problems. This section includes a number of worked
examples on how those inference rules may be applied. A description of other work



relating to our inferencing schema comes next. As always, we arrive at some conclusions,
and in section six the need for inference processes is justified.

1. TheOperating System Consultant

At the Computing Research Laboratory we are developing a natural language under-
stander for a consultant system called OSCON. OSCON is being programmed in Kyoto
Common Lisp. The system is intended to help novice and expert users learn operating sys-
tem concepts. It is hoped that OSCON will answer user queries on many operating sys-
tems, although we are focusing on UNIX. Other computer operating systems of interest are
TOPS-20∗ , VMS∗ and VM/CMS†.

The system will have an ‘interdisciplinary’ flavor. By this we mean if some user asks
a query in the context of one operating system, OSCON will have the capability of answer-
ing the query in terms of another. For example, a user may be asking queries about UNIX
and suddenly say, ‘‘How do I use ‘dir’ to find the creation date of all the files in my direc-
tory ?’’ Howev er, there is no ‘‘dir’ ’ command in UNIX although there is one in TOPS-20.
Of course, the equivalent command for UNIX is ‘‘ls -l’’. It is our intention to build a sys-
tem that will allow the user to specify which operating system he wishes to learn. It would
be possible for the system to answer a query about say, ‘‘deleting’’ by showing the neces-
sary commands for different operating systems or just a specified one.

OSCON has a two-module architecture involving a natural language understander
and a knowledge base. The natural language understander has the function of understand-
ing and answering English queries. Query responses will be in English too. The knowledge
base is a detailed, formal knowledge base and functions as a solving or answering module.
The knowledge base is being constructed at the University of Vermont by Dr. Steve Hegner.
Work on the knowledge base is discussed extensively in Douglass & Hegner (1982), Heg-
ner & Douglass (1984) and Hegner (1987). Our architecture is similar to that found in
many natural language interfaces to database systems (see Waltz 1975, 1978; Martin et al.
1983; Wallace 1985; & Hendrix et al. 1978). The two-module architecture is one of the
principle design features of OSCON. As pointed out by Hegner (see Hegner 1987, p. 1) the
two-module architecture facilitates an important principle of separation of understanding
and solving.

In the natural language understander parsed English sentences are translated into a
formal query language called OSquel (see Hegner, 1987). Formal queries are instantiated
by the knowledge base and returned to the understander where answers are produced in
English. Formal queries are represented in the form <{P} A {Q} U>. P and Q represent
preconditions and postconditions for any action A. U represents the particular person or
user performing A.

The natural language understander can be considered in terms of two distinct phases:
(1) formal query generation, and (2) answer production.The formal query generation
phase involves four components: (1) shallow parser, (2) deep parser, (3) knowledge repre-
sentation, and (4) formal query generator. Each component produces a new lev el of mean-
ing representation for some query. The advantage of having various levels of meaning

∗ TOPS-20 and VMS are trademarks of Digital Equipment Corporation.

† VM/CMS is a trademark of International Business Machines Corporation.



representation in any interface is discussed by Sparck-Jones (1983).

The control flow of the natural language understander proceeds like this: (1) Initially,
an English query is input by the user. The query is parsed into a ‘shallow representation’
by some natural language parser. This representation may include some semantics such as
knowledge of word senses. Examples of natural language parsers we currently use are
described by Ball & Huang in Wilks (1986) and by Slator in Wilks et al. (1987); (2) Each
shallow representation is passed to an Embedded Concept Representation generator. This
component builds semantic representations of queries from the shallow representation and
makes use of semantic case frames existing in a database.Case labels are attached to vari-
ous items (see Mc Kevitt, 1986a); (3) Each embedded concept representation is passed to a
Transfer Semantics component which maintains a database of knowledge frames. The
Transfer Semantics component is the heart of the natural language understander. It contains
the abstract knowledge about operating systems and embodies the tasks of frame selection
and instantiation (see Mc Kevitt, 1986b); (4) A domain-specific Transfer Semantics repre-
sentation is passed to a formal query generator which produces an uninstantiated formal
query to the knowledge base in the query language called OSquel.Formal queries are
instantiated by the application of a solving process in the knowledge base. The answer
generation phase of the understander is concerned with producing natural language answers
from instantiated queries.

1.1. Relationto other Operating System Consultants

Many researchers are working on building operating system consultants. There are
three types of system being built: (1) systems with menu-based interfaces (MENU), (2)
systems with limited natural language capability (LNL), and (3) systems with natural lan-
guage interfaces (NL). In theory MENU, LNL, and NL systems could involve acommand-
level interface, i.e. the user could execute commands at the interface. However, many of
these systems only act as consultants.

MENU systems are based on menu-selection and some of them include a command-
level option, others do not. The problem with most menu-selection approaches for operat-
ing system consultants (pointed out by McDonald & Schvaneveldt 1987, p. 14; Hegner
1987, p. 1 and Wilensky et al. 1984, p. 576) is that they are not very useful if a user knows
what he wants to do, but does not know the explicit command for doing it. McDonald et al.
(1983) have org anized studies to clarify the effects of menu organization on user perfor-
mance. They used explicit targets (e.g., ‘‘lemon’’) and single-line definitions (e.g., ‘‘a
small, oblong, pale-yellow citrus fruit’’) to examine the effects thattype of target has on
menu-selection performance. They point out that real world users seldom search for
explicit targets in menus. If people know exactly what they are looking for, then they prob-
ably know where to find it. Say a user is looking for some command to remove a file. It is
unlikely that the name of the command is known. Searchingthe menu system is easy if the
user knows that the command is ‘delete’. But, then the user need not use the menu system
at all.

It is possible that one could build a menu system where abstractions or concepts such
as printing are represented.However, such abstractions may still not be useful to some user
who can describe what he wants to do but cannot find any mention of that in the set of



abstractions. The problem arises because natural language expressions are at such an
abstract level that they may not fall into any set of concepts.You may argue that such
abstractions can also be built into a MENU interface. That is true, but then what you have is
a natural language front end. Natural language front ends are extreme examples of MENU
systems containing many abstractions. Suchfront ends allow users to specify queries in
terms of abstractions of word meanings, and are therefore more flexible. It is important to
point out that we are not saying there is anything wrong with menu-selection approaches.
They are a useful insight into how to structure knowledge about some domain and are a
useful first draft at building any interface. Thenext four paragraphs discuss examples of
MENU systems and that alone distinguishes our work from theirs.

(I) The Cognitive Systems Group at the Computing Research Laboratory are devel-
oping formal methods for interface design (see McDonald et al. 1986; McDonald &
Schvaneveldt, 1987). McDonald & Schvaneveldt have defined theoretical motivations for
their empirically based approach along with a related discussion of scaling and knowledge
acquisition techniques. One application to illustrate key aspects of their methodology is an
ongoing investigation of UNIX users aimed at improving on-line documentation systems.
They are developing a theory of structural descriptions for UNIX. These will be useful in
building a menu-based consultation program for UNIX which will allow users to efficiently
develop accurate conceptual models of operating systems.

Their UNIX interactive documentation guide (Superman II), (1) is based on empiri-
cally derived representations of experienced users’ conceptual models, (2) has several per-
spectives (e.g., functional and procedural), (3) has multiple levels of abstraction within
each perspective, and (4) provides users who are familiar with other operating systems (e.g.
DOS∗ ) a ‘bridge’ for transferring their knowledge to UNIX. We are working closely with
the Cognitive Systems Group to provide empirical backing for any assumptions made in
developing the natural language understander for OSCON.

(II) Tyler (1986) describes an adaptive interface design and a prototype user-com-
puter interface to demonstrate both the feasibility and utility of a general adaptive architec-
ture. Thesystem is a command-level interface where the interface takes a user’s entry and
sends a valid command to the operating system.A prototype has been designed which will
interface the user to a UNIX operating system. Features of the interface are geared towards
the particular user, and the specific task currently being executed.

(III) Another menu-selection approach is described in Hayes (1982) and Hayes &
Szekely (1983). They hav edesigned a system called COUSIN which is a command level
interface for operating systems. The COUSIN system provides two types of user friendly
information: (1) static descriptions of possibly invoked subsystems, including their parame-
ters and syntax; (2) dynamically produced descriptions of the state of current interaction.
One of the applications of the COUSIN interface is to provide a command-level interface to
the UNIX operating system, i.e. to provide an alternative to the standard UNIX shell.
COUSIN consists of a network of text frames connected by named semantic links. Each
frame is variable in size and contain less than a screenfull of information. COUSIN shows
to the user information that is hidden from him by OSCON. While using OSCON the user
does not see, or need to know, the structure of stored knowledge. Suchinformation can be

∗ DOS is a trademark of International Business Machines Corporation.



discovered by the user through natural language interaction if it needs to be known. The
natural language understander informs the user, in terms of English, the specific pieces of
stored knowledge that are particularly relevant to some query.

(IV) Billmers & Garifo (1985) are building knowledge-based operating system con-
sultants. They hav eimplemented an expert system called TEACHVMS which is used for
helping TOPS-20 users learn about the VMS operating system. They are also developing a
system called TVX which provides a general operating system shell useful for designing
specific operating system consultants. Both of these systems are menu-based expert sys-
tems. Inagreement with our approach, Billmers and Garifo are interested in planning solu-
tions to complex user tasks, requiring many steps. The fact that TEACHVMS converts
TOPS-20 commands to VMS commands means that it must contain similarities between
concepts from different operating systems.This concurs with our interdisciplinary
approach to consultant system design.TVX contains knowledge in two forms: abstract
operating system concepts, and knowledge specific to the target system (i.e., VMS).
OSCON also involves knowledge in both abstract and specific forms, distinguished by the
understander and the knowledge base respectively.

LNL systems allow the user to insert queries using limited natural language.For
example, an expert system called CMS-HELP has been developed by Yun & Loeb (1984)
to serve as an on-line consultant for users of the VM/CMS operating system. The system
assists novice or experienced users who need to use unfamiliar system facilities. Adviceis
given in terms of the sequence of commands needed to accomplish some user task. The
CMS-HELP expert system was constructed using EMYCIN, a program for developing
knowledge-based consultation systems.

The third type of consultant system are natural language understanders. The advan-
tages of NL systems over most MENU and LNL approaches are numerous. We will not dis-
cuss those advantages here, as this has been done elsewhere (see Douglass & Hegner 1982,
p. 1; Wilensky et al. 1984, p. 576).

At Berkeley, Robert Wilensky heads a group who have built an understanding system
called Unix Consultant (UC) which processes natural language queries about UNIX (see
Wilensky et al. 1984, 1986; Wilensky, 1987). Ourapproach to consultation is similar and
yet different to the one at Berkeley. We are both building natural language systems, yet the
way we do that is quite distinct. In UC there is no separation and formalization of detailed
knowledge on operating systems in a knowledge base. All aspects of UC make use of one
general knowledge representation called KODIAK (see Wilensky, 1986). This compares to
our approach of having abstract knowledge in the understander and detailed knowledge in a
knowledge base.Another distinction is that presently the UC program is intended to be a
consultant for UNIX whereas our system is intended to be a general operating system con-
sultant (e.g., UNIX, TOPS-20, and VM/CMS). In building OSCON we are more con-
cerned with understanding complex queries where there are a number of operating system
commands interrelated with each other, to denote some higher level process.

Kemke (1987) describes an intelligent help system called SINIX Consultant (SC) for
the SINIX∗ operating system. The system is intended to answer natural language questions
about SINIX concepts and commands. SC has a rich knowledge base which reflects the

∗ SINIX is a UNIX derivative dev eloped by SIEMENS AG.



technical aspects of the domain as well as the users view of the system. Although SC con-
tains a knowledge base which is similar to the knowledge contained in OSCON’s natural
language understander, there is no separation out of the detailed knowledge needed to
answer or solve user queries. Therefore we see SC as being similar in design and approach
to the UC system.

2. Theproblems of Transfer Semantics without inference

We hav ealready mentioned that Transfer Semantics is a knowledge representation
scheme for operating systems.However, some interesting problems arise when Transfer
Semantics is used to understand natural language queries.A clue to such problems was
already given above. Only ‘preferred’ conditions on frames are deployed. Otherwise,the
frames would become enormous and difficult to handle.Let’s look at some of the prob-
lems.

Say some user decides to enter the query, ‘‘How do I print a file on the screen ?’’
This query will be parsed first, into a shallow form, and then into a semantically deeper
embedded concept representation. So far there is no problem. The next step in the control
flow of the understander is to select a domain-specific action frame. The PRINT∗ frame
should be selected.However, that may not happen as the postcondition set for the PRINT
frame only knows about specific NON-DIRECTORY files. This problem occurs because in
each frame the postconditions arestrong (see Mc Kevitt & Wilks 1987, p. 572).NON-
DIRECTORY-FILE from the postcondition set does not matchfile† (or the embedded con-
cept representation that it is parsed into) from the user query. Thus the above query may
not be processed correctly by the natural language understander. We need an inference rule
to weaken the system reference to NON-DIRECTORY-FILE so that it becomes FILE.This
is done by inferring non-directory-files to be files.

Another problem arises with the query ‘‘How do I print a plain file ?’’. As preferred
conditions are stored in frames, there will only be mention of FILEs in the precondition set
for the PRINT frame. In any frame we try to make the preconditions asweak as possible
(see Mc Kevitt & Wilks 1987, p. 572).The frame selection process may mistakenly reject
the PRINT frame.An inference rule is needed to strengthen the system reference to FILE
so that it will match plain file. This problem is the complement of that above. In this case
the user query has stronger information (plain file) whereas above it had weaker informa-
tion (file). Thereis a requirement for an inference rule which will strengthen the system
reference to FILE so that it becomes PLAIN-FILE.

Another type of problem occurs when more than one action or command is refer-
enced in a user query. For example, in the query, ‘‘How do I find the spelling mistakes in a
file and then ‘more’ them ?’’ the user has specified two concepts. Theconceptsdetecting-
spelling-mistakesandmoreing† hav ebeen related together in this query. An inference rule
is needed so that action frames from Transfer Semantics can be composed or intercon-
nected in some way.

∗ We use uppercase letters to denote any action frame, or information contained in one.

† Lowercase italicized characters are used to denote information from a user query.

† ‘More’ is a command from UNIX which produces formated output on the screen.



To summarize, there are three clear problems identified in the examples above: (1)
sometimes postconditions for action frames are too strong, (2) sometimes preconditions for
action frames are too weak, and (3) sometimes one frame is not enough to handle a query.
Transfer Semantics will not work without inference rules. There is no requirement to define
specific rules for every example of these problems.Any rules we develop will have to be
general enough to cater for numerous natural language examples of the problems above.

3. A language for inference rules

There are many notations possible while defining inference rules. There are even
more ways of implementing the rules once they hav ebeen defined. Axiomatic semantic
techniques have been applied in exploring the logical foundations of computer program-
ming. Axiomaticsemantics seems a most lucid and explanatory method for defining our
rules. We can construct abstract formalizations of inference in the spirit of axiomatic
semantics. First,let’s discuss the foundations of axiomatic semantics and get used to some
notation.

Axiomatic semantics has been used in the formal specification of the syntax and
semantics of computer programming languages. The paper by Hoare (1969) is a classic ref-
erence on the core ideas of axiomatic semantics.Many of Hoare’s ideas were stimulated
from a paper by Floyd (1967).A more mathematical description of axiomatic semantics,
and particularly program verification is described in Stanat & McAllister (1977).Other
discussions are found in Hoare & Wirth (1973) and Algai ́c and Arbib (1978). Owicki and
Gries (1976a, 1976b) apply the approach to parallel programming. A good introduction to
the semantics is formulated by Pagan (1981).

An axiomatic semantics for programming languages will be sufficiently defined if
the specifications enable one to prove any true statement about the effect of executing any
program or program segment. There is also the requirement that the specifications do not
allow the proof of any false statements.Specifications are analogous to the axioms and
rules of inference of a logical calculus. Each specification describes a minimal set of con-
straints that any implementation of the subject language must satisfy. Computer program-
mers have used axiomatic semantics to construct proofs that programs possess various for-
mal properties. Logical expressions are used to make assertions about the values of one or
more program variables or the relationships between these values.

The class of assertions include formulas of the form,

{P} A {Q}

where P and Q are logical expressions, and A is a construct or statement from the subject
language. Thenotation above is interpreted to mean that, ‘‘if P is true before the execution
of A and if the execution of A terminates, then Q is true after the termination of A’’ . P is
called thepreconditionof the assertion and Q thepostcondition. Any assertion of the form
{P} A {Q} will be either true or false. It is assumed that a program will terminate after the
execution of any A. Axiom schemata can be developed for various constructs in the lan-
guage. Rulesof inference (proof or deduction rules) enable the truth of certain assertions
to be deduced from the truth of others.A rule of inference of the form,



H1,H2,.... Hn
H

with H1,H2,.... Hn being general assertions means that, ‘‘given H1,H2,.... Hn are true, then H
may be deduced to be true’’. Also, we can define a rule of inference of the form,

H1,H2,.... Hn|- Hn+1
H

which means that, ‘‘if Hn+1 can be deduced by assuming the truth ofH1,H2,.... Hn, then H
may be deduced to be true.’’ T hese rules of inference are independent of the language
being defined. It is possible to build an axiomatic semantics for a programming language
by defining many specific rules of inference. Some of the rules defined below hav eparallels
with those for programming languages. First, lets define a language for representing
actions.

3.1. A language for representing actions

We define a notation for representing operating system actions or commands. The
notation,

{ {P} A {Q} } : U

is used to denote the fact that some user U can execute the action A to transfer the precon-
dition set {P} to the postcondition set {Q}.We call the information inside the bold braces
({ } ) a command environment. The command environment can provide a description of
multiple or single commands. There may be many command environments existing in the
system and many different users executing these. Also, any execution of a command envi-
ronment will cause a state change in the system.Explicit objects within the precondition
set {P} or postcondition set {Q} shall be represented by lower case characters whereas
actions, A shall be represented by upper case characters.Trivially, if there are no precondi-
tions imposed on some command the we write TRUE A {Q}. We also assume that the
execution of action A does not have side effects which we do not know about. Anexample
of a command environment for the COPY command is shown below:

{ {,,,file,,/usr/paul/report,,} COPY {,,non-directory-file,,/usr/paul/papers,}} : User

We use commas to show that only some of the objects in condition sets are being
made explicit. There may be many more. Thenamed objects in precondition and postcon-
dition sets refer to similar objects from the user query. For clarity, we usually present the
same referent as used by the user to denote objects.Of course, this is not what really hap-
pens as all queries are parsed into embedded concept representations.The frames do not
contain trivial objects for pre/postconditions, but constraints on objects.We do not show
the relationships or constraints between objects in our notation.They are not needed to



explain the salient ideas in this paper. Let’s define six inference rules to take care of the
above problems and some others.

4. Somegeneral rules of inference

In this section we look at each of the problems with Transfer Semantics and see if
they can be solved by using an inference rule. Each rules is defined using the language
described in the last section. There were three major problems with Transfer Semantics.

4.1. Thefirst rule of consequence

One problem with Transfer Semantics is that postconditions specified in the postcon-
dition set are too strong to match user queries. There needs to be some method of weaken-
ing them. Lets take a look at the problem query again. The user asked, ‘‘How do I print a
file on the screen ?’’ The problem was that any frame matcher couldn’t matchfile in the
query (or whatever meaning representation it was parsed into) to NON-DIRECTORY-FILE
file in the postcondition set for the PRINT action frame.The Transfer Semantics object
hierarchy contains definitions of objects and relations between them.We can use a rule of
inference in unison with the object hierarchy to locate NON-DIRECTORY-FILEs as types
of FILE. That is what we want, and the rule of inference is called theFirst Rule of Conse-
quence.

In general we have:

{ {P} A {Q} , Q => R

{P} A {R} } : U

This general rule states that if {P} A {Q} is true and the postcondition Q implies R
another postcondition, then the system can infer {P} A {R} to be true too. The system has
derived a new frame <{P} A {R} U> by producing the postcondition set {R} from the post-
condition set {Q}.

More specifically, for the example noted above we hav e,

{ {P} PRINT {,,non-directory-file,,} , non-directory-file => file

{P} PRINT {,,file,} } : User

The first rule of consequence is applied to the specific natural language form and we
note that if the object frame FILE exists in the postcondition set, and NON-DIRECTORY-
FILE implies FILE, then {P} PRINT {,,file,} is also true. Now, the new frame <{P} A
{,,file,} U> will match the natural language query and the frame selector can choose the
correct frame.

4.2. Thesecond rule of consequence

Another problem with Transfer Semantics was that sometimes preconditions for
frames are too weak. There needs to be some method of strengthening preconditions.Say
the user asked, ‘‘How do I list a plain file ?’’ The problem was that the precondition set for



the LIST action frame only knows about FILEs and not PLAIN-FILEs. The frame selector
may reject the listing frame. But, from an object frame hierarchy the system could have
inferred a PLAIN-FILE to be a type of NON-DIRECTORY-FILE, and a NON-
DIRECTORY-FILE to be a type of FILE. Then frame selection would work better. The
rule of inference needed here is called theSecond Rule of Consequence.

In general, the rule takes the form:

{ S => P , {P} A {Q}

{S} A {Q} } : U

This general rule describes that if another precondition S implies the precondition P,
and {P} A {Q} is true, then the system can infer {S} A {Q} to be true too. The system has
derived a new frame <{S} A {Q} U> by producing the precondition set {S} from the pre-
condition set {P}.

For the example problem we derive a specific formula:

{ plain-file => file , {,,file,} LIST {Q}

{,,plain-file,} LIST {Q} } : User

If the object frame FILE exists in the precondition set, and PLAIN-FILE implies
FILE then {,,plain-file,} A {Q} is also true. It will be easier for the frame matcher to
choose the PRINT frame now. Note that in this particular example we have applied the
implication operator twice, i.e. plain-file => non-directory-file and non-directory-file =>
file. Beforewe go on to discuss a very powerful inference rule there is a need to clarify
some of the ideas above. There are two things we wish to clear up (1) a question of infer-
ence direction, and (2) the meaning of the implication operator ‘‘=>’’.

In applying the first rule of consequence we used, non-directory-file => file, and in
applying the second rule of consequence we used plain-file => file.However, there is a
subtle difference in the way we did that for each rule. In the former case we already had
NON-DIRECTORY-FILE as a postcondition in the frame and found FILE from that. Yet,
in the latter case it was FILE that was in the frame. In the first case it’s easy to move up an
object hierarchy from NON-DIRECTORY-FILE to FILE (stronger to weaker). In the sec-
ond case how did we get, plain-file => file ?, because non-directory-file => file, and direc-
tory-file => file, and device-file => file, and all those things that are types of file => file.
This could have been done by finding all the objects that implied file until one matched
with the user query. That’s all right for this example because we would only need to derive
a handful of new frames. However, in any extended object hierarchy it may take forever to
get the correct frame.

So, the way to do inference is to take the semantic representation of some object
mentioned by the user (e.g.,plain file) and to derive a relation between that and what exists
in the frame. Of course we are lucky here because it turns out that what the user said was
correct. Plainfiles can be a good precondition for printing. If the user specifies an incorrect
precondition then no relation may exist and we will be stuck. Yet that is fine, because the



user was wrong in the first place and we would tell him so.

Another point which needs clearing up is the meaning of the implication operator in
the inference rules described above. What does it mean for non-directory-file => file ?
Intuitively, this means that a strong object always implies a weaker one if and only if those
objects are related and of the same type.In the object hierarchy the relationship between
non-directory-file and file istype-of. Therefore, if one object is a type of another, one
implies the other. This would also be the case with aninstance-ofrelation, but not with
part-of. Implication is not commutative, i.e. because device-file => file is true this does not
mean that file => device-file is also true.However, implication is transitive, If plain-file =>
non-directory-file and non-directory-file => file then plain-file => file.A basis for implica-
tion within command environments has now been defined.

The implication operator ‘‘=>’ ’ has been described before in the field of knowledge
representation. For example, Fass (1986) describes this operation by demonstrating moves
along ‘‘ancestor’’ paths in a semantic network. Other such descriptions are found in
Bobrow & Winograd 1977, Brachman 1979 and Goldstein & Roberts 1977.

4.3. Atheory and representation of embedding

Many queries about operating systems involve more than one action to complete
some process. For example, the query, “How do I  stop a listing of my directory, which is
printing on the line printer ?” involves three actions: “removing”, “listing” and “printing”.
We call such queriesembedded queries. The previous query is an an example ofexplicit
embeddingwhere three actions are explicitly mentioned.

It is possible to define a language for describing embedded commands or actions.
We use the notation [A1 < A2 < ... An] to denote an embedding set where actionA1 is
embedded inside actionA2, and so on. One can think of embedding in terms of a stack
whereAn is pushed on top ofAn−1 and so on. Interpreting the stack, the postcondition {Q}
from performingA1 is passed as a precondition toA2 and so on until we reach the top of
the stack. For the previous query we have the embedding set, [LIST < PRINT < REMOVE]
and for the query, “How do I print a listing of my directory on the line printer ?” we get,
[LIST < PRINT]. In the latter example a directory is initially listed and then printed. In
effect, the concept of listing is embedded inside printing. Certainly, in order to interpret
queries involving embedding, we need to use some other inference rule to process action
frames.

4.4. Arule of composition

A third power problem with Transfer Semantics is that sometimes people like to
mention more than one action in a query. In the query, ‘‘How do I detect misspellings in a
file and more them ?’’ there are two actions mentioned. It is necessary to have an infer-
ence rule which concatenates or composes action frames together. If this is not the case
then the frame selection mechanism may try to select between two different frames
(SPELL & PRINT) which are both relevant to the query. The rule for linking frames
together is called theRule of Composition. The general form for the rule of composition is
as follows:



{ {P} A1 {Q} , {Q} A2 {R}

{P} [A1 < A2] {R} } : U

This general formula states that if {P}A1 {Q} is true, and {Q} A2 {R} is also true
then we can infer {P} [A1 < A2] { R} to be true too. In effect, this rule specifies that the
postcondition set found by applying a number of actions in sequence will be the postcondi-
tion set derived by applying the postconditions of any action in the sequence as precondi-
tions to a subsequent action.A more specific formula for the example query is:

{ {P} SPELL {Q} , {Q} PRINT {R}

{P} [SPELL < PRINT]{R} } : User

From the above specific inference rule we deduce that if the postcondition of the
action frame SPELL is applied as the precondition to PRINT then it is inferred that the
postcondition of PRINT is the postcondition of executing both actions. It is easy to think
of the rule of composition as describing a mechanism which processes many objects and
many actions. Therule is a Many Object Many Action definition.

The rule of composition is defined at a more detailed level in the dynamic knowledge
base. The dynamic knowledge base is the heart of the knowledge base for OSCON.Heg-
ner (1987) describes an ‘interconnection calculus’ for connecting commands and one type
of interconnection called ‘sequential composition’ is dealt with. Any complex object may
be viewed as a serial interconnection. This serial interconnection is exactly the type of
composition described above. We are pointing this out because the parallel between the
rule of compositionof the understander and the knowledge baseinterconnection calculus
demonstrates one of the most important principles of our system. That principle is to place
abstract knowledge about operating systems in the understander, while keeping detailed
information in the knowledge base.

The rule of composition is an abstract representation defining of a mechanism which
composes various commands. It is powerful because it allows us to compose command
environments. We will term environments with more than one commandmulti-command
environments. Those with only one command are calledsingle-commandenvironments. It
is possible to build a structure representing the state of the system at any time by concate-
nating command environments. We will use the termsystem environmentto describe a
complete user session (all commands and objects used) with an operating system. System
environments are multi-command environments in the extreme. Therule of composition
acts as a generator of multi-command environments. Itcan therefore be used by the natural
language understander to understand any plans the user may mention implicitly in a query.
We shall call the planner PlanCon.

Concatenated command environments can be produced dynamically by PlanCon on
request. Someuser may wish to know what happens to a number of objects after applying
a number of actions. Using PlanCon OSCON could construct the state of the system
involving any sequence of commands. The user or the system would be able to determine if
the sequence in mind was productive or detrimental. PlanConwill be very useful for



OSCON too. PlanCon will enable OSCON to build representations of the state of some
simulated environment envisaged by a user who is asking queries in a dialogue or context
mechanism. A good description of such a mechanism is discussed by Arens (1986).

Now we hav e taken care of three very visible problems that Transfer Semantics
would have without inference. Three more inference rules will be defined for complete-
ness. Theseare called the AND, OR and No-consequence rules.

4.5. TheAND rule

The AND rule specifies a conjunction of constraints which may be necessary for
some action.Here’s an example query where the AND rule is applied, ‘‘How do I append
the file mbox to /usr/paul/post ?’’ In this case the user wants to append one file to another.
Lets not worry for now about how the system knows that /usr/paul/post is a file. The sys-
tem needs to AND each file as a precondition to the APPEND action frame.The general
form of the AND rule is:

{ {P} A {Q} , {S} A {R}

{P /\ S} A {Q /\ R} } : User

This general formula states that if {P} A {Q} is true and {S} A {R} is true then it is
possible to infer {P /\ S} and {Q /\ R} to be true too. Here is a more specific formula for
the example query above:

{ {,,,mbox,,,} APPEND {Q} , {,/usr/paul/post,,} APPEND {R}

{,,,mbox,, /\ ,,/usr/paul/post,} APPEND {Q /\ R} } : User

From the above specific inference rule we deduce that if the preconditions mbox, and
/usr/paul/post are to be applied to the APPEND action frame, then these preconditions can
be ANDed together and applied at once.In the example above we hav eincluded, for clar-
ity, the actual names of the copied files. Of course, in reality the file names are parsed into a
meaning representation and the system would determine the types of these files.They may
both be PLAIN, or one PLAIN the other NON-DIRECTORY and so on.Naturally, other
processes are used to determine the type of a file. It is possible to think of the AND rule as
processing many objects through one action. This is a Many Object Single Action defini-
tion.

4.6. TheOR rule

The OR rule specifies the disjunction of a number of preconditions for some action.
These preconditions will produce a set of disjoined postconditions. An example query
where the OR rule is applied would be, ‘‘How do I delete the files mbox and .mailrc ?’’ I n
this case the user wants to know how to delete two files rather than one. The system can
OR representations of the two files as preconditions to the DELETE action frame.

The general form for the OR rule is:



{ {P} A {Q} , {P′} A {Q′}

{P \/ P′} A {Q \/ Q′} } : U

This general formula states that if {P} A {P′} is true and {Q} A {Q′} is true then it is
possible to infer {P \/P′} and {Q \/ Q′} to be true too. Here is a more specific formula for
the example query above:

{ {,,,mbox,} DELETE {Q} , {,.mailrc,,} DELETE {Q′}

{,,,mbox, \/ ,.mailrc,,} DELETE { Q \/ Q′} } : User

From the above specific inference rule we deduce that if the preconditions mbox and
.mailrc are applicable to the DELETE action frame, then these preconditions can be ORed
together and applied at once. This will save using the same frame twice. It is also possible
to think of the OR rule as processing many objects through one action. This is another
Many Object Single Action definition.

The AND and OR rules are different to the three rules described earlier. The AND
and OR rules are used to add information together for a given frame. They do not derive
new information to be placed into a frame. The function of the AND rule is to add neces-
sary constraints on objects together for a frame. The OR rule is used to OR object con-
straints together in one frame which could have been processed separately by two runs of
the same frame. There is a difference between the AND and OR rules in that the AND rule
is defined because it is necessary, whereas the OR rule is defined for efficiency reasons. By
this we mean that the OR rule could be removed so that some parallel rule of composition
executes an action or command over many objects concurrently. This could not be done
with the AND rule as some frames such as APPENDneedsource and destination files to
exist before execution. Thus the AND rule adds together necessary conditions on frames
while the OR rule OR’s together optional conditions on frames.

In some operating systems it doesn’t matter if /usr/paul/post or mbox don’t exist
before executing an APPEND command.However, in some systems it does matter, and as
was said before, we are taking an interdisciplinary approach to operating system design.

4.7. TheNo-consequence rule

Trivially, the No-consequence rule is a ‘‘do-nothing’’ statement and is defined by,

{P} A {P}

The rule shows us that after executing an action A the preconditions do not change at
all. A command such as ‘‘who’’ in the UNIX operating system could be considered under a
no-consequence rule because it does not really change the states of objects or data in the
system. Any no-consequence rule can be executed a number of times throughout any com-
mand environment without having any effect on objects within that command environment.
It is important to realize that the no-consequence rule is truly an element of Transfer



Semantics. The no-consequence rule does transfer objects from one state to another where
the new state is the same as the old one. Therefore, when PlanCon sees certain commands
it just applies the no-consequence rule and does not change the precondition set. It turns
out that there are commands in some operating systems which can be concatenated in a
multi-command environment to simulate the no-consequence rule. For example, commands
can have their effects reversed if they are followed by certain other commands.

In summary we have defined six rules of inference which can operate on action
frames. The rule of composition is the only rule which involves multiple actions. All the
other rules relate to single actions. Some may argue that the first and second rules of con-
sequence are not really inference rules at all.Certainly some of the other membersare
inference rules. It is our belief that objects such as ‘‘plain files’’ should not be stored as
plain files but as types of file.Such information can be located in an object hierarchy and
that process is called inferencing. In building OSCON we try to store as little information
as possible and derive new information when it is needed. That is ourminimum-storage
principle. It may be the case that some combination of the six inference rules is needed in
order to build domain-specific representations to match a user query. The order of applica-
tion of combinations of inference rules may be important. This has not been investigated
yet.

5. Relationto other work

The action frames for Transfer Semantics are described as plans in much of the liter-
ature (see Fikes and Nilsson, 1971; Carberry, 1983). Carberry (1983) describes plans con-
taining preconditions, partially ordered actions and effects. This is also a good description
of our action frames. The rule of composition for building multi-command environments is
similar to what Carberry calls ‘‘global plan context’’. Eachindividual command environ-
ment which may be used to construct a multi-command environment is what Carberry calls
a ‘‘local plan context’’. Carberry describes her work in the wider context of dialogue
understanding and we hope to apply the rule of composition in this area. Kautz & Allen
(1986) have defined a structure for modeling concurrent actions. They define a semantic
structure for describing interactions between actions, both concurrent and sequential, and
for composing simple actions to form complex ones. Again, this work relates to the func-
tion of PlanCon.

The UNIX Consultant (UC) program (Wilensky et al. 1984, 1986) has various ele-
ments of inference embedded within the system. The UC system is divided into various
components. Thecomponents called PAGAN (Plan And Goal ANalyzer) and UCPlanner
involve procedures closely related to what we talk about in this paper. The PAGAN pro-
gram hypothesizes the plans and goals under which some user is operating.PA GANs
knowledge representation involves planfors. These are relations between goals, and plans
for achieving those goals.Each plan is a sequence of steps. Therefore, plans in the PAGAN
component can be compared to multi-command environments in PlanCon where a number
of command environments are concatenated to produce some effect. We differ from the UC
approach as in PlanCon goals and plans are generated dynamically using rules of inference
over action frames and input text. That is exactly why we need the inference rules
described above. Yet, in PAGAN the steps of plans are already stored statically in memory
in a planfor database.



UCPlanner has the function of determining a fact that the user would like to know.
The domain planner tries to determine how to accomplish a task, using knowledge about
UNIX and knowledge about the user’s likely goals. UCPlanner is a knowledge based com-
mon-sense planner. The planner creates plans for the user’s UNIX goals. A goal detector
is used to detect various goals that are necessary to complete in order to execute some user
goal. Goals may be detected automatically. For example, new goals may be detected dur-
ing the projection of possible plans. This will happen if the planner notices some plan
would fail when some condition is not satisfied. A new goal would be produced by the
planner to satisfy the condition. Other goals that may be detected include background
goals such as access to files. The goal detector finds goal conflicts such as deleting files
which have protection. Storedplans exist in the system and these are similar to the action
frames from Transfer Semantics.

In UCPlanner plans are selected and this involves two processes i.e. (1) new plans
can be derived, and (2) a process of plan specification fills in each general plan with more
specific information.A process called projection is used to test whether a given plan will
execute successfully. This is a test for possible problems in the plan: (1) conditions to be
satisfied, and (2) possible goal conflicts to be resolved because of the effects of that plan.
This involves three processes. The planner contains defaults to help in simulating some
plan. These defaults may not be supplied by the user. Defaults would be to assume such
things as files being text unless otherwise specified. Other processes include condition
checking to ensure that plan conditions are satisfied in the system, and new goal detection
where effects may arise which are not part of the user’s goals.

In PlanCon new plans are derived using the rules of inference and general plans can
be filled with more specific information from the object hierarchy. The process called
‘project’ in UCPlanner is similar to processes in PlanCon.We are in agreement with
Wilensky et al. (1986,p. 50) ‘‘However, to answer more interesting problems it is neces-
sary to be able to build new plans from existing plans. It would be impossible and undesir-
able to index an appropriate plan for each of the possible queries that a user might have.’’
That is exactly why we use inference rules in PlanCon.

The SINIX Consultant discussed by Kemke (1987) contains a rich knowledge base
similar to our Transfer Semantics component. Like Transfer Semantics the SINIX knowl-
edge base consists of a taxonomical hierarchy of concepts. The leaves of the hierarchy cor-
respond to SINIX objects or commands. Higher level concepts reflect more general actions
or objects. In Kemke (1987) we are told that a Plan Generator should be able to use a for-
mal semantics of commands. Kemke says (p. 218), ‘‘The formal semantics description
should be able to be used by aPlan Generator in order to construct ‘‘complex actions’’, i.e.
plans, if the desired state or action specified in the user’s question cannot be realized using
a single command but, instead, through a sequence of commands.’’ She talks of being able
to describe the effects of commands by using a set of ‘‘primiti ve’’ o r ‘‘basic’’ actions. That
is exactly what we hope PlanCon does using the Rule of Composition.

The COUSIN system developed by Hayes (1982) has interesting similarities with our
work. COUSIN can provide dynamically generated, contextually sensitive explanations
about the current state of user interaction with the system. COUSIN only generates these
dynamic help frames if the user makes a request for help without giving the name of some



static knowledge frame.We can do this by using the rule of composition. That rule gener-
ates any command environment by concatenating or interconnecting individual command
environments. Of course, as COUSIN is a command-level interface each stage of user inter-
action will be executable, whereas with PlanCon command environments are representa-
tions used by the system to understand user queries.They are representations of what
wouldhappen if the user executed certain commands.

Sandewall & Ronnquist (1986) define a representation for action structures very sim-
ilar to our own. Eachaction structure is defined in terms of ‘‘precondition’’, ‘ ‘postcondi-
tion’’ and ‘‘prevail’ ’ conditions. Prevail conditions must hold for the duration of some
action. An action structure (multi-command environment for us) is viewed as a set of
actions (single-command environment for us).Each action has a start point and an end
point. These would be the preconditions and postconditions in any multi-command envi-
ronment. They hav e done an interesting job on formalizing sequences of connected
actions. This will be useful for doing parallel command operations.It is easy in UNIX to
be doing one thing while numerous other processes are going on. Such processes are called
background or child processes.

An interesting discussion on hierarchical representations of causal knowledge is
found in Gabrielan & Stickney (1987). They define a formalism for hierarchical causal
models which provides explicit representations for time and probabilities.A system is
defined in terms of a set of states and transitions among those states. A state is considered
to be a complete or partial description of the system at a moment in time. Transitions define
how changes in the system occur. An explicit representation of a transition or action can be
defined explicitly in terms of start states (preconditions) and end states (postconditions).
They introduce a number of formal definitions to construct a precise formulation of a hier-
archical causal model.In their formulation more than one state can be active at any one
time and many parallel transitions can occur simultaneously and asynchronously. This is
all related to the function of PlanCon.

6. Conclusion

In this paper we have described the architecture of an operating system consultant
called OSCON, and more particularly, the operations on a knowledge representation.We
showed that a knowledge representation for operating systems called Transfer Semantics
will not work without inference.This was done by providing natural language forms that
could not be processed by the understander. The next step was to describe some general
rules of inference that could be applied to action frames so that the frames would work for
each of the these forms. Those inference rules were called (1) The First Rule of Conse-
quence, (2) The Second Rule of Consequence and, (3) The Rule of Composition.We
defined three more rules called the AND, OR and No-consequence rules.The AND and
OR rules provide necessary and efficiency requirements for frames. The no-consequence
rule allows us to specify commands which will have no real effect on objects in the com-
mand environments. Thelanguage of each inference rule has been borrowed from
axiomatic semantics. This semantics has been used to provide formal descriptions of pro-
gramming languages.We chose the semantics because of its clarity and coverage.



It is concluded that the six general rules of inference are necessary in expanding the
scope of Transfer Semantics.Remember, the problem with Transfer Semantics is that only
preferred conditions are specified in frames. This is done because if all conditions on
frames are specified the frames would become too large. Theinference rules allow the sys-
tem to infer all those things that otherwise would not be represented in frames.

We hope to include a learning component called LeCon at a later stage. LeCon will
be similar to the component called UTeacher in the UC system (Wilensky et al. 1986).
LeCon would allow any user to update knowledge in OSCON through a natural language
interface. Knowledge that could be updated includes adding new action frames or object
frames or updating existing ones. Inference rules could be updated or new ones added to
the inference database. We are not so naive as to believe that six is a magic inference num-
ber at all. For an update system it would be nice if all knowledge was kept in the same
place in the understander. Then, we must justify why we chose to have three types of
knowledge in different places which may hamper updating. That is, why did we choose to
separate out knowledge into object frames, action frames, and inference rules ?

We believe that it is easier to keep the static data representation (action frames) small
and use information from another static representation (object frames) together with infer-
ence rules to expand the scope of action frames.The system will become more efficient, as
it is easier to match small frames containing localized information, and infer on that local
information than to search through large frames.We hav ecome to one major conclusion
while developing this research. In general we argue that [ action-frames + object-hierarchy
+ inference-rules ] is better than [ ACTION-FRAMES∗ ] or even [ ACTION-FRAMES +
object-hierarchy ] for any system.

Our approach brings up the question of procedural versus declarative representations.
The inference rules are procedural and Transfer Semantics (action frames + object frames)
is declarative. Howev er, and this is an important point, the very fact that we have defined
clearly and precisely what we are doing procedurally with six inference rules means that
the procedural elements in the system are now, ‘‘declarative’’ . That is exactly why we hav e
defined the rules explicitly. The reader must trust us to program the rules as we have stated
them. Therefore,one major conclusion of our work, is that procedural representations can
be made declarative if one takes the time to do so.

Although six general rules of inference have been defined here, the rules may need to
be extended for certain types of each natural language form. Inference rules could be
thought of as having their own hierarchy just like a semantic network or inheritance hierar-
chy, or whatever. Such hierarchies of component goals and actions for domain-dependent
plans have been used by Carberry (1983).Litman & Allen (1984) and Pelavin & Allen
(1987) have also developed a model based on a hierarchy of plans and metaplans.

Take for example the Rule of Composition, one of the more complex rules that does
a lot of work. If a user asks something like, ‘‘How do I spell a file and print the mistakes
on the Imagen ?’’ there is a composition of the commands spell and print. In this case the
frame for SPELL is embedded inside that for PRINT. For the query, ‘‘How do I print a list-
ing of my directory ?’’ the LIST frame is embedded inside the PRINT frame. These forms

∗ By using upper case characters we hope to emphasize that terms refer to action frames
containing a large number of conditions.



of queries are examples of simple serial interconnection where the output of one is passed
as the input to another. Howev er, that will not be good enough for the query, ‘‘How do I
find a job number and then kill the job ?’’ I n this case the user needs to find a job number
(one action or command) and then kill it (another action or command). However, the output
of one command is not passed as the input to the other. The KILL frame just needs infor-
mation from the FINDING-JOB-NUMBERS frame.We need to define a new inference
rule, involving some type of composition - i.e.a variation on the rule of composition.The
rule will specify sifting of information from one action to be passed to another. And, again
there will surely be many ways of sifting information from commands.One can easily see
that it would certainly be naive to suspect that six general rules of inference will be enough.
Our next job is to locate and specify new and interesting rules of inference.

Elements of the Rule of Composition have also been described as ‘‘enablement’’ by
Pollack (1986). Her example demonstrates that in a mail system some user may type
HEADER 15 and thisenablesthe generationof deleting the fifteenth message by typing
‘‘ DEL .’’ . This happens because typing HEADER 15 makes message fifteen the current
message to which ‘‘.’’ r efers. Pollack only considers what she calls ‘simple plans’ which
are a restricted subset of plans. Simple plans are those plans where the agent believes that
all the actions in a plan play a role by generating another action.That is, the plan includes
no actions that the user believes are related to each other by enablement. Simple plans can
also be generated by PlanCon.

In this paper we have not worried about problems of the distinction between what the
user and system believes. That distinction is discussed by Pollack (1986) in a paper on plan
inference. Sheproposes that models of plan inference in conversation must include this
distinction. If this does not happen plan inference will fail as will the communication that it
is meant to support. Pollack has implemented a plan inference model in SPIRIT which is a
small demonstration system that answers questions about computer mail. She makes a neat
distinction between ‘‘act-types’’ and ‘‘actions’’. Act-types are types of actions and corre-
spond to what we call action frames.Actions correspond to specific actions to achieve
some act-type.For example, ‘‘cat’’ and ‘‘more’’ are actions specified in our PRINT frame
where the frame can be thought of as an act-type.Wilks & Ballim (1987) have proposed a
first implementation of a ‘‘belief engine’’ called ViewGen that contains heuristics for the
default ascription of belief. We hope to include an instantiation of this belief engine within
OSCON to model the interaction of system and user planning on the basis of differing
beliefs and plans.

We will close with a question raised by Wilensky et al. (1984,p. 590) , ‘‘Probably
the most significant problem in UC (Unix Consultant) involves representational issues.
That is, how can the various entities, actions and relationships that constitute the UC
domain best be denoted in a formal language ?’’ I t is hoped that we have made a start in
answering this question and many more.
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