Under standing complex queries on operating systems 1

Paul Mc Keuvitt

Computing Research Laboratory
Dept. 3CRL, Box 30001
New Mexico State Uniersity
Las Cruces, NM 88003-0001, USA.
CSNET paul@nmsu.edu [(505) 646-5942/5466]

Submission: First Irish National Conference on Al

Suggested Topic of Interest: Knowledge Representation/

Applications of Knowledge bases/ Natural language processing

Keywords: natural language queries, knowledge representation, operating systems.
Paper Length: 4989 words

ABSTRACT

When building knowledge representation schemes for particular domains we should real-
ize abstractions of relationships from those domains. Computer operating systves in
numerous actions or commands which can transfer data from one state to. dinigther
this process of transfer that should be formalized inrapresentation of such actions.
Transfer Semantics already exists as a knowledge representation scheme for operating
system commands (MceKitt & Wilks, 1987). Yet, no such scheme is powerful without
inferencing. Axiomaticsemantic techniques V& keen applied in exploring the logical
foundations of computer programmingVe an borrov axiomatic semantics as a lan-
guage for constructing abstract formalizations of inference rulesrémsfer Semantics.

In particular complex commands in operating systems such as UlNdxn be formalized

by this method.

TThisresearch iscurrently funded by
U SWEST Advanced Technologies
under their Sponsored Research Program.

OUNIX is a trademark of AT&T Bell Laboratories.

0. Introduction

A knowledge representation scheme isenecomplete while there are no strgiees
to manipulate that scheme.eWhve developed a knowledge representation for computer
operating systems called Transfer Semantics (see Btk Wilks, 1987). Transfer
Semantics is a peerful abstract semantics used in understanding natural language queries
about operating systems. The semantics is abstract because a detailed knowledge of operat-
ing systems is not necessary to understand user quédtriesthe process of pwiding
answers for queries that requires specific detailed/lauge. Thevork of answering natu-
ral language queries is performed by a formal knowledge base.

Transfer Semantics is a knowledge representation used to formalize operating system
actions and anobjects affected by such actions/e wse Transfer Semantics to represent
the means by which operating system commands transfer objects from one state to another
In Transfer Semantics operating system objects are represented by object ffdmes.
object frames are structured in a treeligpresentation. Action frames are used to specify
transfer relations among object frames.

Each action frame is a formal representation of operating system actions or com-
mands. Action frames consist of preconditions, postconditions, actions and actors. Precon-
ditions are sets of states of objects existing before commarel&takt. Postconditions
involve sts of states of objects after a command is perforrBegh conditions specifying
states of objects are ‘preferred’, i.e. we do not specify all conditions on frames, only those
that usually occurActions include the particular command(s) that causegsjransfer of
object states. An actor is yaperson capable of performing some actidtreconditions
and postconditions are mentioned in most of the literature on planning antielea used
for specifying plans and goal$:or example, in Wlensky (1987) there is a description of
concernswhich are preconditions particularly redat to a gven plan. Theterm concern is
synonymous with our concept of preferred conditions.

As conditions on action frames are preferred, we choose those conditions typical for
some action. This is done for three reasons: (1) so that the correct frame will be selected
for a particular query(2) frames would become very large if all possible transfer condi-
tions were specified and, (3) inherent requirements for specifying ‘weak’ preconditions and
‘strong’ postconditions on frames. What we mean by weak and strong will become appar
ent later on. The very fact that frames contain only preferred conditions meansatisat T
fer Semantics is weak. That can be shown explicitly by varigamples. Thepower of
Transfer Semantics must be increased by defining and applying various rules of inference.
Inference rules will be used to manipulate the preferred conditions in each frame so that the
scope of frame meaning can bganded. This paper is about: (1) defining some rules of
inference, (2) hw these rules can be used to strengtheangfer Semantics, and more
important, (3) wlg we designed a weak semantics in the first place.

We bkegn in section one with a briefverview of the Operating System CONsultant
(OSCON) system and its relation to othesrlv We follow in section two with examples
of natural language queries that demonstrate problems in Transfer Semantics. Section three
describes a language for representing inference rules. In section four some general rules of
inference are defined to selthe problems. This section includes a number ofked
examples on hwe those inference rules may be applied. A description of otlegk w

relating to our inferencing schema comes next. Ay, we arwve & some conclusions,
and in section six the need for inference processes is justified.

1. TheOperating System Consultant

At the Computing Research Laboratory we anegldping a natural language under
stander for a consultant system called OSCON. OSCON is being programmgdtin K
Common Lisp. The system is intended to help novice and expert users learn operating sys-
tem concepts. It is hoped that OSCON will answer user queries oy aparating sys-
tems, although we are focusing on UNIX. Other computer operating systems of interest are
TOPS-20] VMSOand VM/CMST.

The system will hae an ‘interdisciplinary’ flavor. By this we mean if some user asks
a query in the context of one operating system, OSCON wik lfae capability of answer
ing the query in terms of anothefor example, a user may be asking queries about UNIX
and suddenly sayHow do | use ‘dir’ to find the creation date of all the files in my direc-
tory ?” Howevae, there is no‘tir’ command in UNIX although there is one I©OPS-20.
Of course, the equilent command for UNIX is “Is -I' It is our intention to build a sys-
tem that will allev the user to specify which operating system he wishes to learrmult w
be possible for the system to answer a query about'deleting” by showing the neces-
sary commands for different operating systems or just a specified one.

OSCON has a two-module architecturgaiming a natural language understander
and a knowledge base. The natural language understander has the function of understand-
ing and answering English queries. Query responses will be in English too. Wiedg®
base is a detailed, formal kmledge base and functions as a solving or answering module.
The knowledge base is being constructed at theddsity of Vermont by Dr Steve Hegner.

Work on the knowledge base is discussemsvely in Douglass & Hegner (1982), e

ner & Douglass (1984) and BHeer (1987). Our architecture is similar to that found in
mary natural language inteates to database systems (see Waltz 1975, 1978; Martin et al.
1983; Wallace 1985; & Hendrix et al. 1978). Theotmodule architecture is one of the
principle design features of OSCON. As pointed out bgrtée (see Hegner 1987, p. 1) the
two-module architecture facilitates an important principle of separation of understanding
and solving.

In the natural language understander parsed English sentences are translated into a
formal query language called OSquel (segrég 1987). Formal queries are instantiated
by the knowledge base and returned to the understander where answers are produced in
English. Formal queries are represented in the form <{P} A {Q} U>. P and Q represent
preconditions and postconditions foryaaction A. U represents the particular person or
user performing A.

The natural language understander can be considered in ternsdtinct phases:
(1) formal query generation, and (2) answer productibhe formal query generation
phase imolves four components: (1) shallgarser (2) deep parse(3) knowledge repre-
sentation, and (4) formal query generatBach component produces annkevd of mean-
ing representation for some queryhe advantage of having variouvds of meaning

OTOPS-20 and VMS are trademarks of Digital Equipment Corporation.
t VM/CMS is a trademark of International Business Machines Corporation.

representation in grinterface is discussed by Sparck-Jones (1983).

The control flev of the natural language understander proceeddHik: (1) Initially,
an English query is input by the usdthe query is parsed into a ‘shallmepresentation’
by some natural language parsé&his representation may include some semantics such as
knowledge of word senses. Examples of natural language parsers we currently use are
described by Ball & Huang in Ws (1986) and by Slator in Wilks et al. (1987); (2) Each
shallav representation is passed to an Embedded Concept Representation gerasator
component builds semantic representations of queries from thevsiheficesentation and
makes use of semantic case frames existing in a database labels are attached #riv
ous items (see Mcitt, 1986a); (3) Each embedded concept representation is passed to a
Transfer Semantics component which maintains a database wiekige frames. The
Transfer Semantics component is the heart of the natural language underkteodtins
the abstract knowledge about operating systems and embodies the tasks of frame selection
and instantiation (see Mcekitt, 1986b); (4) A domain-specificransfer Semantics repre-
sentation is passed to a formal query generator which produces an uninstantiated formal
guery to the knwledge base in the query language called OSqgEeimal queries are
instantiated by the application of a solving process in thevledge base. The answer
generation phase of the understander is concerned with producing natural language answers
from instantiated queries.

1.1. Relationto other Operating System Consultants

Many researchers areonking on building operating system consultants. There are
three types of system being built: (1) systems with menu-based interfaces (MENU), (2)
systems with limited natural language capability (LNL), and (3) systems with natural lan-
guage interfaces (NL). In theory MENU, LNL, and NL systems couwldiwe acommand-
level interface, i.e. the user coulckesute commands at the intace. Hovever, mary of
these systems only act as consultants.

MENU systems are based on menu-selection and some of them include a command-
level option, others do not. The problem with most menu-selection approaches for operat-
ing system consultants (pointed out by McDonald & &clexeldt 1987, p. 14; Hgner
1987, p. 1 and Wensky et d. 1984, p. 576) is that theare not very useful if a user kws
what he wants to doubdoes not knw the explicit command for doing it. McDonald et al.
(1983) hae aganized studies to clarify the effects of menganization on user perfor
mance. The used explicit tagets (e.g., ‘femon”) and single-line definitions (e.g..a’
small, oblong, pale-yeli citrus fruit”) to examine the effects thdype of target has on
menu-selection performance. Theoint out that real wrld users seldom search for
explicit targets in menus. If people knaeexactly what thg are looking for then thg prob-
ably knav where to find it. Say a user is looking for some command tovermadle. It is
unlikely that the name of the command is\wmno Searchinghe menu system is easy if the
user knows that the command is ‘delete’. But, then the user need not use the menu system
at all.

It is possible that one could build a menu system where abstractions or concepts such
as printing are representedowever, such abstractions may still not be useful to some user
who can describe what he wants to do but cannot figdramtion of that in the set of

abstractions. The problem arises because natural langxages®ons are at such an
abstract ledl that thg may not fall into ag set of concepts.You may argue that such
abstractions can also be built into a MENU irded. That is true, but then what yowéa

a natural language front end. Natural language front endsxénenee examples of MENU
systems containing mgrabstractions. Suclront ends all users to specify queries in
terms of abstractions ofokd meanings, and are therefore moreilfle. Itis important to
point out that we are not saying there igthimg wrong with menu-selection approaches.
They are a useful insight into Woto dructure knavledge about some domain and are a
useful first draft at building aninterface. Thenext four paragraphs discuss examples of
MENU systems and that alone distinguishes our work from theirs.

() The Cognitve Systems Group at the Computing Research Laboratory aet de
oping formal methods for interface design (see McDonald et al. 1986; McDonald &
Schvaneeldt, 1987). McDonald & Schaneveldt have defined theoretical matations for
their empirically based approach along with a related discussion of scaling anddgm
acquisition techniques. One application to illustragg &pects of their methodology is an
ongoing ivestigation of UNIX users aimed at improving on-line documentation systems.
They are developing a theory of structural descriptions for UNIX. These will be useful in
building a menu-based consultation program for UNIX which willalisers to dfciently
develop accurate conceptual models of operating systems.

Their UNIX interactve documentation guide (Superman IlI), (1) is based on empiri-
cally derved representations of experienced users’ conceptual models, (2)vieesd per
spectves (e.g., functional and procedural), (3) has multipleele of abstraction within
each perspeate, and (4) pravides users who are familiar with other operating systems (e.g.
DOS) a ‘bridge’ for transferring their knaledge to UNIX. V@ ae working closely with
the Cognitve Systems Group to provide empirical backing foy assumptions made in
developing the natural language understander for OSCON.

(I1) Tyler (1986) describes an adatiinterface design and a prototype usem-
puter interce to demonstrate both the feasibility and utility of a general adagthitec-
ture. Thesystem is a commanadwd interface where the intaa€e takes a userintry and
sends a valid command to the operating syst@mrototype has been designed which will
interface the user to a UNIX operating system. Features of the interface are geardsd to
the particular useend the specific task currently beirgeeuted.

(1) Another menu-selection approach is described in Hayes (1982) and Hayes &
Szelely (1983). They havedesigned a system called COUSIN which is a commard le
interface for operating systems. The COUSIN system providedypes of user friendly
information: (1) static descriptions of possiblydked subsystems, including their parame-
ters and syntax; (2) dynamically produced descriptions of the state of current interaction.
One of the applications of the COUSIN inter¢ is to provide a commandskinterface to
the UNIX operating system, i.e. to pide an alternafe o the standard UNIX shell.
COUSIN consists of a network ofxteframes connected by named semantic links. Each
frame is variable in size and contain less than a screenfull of information. COUSIA sho
to the user information that is hidden from him by OSCON. While using OSCON the user
does not see, or need to kndhe structure of stored kmtedge. Suchinformation can be

ODOS is a trademark of International Business Machines Corporation.

discovered by the user through natural language interaction if it needs to ta.kiide
natural language understander informs the,usderms of English, the specific pieces of
stored knowledge that are particularly valg to some query.

(IV) Billmers & Garifo (1985) are building knowledge-based operating system con-
sultants. The haveimplemented an expert system called TEACHVMS which is used for
helping TOPS-20 users learn about the VMS operating system.aféalso deeloping a
system called TVX which provides a general operating system shell useful for designing
specific operating system consultants. Both of these systems are menu-based expert sys-
tems. Inagreement with our approach, Billmers and Garifo are interested in planning solu-
tions to complg user tasks, requiring mgrsteps. The fact that TEACHVMS cuoerts
TOPS-20 commands to VMS commands means that it must contain similarities between
concepts from different operating system$his concurs with our interdisciplinary
approach to consultant system desigivVX contains knowledge in tavforms: abstract
operating system concepts, and knowledge specific to the target system (i.e., VMS).
OSCON also imolves knowledge in both abstract and specific forms, distinguished by the
understander and the knowledge base resphcti

LNL systems allw the user to insert queries using limited natural langu&e.
example, an xpert system called CMS-HELP has beewneigped by Yun & Loeb (1984)
to sere as an o-line consultant for users of the VM/CMS operating system. The system
assists ngice or experienced users who need to use unfamiliar syahtids. Adviceis
given in terms of the sequence of commands needed to accomplish some user task. The
CMS-HELP expert system was constructed using EMYCIN, a program faogdag
knowledge-based consultation systems.

The third type of consultant system are natural language understanders. dive adv
tages of NL systemsver most MENU and LNL approaches are numerous.\W¥ not dis-
cuss those advantages here, as this has been done elsewhere (see Douglass & Hegner 1982,
p. 1; Wilensk et d. 1984, p. 576).

At Berkeley, Robert Wlensky heads a group who e huilt an understanding system
called Unix Consultant (UC) which processes natural language queries about UNIX (see
Wilensky et d. 1984, 1986; Wensky, 1987). Ourapproach to consultation is similar and
yet different to the one at Barley. We ae both building natural language systems, yet the
way we do hat is quite distinct. In UC there is no separation and formalization of detailed
knowledge on operating systems in a Wiedge base. All aspects of UC nealse of one
general knowledge representation called KODIAK (selensky, 1986). This compares to
our approach of having abstract knowledge in the understander and detailed knowledge in a
knowledge base Another distinction is that presently the UC program is intended to be a
consultant for UNIX whereas our system is intended to be a general operating system con-
sultant (e.g., UNIX, TOPS-20, and VM/CMS). In building OSCON we are more con-
cerned with understanding comyplgueries where there are a number of operating system
commands interrelated with each otherdenote some highendel process.

Kemke (1987) describes an intelligent help system called SINIX Consultant (SC) for
the SINIXOoperating system. The system is intended to answer natural language questions
about SINIX concepts and commands. SC has a rich knowledge base which reflects the

OSINIX is a UNIX dervative cevdoped by SIEMENS AG.

technical aspects of the domain as well as the usessofithe system. Although SC con-
tains a knwledge base which is similar to the knowledge contained in OSE@iliral
language understanddhere is no separation out of the detailed knowledge needed to
answer or sol uiser queries. Therefore we see SC as being similar in design and approach
to the UC system.

2. Theproblems of Transfer Semantics without inference

We have already mentioned thatrdnsfer Semantics is a knowledge representation
scheme for operating systemslowever, some interesting problems arise wherarisfer
Semantics is used to understand natural language quévielsie to such problems ag
already gven above. Only ‘preferred’ conditions on frames are demd. Otherwisethe
frames would become enormous and difficult to handket's look at some of the prob-
lems.

Say some user decides to enter the quatpw do | print a file on the screen’?
This query will be parsed first, into a shalldorm, and then into a semantically deeper
embedded concept representation. So far there is no problem. Xttetamein the control
flow of the understander is to select a domain-specific action frame. The PRHie
should be selecteddowever, that may not happen as the postcondition set for the PRINT
frame only knows about specific NON-DIREORY files. This problem occurs because in
each frame the postconditions ateong (see Mc kewitt & Wilks 1987, p. 572). NON-
DIRECTORY-FILE from the postcondition set does not mditdt (or the embedded con-
cept representation that it is parsed into) from the user.qiénys the abee query may
not be processed correctly by the natural language understdldeleeed an inference rule
to weaken the system reference to NON-DIRBERY-FILE so that it becomes FILEThis
is done by inferring non-directory-files to be files.

Another problem arises with the quetdow do | print a plain file ?° As preferred
conditions are stored in frames, there will only be mention of FILEs in the precondition set
for the PRINT frame. In anframe we try to makthe preconditions aseak as possible
(see Mc Kewitt & Wilks 1987, p. 572).The frame selection process may mistakenly reject
the PRINT frame.An inference rule is needed to strengthen the system reference to FILE
so that it will match plain file. This problem is the complement of thateablm this case
the user query has stronger informatiptaip file) whereas abee it had weaker informa-
tion (file). Thereis a requirement for an inference rule which will strengthen the system
reference to FILE so that it becomes PLAIN-FILE.

Another type of problem occurs when more than one action or command is refer
enced in a user queryor example, in the query'How do | find the spelling mistakes in a
file and then ‘more’ them "Xhe user has specifieddwoncepts. The&onceptdetecting-
spelling-mistakeandmoreingr havebeen related together in this queAn inference rule
is needed so that action frames fromansfer Semantics can be composed or intercon-
nected in some way.

OWe wse uppercase letters to denotg action frame, or information contained in one.
T Lowercase italicized characters are used to denote information from a user query.
T ‘More’ is a command from UNIX which produces formated output on the screen.

To summarize, there are three clear problems identified in the examphes ébo
sometimes postconditions for action frames are too strong, (2) sometimes preconditions for
action frames are too weak, and (3) sometimes one frame is not enough to handle a query
Transfer Semantics will not work without inference rules. There is no requirement to define
specific rules forery example of these problem#ny rules we deelop will have be
general enough to cater for numerous natural language examples of the probleans abo

3. Alanguage for inference rules

There are mannotations possible while defining inference rules. There aer e
more ways of implementing the rules onceythave been defined. Axiomatic semantic
techniques hze keen applied in>ploring the logical foundations of computer program-
ming. Axiomaticsemantics seems a most lucid and explanatory method for defining our
rules. W\ can construct abstract formalizations of inference in the spirit of axiomatic
semantics. Firstet's dscuss the foundations of axiomatic semantics and get used to some
notation.

Axiomatic semantics has been used in the formal specification of the syntax and
semantics of computer programming languages. The paper by Hoare (1969) is a classic ref-
erence on the core ideas of axiomatic semantitany of Hoares ideas were stimulated
from a paper by Floyd (1967)A more mathematical description of axiomatic semantics,
and particularly programerification is described in Stanat & McAllister (197 Qther
discussions are found in Hoare & Wirth (1973) andaiignd Arbib (1978). Owicki and
Gries (1976a, 1976b) apply the approach to parallel programming. A good introduction to
the semantics is formulated by Pagan (1981).

An axiomatic semantics for programming languages will be sufficiently defined if
the specifications enable one toyeany true statement about the effect abeuting ary
program or program segment. There is also the requirement that the specifications do not
allow the proof of ag false statementsSpecifications are analogous to the axioms and
rules of inference of a logical calculus. Each specification describes a minimal set of con-
straints that animplementation of the subject language must satiSfymputer program-
mers hae wsed axiomatic semantics to construct proofs that programs possess various for
mal properties. Logicabg@ressions are used to neagssertions about the values of one or
more program variables or the relationships between these values.

The class of assertions include formulas of the form,

{P}A{Q}

where P and Q are logicax@essions, and A is a construct or statement from the subject
language. Thaotation abwe is interpreted to mean that, “if P is true before tkecation

of A and if the gecution of A terminates, then Q is true after the termination”ofFAis
called thepreconditionof the assertion and Q tip®stcondition Any assertion of the form

{P} A {Q} will be either true or false. It is assumed that a program will terminate after the
execution of aiy A. Axiom schemata can be\dtoped for various constructs in the lan-
guage. Rulesf inference (proof or deduction rules) enable the truth of certain assertions
to be deduced from the truth of othessrule of inference of the form,

HyHs.... Hy
H

with H; H, ... H, being general assertions means thgityen H; H,.... H, are true, then H
may be deduced to be trueAlso, we can define a rule of inference of the form,

HiH,.... Hil- Hpa
H

which means that;if H,,, can be deduced by assuming the trutiipH,.... H,, then H

may be deduced to be trueT hese rules of inference are independent of the language
being defined. It is possible to build an axiomatic semantics for a programming language
by defining maw specific rules of inference. Some of the rules defineddbbéveparallels

with those for programming languages. First, lets define a language for representing
actions.

3.1. Alanguage for representing actions

We cefine a notation for representing operating system actions or commands. The
notation,

{{P}A{Q}};U

is used to denote the fact that some user U xecute the action A to transfer the precon-
dition set {P} to the postcondition set {QMWe all the information inside the bold braces
({ }) a command erironment The command environment can provide a description of
multiple or single commands. There may be ynemmmand environments existing in the
system and mandifferent usersxecuting these. Also, gnexecution of a command &n
ronment will cause a state change in the systErplicit objects within the precondition
set {P} or postcondition set {Q} shall be represented by lower case characters whereas
actions, A shall be represented by upper case chara@rarilly, if there are no precondi-
tions imposed on some command the we writdJERA {Q}. We dso assume that the
execution of action A does not ha sde efects which we do not kmoabout. Anexample

of a command environment for the COPY command is shown below:

{ {,, file,,/usr/paul/report,,} COPY {,,non-directory-file,,/usr/paul/pape}s,} User

We wise commas to shothat only some of the objects in condition sets are being
made &plicit. There may be mgmore. Thenamed objects in precondition and postcon-
dition sets refer to similar objects from the user quioy clarity, we wsually present the
same referent as used by the user to denote obf@tisourse, this is not what really hap-
pens as all queries are parsed into embedded concept representti®ricames do not
contain trivial objects for pre/postconditions, but constraints on obj®ésd not shav
the relationships or constraints between objects in our notalibey are not needed to

explain the salient ideas in this papéret’'s define six inference rules to &lkare of the
above poblems and some others.

4. Somegeneral rules of inference

In this section we look at each of the problems withn§fer Semantics and see if
they can be soled by using an inference rule. Each rules is defined using the language
described in the last section. There were three major problems with Transfer Semantics.

4.1. Thefirst rule of consequence

One problem with Transfer Semantics is that postconditions specified in the postcon-
dition set are too strong to match user queries. There needs to be some methoémf weak
ing them. Lets ta& a bok at the problem query again. The user askddw do | print a
file on the screen "?The problem was that grframe matcher couldhimatchfile in the
guery (or whateer meaning representation it was parsed into) to NON-DIREBRYFFILE
file in the postcondition set for the PRINT action franTde Transfer Semantics object
hierarcly contains definitions of objects and relations between théf.can use a rule of
inference in unison with the object hieraydb locate NON-DIRECDRY-FILES as types
of FILE. That is what we want, and the rule of inference is calleéFitiseRule of Conse-
quence

In general we hzae:

PIAQ.Q=>R
PYAR) |

This general rule states that if {P} A {Q} is true and the postcondition Q implies R
another postcondition, then the system can infer {P} A {R} to be true too. The system has
derived a rew frame <{P} A {R} U> by producing the postcondition set {R} from the post-
condition set {Q}.

More specificallyfor the example noted abb®we have

{P} PRINT {,,non-directory-file,,} , non-directory-file => file User
{P} PRINT {, file,} :

The first rule of consequence is applied to the specific natural language form and we
note that if the object frame FILKists in the postcondition set, and NON-DIREQRY-
FILE implies FILE, then {P} PRINT {,,file,} is also true. Ng the nev frame <{P} A
{,.file,} U> will match the natural language query and the frame selector can choose the
correct frame.

4.2. Thesecond rule of consequence

Another problem with Transfer Semanticasvthat sometimes preconditions for
frames are too weak. There needs to be some method of strengthening precorsyons.
the user askedHow do | list a plain file ?’T he problem was that the precondition set for

the LIST action frame only knows about FILEs and not PLAIN-FILEs. The frame selector
may reject the listing frame. But, from an object frame hieyathk system could ka
inferred a PLAIN-FILE to be a type of NON-DIREORY-FILE, and a NON-
DIRECTORY-FILE to be a type of FILE. Then frame selection would work hefiére

rule of inference needed here is called$keeond Rule of Consequence

In general, the rule takes the form:

{ S=>P {PIA{Q} Y .,
SAQ S

This general rule describes that if another precondition S implies the precongition P
and {P} A {Q} is true, then the system can infer {S} A {Q} to be true too. The system has
derived a rew frame <{S} A {Q} U> by producing the precondition set {S} from the pre-
condition set {P}.

For the example problem we degia pecific formula:

{ plain-file => file , {,,file,} LIST {Q}

{,.plain-file,} LIST {Q} - User

If the object frame FILE exists in the precondition set, and PLAIN-FILE implies
FILE then {, plain-file,} A {Q} is also true. It will be easier for the frame matcher to
choose the PRINT frame wo Note that in this particularxample we hae gplied the
implication operator twice, i.e. plain-file => non-directory-file and non-directory-file =>
file. Beforewe go on to discuss a very powerful inference rule there is a need to clarify
some of the ideas ab® There are tw things we wish to clear up (1) a question of infer
ence direction, and (2) the meaning of the implication operator “=>".

In applying the first rule of consequence we used, non-directory-file => file, and in
applying the second rule of consequence we used plain-file =>Hdeever, there is a
subtle difference in the way we did that for each rule. In the former case we already had
NON-DIRECTORY-FILE as a postcondition in the frame and found FILE from that, Y
in the latter case it was FILE that was in the frame. In the first casast to mee yp an
object hierarch from NON-DIRECTORY-FILE to FILE (stronger to wea&k). In the sec-
ond case he did we get, plain-file => file ?, because non-directory-file => file, and direc-
tory-file => file, and deice-file => file, and all those things that are types of file => file.
This could hae keen done by finding all the objects that implied file until one matched
with the user queryThat’s dl right for this example because wewd only need to dere
a handful of nev frames. Hwever, in any exended object hierarght may tale forever to
get the correct frame.

So, the way to do inference is to ¢athe semantic representation of some object
mentioned by the user (e.glain file) and to dewe a elation between that and whatists
in the frame. Of course we are lyckere because it turns out that what the user sagl w
correct. Plairfiles can be a good precondition for printing. If the user specifies an incorrect
precondition then no relation mayist and we will be stuck. Yet that is fine, because the

user was wrong in the first place and we would tell him so.

Another point which needs clearing up is the meaning of the implication operator in
the inference rules described aboWhat does it mean for non-directory-file => file ?
Intuitively, this means that a strong objeava}s implies a weaker one if and only if those
objects are related and of the same tylpethe object hierarghthe relationship between
non-directory-file and file idype-of Therefore, if one object is a type of anothame
implies the otherThis would also be the case with amstance-ofrelation, but not with
part-of. Implication is not commutatg, i.e. because d&e-file => file is true this does not
mean that file => device-file is also trudowever, implication is transitie, If plain-file =>
non-directory-file and non-directory-file => file then plain-file => fikebasis for implica-
tion within command environments hasanioeen defined.

The implication operatof=>"" has been described before in the field ofvidedge
representation. For exampleads (1986) describes this operation by demonstratirngsno
along ‘ancestor’ paths in a semantic netrk. Othersuch descriptions are found in
Bobrowv & Winograd 1977, Brachman 1979 and Goldstein & Roberts 1977.

4.3. Atheory and representation of embedding

Marny queries about operating systemsalwe more than one action to complete
some process. For example, the quéHow do | sop a listing of my directogywhich is
printing on the line printer ?” wolves three actions: “removing”, “listing” and “printing”.
We all such querieembedded queriehe previous query is an an exampleegblicit

embeddingvhere three actions are explicitly mentioned.

It is possible to define a language for describing embedded commands or actions.
We wse the notation4 < A, < ...A,] to denote an embedding set where actignis
embedded inside actiof,, and so on. One can think of embedding in terms of a stack
whereA,, is pushed on top oA,; and so on. Interpreting the stack, the postcondition {Q}
from performingA; is passed as a preconditionAg and so on until we reach the top of
the stack. For the previous query wedthe embedding set, [LIST < PRINT < REM@]
and for the query*How do | print a listing of my directory on the line printer ?” we get,
[LIST < PRINT]. In the latter example a directory is initially listed and then printed. In
effect, the concept of listing is embedded inside printing. Certaimlgrder to interpret
gueries imolving embedding, we need to use some other inference rule to process action
frames.

4.4. Arule of composition

A third power problem with Transfer Semantics is that sometimes peopldolik
mention more than one action in a quénythe query‘“How do | detect misspellings in a
file and more them ?’there are tw actions mentioned. It is necessary toséan infer-
ence rule which concatenates or composes action frames todkthes is not the case
then the frame selection mechanism may try to select betweerdtferent frames
(SPELL & PRINT) which are both relant to the queryThe rule for linking frames
together is called thRule of CompositianThe general form for the rule of composition is
as follows:

{ P A{QF QAR
{P} AL <A;] {R} '

This general formula states that if {#; {Q} is true, and {Q} A, {R} is also true
then we can infer {P} Ay < A] { R} to be true too. In effect, this rule specifies that the
postcondition set found by applying a number of actions in sequence will be the postcondi-
tion set dewxed by gplying the postconditions of graction in the sequence as precondi-
tions to a subsequent actioA.more specific formula for the example query is:

{P} SPELL {Q}, {Q} PRINT {R}
{ {P} [SPELL < PRINT|{R}

: User

From the abee gecific inference rule we deduce that if the postcondition of the
action frame SPELL is applied as the precondition to PRINT then it is inferred that the
postcondition of PRINT is the postcondition odeeuting both actions. It is easy to think
of the rule of composition as describing a mechanism which processgshjacts and
mary actions. Theaule is a Mag Object Maty Action definition.

The rule of composition is defined at a more detailed le the dynamic kneledge
base. The dynamic knowledge base is the heart of the knowledge base for OBEEN.
ner (1987) describes an ‘interconnection calculus’ for connecting commands and one type
of interconnection called ‘sequential composition’ is dealt withy Aamplex object may
be vieved as a serial interconnection. This serial interconnection is exactly the type of
composition described ab® We ae pointing this out because the parallel between the
rule of compositiorof the understander and the kiedge basénterconnection calculus
demonstrates one of the most important principles of our system. That principle is to place
abstract knowledge about operating systems in the understavidier keeping detailed
information in the knowledge base.

The rule of composition is an abstract representation defining of a mechanism which
composes various commands. It is powerful because it allows us to compose command
ervironments. V& will term environments with more than one commamalti-command
ervironments. Those with only one command are calladle-comman@nvironments. It
is possible to bild a structure representing the state of the systemydtrae by concate-
nating command emmonments. V& will use the termsystem erironmentto describe a
complete user session (all commands and objects used) with an operating system. System
environments are multi-command\eronments in the dreme. Therule of composition
acts as a generator of multi-commandiemments. ltcan therefore be used by the natural
language understander to understand@ans the user may mention implicitly in a query
We dall call the planner PlanCon.

Concatenated command environments can be produced dynamically by PlanCon on
request. Somaser may wish to kiwa what happens to a number of objects after applying
a number of actions. Using PlanCon OSCON could construct the state of the system
involving ary sequence of commands. The user or the systeuidibe able to determine if
the sequence in mind was produetia detrimental. PlanComwill be very useful for

OSCON too. PlanCon will enable OSCON tailth representations of the state of some
simulated environment envisaged by a user who is asking queries in a dialoguedr conte
mechanism. A good description of such a mechanism is discussed by Arens (1986).

Now we have taken care of three very visible problems that Transfer Semantics
would hare without inference. Three more inference rules will be defined for complete-
ness. Thesare called the AND, OR and No-consequence rules.

4. 5. TheAND rule

The AND rule specifies a conjunction of constraints which may be necessary for
some action.Heres an é&le query where the AND rule is applietiow do | gppend
the file mbox to /usr/paul/post’ P this case the user wants to append one file to another
Lets not worry for nav about hav the system knes that /usr/paul/post is a file. The sys-
tem needs to AND each file as a precondition to the APPEND action fréineegeneral
form of the AND rule is:

s User

{P}A{Q}, {S} A{R}
(PASIA{QAR}

This general formula states that if {P} A {Q} is true and {S} A {R} is true then it is
possible to infer {P A\ S} and {Q /\ R} to be true too. Here is a more specific formula for
the example query abe

s User

{,.,mbox,,.} APPEND {Q}, {,/usr/paul/post,,} APPEND {
{,.,mbox,, /\ ,,/usr/paul/post,} APPEND {Q N\ R}

From the abee ecific inference rule we deduce that if the preconditions mbox, and
/usr/paul/post are to be applied to the APPEND action frame, then these preconditions can
be ANDed together and applied at onte.the example alwve we haveincluded, for clar
ity, the actual names of the copied files. Of course, in reality the file names are parsed into a
meaning representation and the system would determine the types of theSeh&amay
both be PLAIN, or one PLAIN the other NON-DIREORY and so on.Naturally, other
processes are used to determine the type of a file. It is possible to think of the AND rule as
processing manobjects through one action. This is a Mddbject Single Action defini-
tion.

4.6. TheOR rule

The OR rule specifies the disjunction of a number of preconditions for some action.
These preconditions will produce a set of disjoined postconditions. An example query
where the OR rule is applied would béjow do | delete the files mbox and .mailr¢ P
this case the useranmts to kna how to delete tvwo files rather than one. The system can
OR representations of theawiles as preconditions to the DELETE action frame.

The general form for the OR rule is:

{P}A{Q},{P}A{Q} \ . U
{PVPIAQVQ} [

This general formula states that if {P} &% is true and {Q} A {Q} is true then it is
possible to infer {P \P'} and {Q V Q} to be true too. Here is a more specific formula for
the example query abe

s User

{,.,mbox,} DELETE {Q}, {,.mailrc,,} DELETE {Q®
{ {,,,mbox, \/ ,.mailrc,,} DELETE{QV'®

From the abee gecific inference rule we deduce that if the preconditions mbox and
.mailrc are applicable to the DELETE action frame, then these preconditions can be ORed
together and applied at once. This wileasing the same frame twice. It is also possible
to think of the OR rule as processing maibjects through one action. This is another
Marny Object Single Action definition.

The AND and OR rules are different to the three rules described e@nerAND
and OR rules are used to add information together fovem giame. Thg do ot derve
new information to be placed into a frame. The function of the AND rule is to add neces-
sary constraints on objects together for a frame. The OR rule is used to OR object con-
straints together in one frame which coulddndeen processed separately by tmins of
the same frame. There is a difference between the AND and OR rules in that the AND rule
is defined because it is necessaryereas the OR rule is defined fofi@éncgy reasons. By
this we mean that the OR rule could be reedoso hat some parallel rule of composition
executes an action or commangeo mary objects concurrentlyThis could not be done
with the AND rule as some frames such as APPHEXBdsource and destination files to
exist before gecution. Thus the AND rule adds together necessary conditions on frames
while the OR rule OR' together optional conditions on frames.

In some operating systems it doésmatter if /usr/paul/post or mbox ddrexist
before &ecuting an APPEND commanddowever, in some systems it does maitand as
was said before, we are taking an interdisciplinary approach to operating system design.

4.7. TheNo-consequence rule
Trivially, the No-consequence rule is a “do-nothirggatement and is defined by,

{P}A{P}

The rule shows us that afteteeuting an action A the preconditions do not change at
all. A command such asvho” in the UNIX operating system could be considered under a
no-consequence rule because it does not really change the states of objects or data in the
system. Amy no-consequence rule can beeeuted a number of times throughouy @om-
mand exironment without having aneffect on objects within that commandvegnnment.
It is important to realize that the no-consequence rule is truly an elememarcdfar

Semantics. The no-consequence rule does transfer objects from one state to another where
the nev state is the same as the old one. Therefore, when PlanCon sees certain commands
it just applies the no-consequence rule and does not change the precondition set. It turns
out that there are commands in some operating systems which can be concatenated in a
multi-command environment to simulate the no-consequence nrlexemple, commands

can hae their effects reersed if thg are followed by certain other commands.

In summary we ha defined six rules of inference which can operate on action
frames. The rule of composition is the only rule whickoives multiple actions. All the
other rules relate to single actions. Some may argue that the first and second rules of con-
sequence are not really inference rules at @krtainly some of the other membene
inference rules. It is our belief that objects such as “plain figsuld not be stored as
plain files but as types of fileSuch information can be located in an object hiesageriul
that process is called inferencing. In building OSCON we try to store as little information
as possible and dee rew information when it is needed. That is aumimum-stoage
principle. It may be the case that some combination of the six inference rules is needed in
order to lmild domain-specific representations to match a user qUéry order of applica-
tion of combinations of inference rules may be important. This has not bestigated
yet.

5. Relationto other work

The action frames forransfer Semantics are described as plans in much of the liter
ature (see Fikes and Nilsson, 1971; Carbd®83). Carberry (1983) describes plans con-
taining preconditions, partially ordered actions and effects. This is also a good description
of our action frames. The rule of compaosition for building multi-command environments is
similar to what Carberry calls “global plan corté Eachindividual command eriron-
ment which may be used to construct a multi-commarti@mment is what Carberry calls
a “local plan contgt”’. Carberry describes her work in the wider context of dialogue
understanding and we hope to apply the rule of composition in this area. Kautz & Allen
(1986) hae defined a structure for modeling concurrent actionsyTdefine a semantic
structure for describing interactions between actions, both concurrent and sequential, and
for composing simple actions to form complaes. Again, this work relates to the func-
tion of PlanCon.

The UNIX Consultant (UC) program (&nsky et d. 1984, 1986) has various ele-
ments of inference embedded within the system. The UC system is dividedfitosv
components. Theomponents calleddSAN (Plan And Goal ANalyzer) and UCPlanner
involve procedures closely related to what we talk about in this pafieg AGAN pro-
gram hypothesizes the plans and goals under which some user is opePABNS
knowledge representationviolves planfors These are relations between goals, and plans
for achieving those goal€ach plan is a sequence of steps. Therefore, plans IAG®&NP
component can be compared to multi-command environments in PlanCon where a number
of command evironments are concatenated to produce some effectiffr from the UC
approach as in PlanCon goals and plans are generated dynamically using rules of inference
ove action frames and input xe That is exactly wly we reed the inference rules
described abee. Yet, in AGAN the steps of plans are already stored statically in memory
in a planfor database.

UCPlanner has the function of determining a fact that the user woaldboliknow.
The domain planner tries to determinevhim accomplish a task, using knowledge about
UNIX and knavledge about the usesrlikely goals. UCPlanner is a knowledge based com-
mon-sense planneThe planner creates plans for the us&NIX goals. A goal detector
is used to detect various goals that are necessary to complete in oxeEute some user
goal. Goals may be detected automaticaligr example, n& goals may be detected dur
ing the projection of possible plans. This will happen if the planner notices some plan
would fail when some condition is not satisfied. Avngoal would be produced by the
planner to satisfy the condition. Other goals that may be detected include background
goals such as access to files. The goal detector finds goal conflicts such as deleting files
which have potection. Storegblans eist in the system and these are similar to the action
frames from Transfer Semantics.

In UCPlanner plans are selected and thislires two processes i.e. (1) neplans
can be devied, and (2) a process of plan specification fills in each general plan with more
specific information.A process called projection is used to test whethewenglan will
execute successfullyThis is a test for possible problems in the plan: (1) conditions to be
satisfied, and (2) possible goal conflicts to be resblecause of the effects of that plan.
This involves three processes. The planner contains defaults to help in simulating some
plan. These dafilts may not be supplied by the usBefaults would be to assume such
things as files being xe unless otherwise specified. Other processes include condition
checking to ensure that plan conditions are satisfied in the system,vaigdaialetection
where effects may arise which are not part of the sige&ls.

In PlanCon n& plans are deved using the rules of inference and general plans can
be filled with more specific information from the object hiergrchhe process called
‘project’ in UCPlanner is similar to processes in PlanCdve ae in agreement with
Wilensky et d. (1986, p. 50) ‘However, to answer more interesting problems it is neces-
sary to be able touild nev plans from existing plans. It would be impossible and undesir
able to ind& an gpropriate plan for each of the possible queries that a user migkit ha
That is exactly wirwe use inference rules in PlanCon.

The SINIX Consultant discussed byeike (1987) contains a rich knowledge base
similar to our Tansfer Semantics component. &ikransfer Semantics the SINIX knb
edge base consists of a taxonomical hiesaofltoncepts. The la@s of the hierarci cor-
respond to SINIX objects or commands. High&eleoncepts reflect more general actions
or objects. In kemke (1987) we are told that a Plan Generator should be able to use a for
mal semantics of commandseikie says (p. 218), “The formal semantics description
should be able to be used bfPlan Geneator in order to constructcomplex actions’, i.e.
plans, if the desired state or action specified in thesugegstion cannot be realized using
a dngle command i, instead, through a sequence of commanfse talks of being able
to describe the effects of commands by using a s&trohitive” or “‘basic” actions. That
is exactly what we hope PlanCon does using the Rule of Composition.

The COUSIN system deloped by Hayes (1982) has interesting similarities with our
work. COUSIN can prade dynamically generated, contextually sewsitexplanations
about the current state of user interaction with the system. COUSIN only generates these
dynamic help frames if the user neska request for help without giving the name of some

static knowledge frameWe @an do this by using the rule of composition. That rule gener
ates ag command ewironment by concatenating or interconnecting individual command
ervironments. Of course, as COUSIN is a commaneti@terface each stage of user inter
action will be eecutable, whereas with PlanCon command environments are representa-
tions used by the system to understand user quefiesy are representations of what
wouldhappen if the usexecuted certain commands.

Sandavall & Ronnquist (1986) define a representation for action structumegssim-
ilar to our avn. Eachaction structure is defined in terms girécondition’, ‘‘postcondi-
tion” and “prevail’’ conditions. Preal conditions must hold for the duration of some
action. Anaction structure (multi-command environment for us) is viewed as a set of
actions (single-command environment for uEach action has a start point and an end
point. These would be the preconditions and postconditionsyinmaiti-command ewi-
ronment. Thg have done an interesting job on formalizing sequences of connected
actions. This will be useful for doing parallel command operatidénis. easy in UNIX to
be doing one thing while numerous other processes are going on. Such processes are called

background or child processes.

An interesting discussion on hierarchical representations of causal knowledge is
found in Gabrielan & Stickne(1987). Thg define a formalism for hierarchical causal
models which prades explicit representations for time and probabilitiéssystem is
defined in terms of a set of states and transitions among those states. A state is considered
to be a complete or partial description of the system at a moment in time. Transitions define
how changes in the system occAn explicit representation of a transition or action can be
defined explicitly in terms of start states (preconditions) and end states (postconditions).
They introduce a number of formal definitions to construct a precise formulation of a hier
archical causal modelln their formulation more than one state can bevad any one
time and may parallel transitions can occur simultaneously and asynchronotikig is
all related to the function of PlanCon.

6. Conclusion

In this paper we hee described the architecture of an operating system consultant
called OSCON, and more particulartile operations on a kmtedge representatioriVe
shaved that a knwledge representation for operating systems called Transfer Semantics
will not work without inference.This was done by providing natural language forms that
could not be processed by the understandee next step was to describe some general
rules of inference that could be applied to action frames so that the frames would work for
each of the these forms. Those inference rules were called (1) The First Rule of Conse-
guence, (2) The Second Rule of Consequence and, (3) The Rule of Compdaikton.
defined three more rules called the AND, OR and No-consequence TilesAND and
OR rules provide necessary anficééncy requirements for frames. The no-consequence
rule allows us to specify commands which wilveao real effect on objects in the com-
mand ewmironments. Thelanguage of each inference rule has been borrowed from
axiomatic semantics. This semantics has been used to provide formal descriptions of pro-
gramming language3/NVe dhose the semantics because of its clarity andrage.

It is concluded that the six general rules of inference are necessary in expanding the
scope of Transfer SemanticRememberthe problem with Transfer Semantics is that only
preferred conditions are specified in frames. This is done because if all conditions on
frames are specified the framesuld become too lge. Theinference rules allo the sys-
tem to infer all those things that otherwise would not be represented in frames.

We hope to include a learning component called LeCon at a later stage. LeCon will
be similar to the component called UTeacher in the UC systeilendky et d. 1986).
LeCon would allev any user to update knowledge in OSCON through a natural language
interface. Knowledge that could be updated includes addingangon frames or object
frames or updating existing ones. Inference rules could be updated @nes added to
the inference database e\Vife not so naie & to kelieve that six is a magic inference num-
ber at all. For an ydate system it would be nice if all knowledge was kept in the same
place in the understandefThen, we must justify whwe chose to hee three types of
knowledge in different places which may hamper updating. That ig,drechwe choose to
separate out knowledge into object frames, action frames, and inference rules ?

We Lelieve that it is easier todep the static data representation (action frames) small
and use information from another static representation (object frames) together with infer
ence rules to expand the scope of action frariée. system will become more efficient, as
it is easier to match small frames containing localized information, and infer on that local
information than to search throughdarframes.We havecome to one major conclusion
while developing this research. In general we argue that [action-frames + object-hyerarch
+ inference-rules] is better than CAION-FRAMES1] or even [ACTION-FRAMES +
object-hierarci] for ary system.

Our approach brings up the question of procedwedus declarate representations.
The inference rules are procedural and Transfer Semantics (action frames + object frames)
is declaratre. Howeve, and this is an important point, the very fact that weehdefined
clearly and precisely what we are doing procedurally with six inference rules means that
the procedural elements in the system awg, fideclaratve” . That is exactly wi we have
defined the rulesxglicitly. The reader must trust us to program the rules as wedaed
them. Thereforepne major conclusion of our work, is that procedural representations can
be made declarat if one takes the time to do so.

Although six general rules of inferencevhaeen defined here, the rules may need to
be «tended for certain types of each natural language form. Inference rules could be
thought of as having theima hierarcly just like a €mantic network or inheritance hierar
chy, or whatever. Such hierarchies of component goals and actions for domain-dependent
plans hae keen used by Carberry (1983)itman & Allen (1984) and Pelavin & Allen
(1987) hae dso developed a model based on a hierarofiplans and metaplans.

Take for example the Rule of Composition, one of the more corpl&es that does
a lot of work. If a user asks something likéHow do | gell a file and print the mistak
on the Imagen ?’there is a composition of the commands spell and print. In this case the
frame for SPELL is embedded inside that for PRIN®r the query“How do | print a list-
ing of my directory ?’the LIST frame is embedded inside the PRINT frame. These forms

OBy using upper case characters we hope to emphasize that terms refer to action frames
containing a large number of conditions.

of queries are examples of simple serial interconnection where the output of one is passed
as the input to anotheroweve, that will not be good enough for the quetidow do |

find a job number and then Kkill the job Ph this case the user needs to find a job number
(one action or command) and then kill it (another action or commanudjeven the output

of one command is not passed as the input to the. oftmer KILL frame just needs infer
mation from the FINDING-JOB-NUMBERS frameéNe reed to define a meinference
rule, involving some type of composition - i.e variation on the rule of compositiof.he

rule will specify sifting of information from one action to be passed to anofmat, agin
there will surely be manways of sifting information from command€ne can easily see
that it would certainly be na to suspect that six general rules of inference will be enough.
Our next job is to locate and specifywnand interesting rules of inference.

Elements of the Rule of Compositionvkadso been described denablement’by
Pollack (1986). Her»>ample demonstrates that in a mail system some user may type
HEADER 15 and thignablesthe generation of deleting the fifteenth message by typing
“DEL . This happens because typing HEADER 15 makes message fifteen the current
message to which.” refers. Pollack only considers what she calls ‘simple plans’ which
are a restricted subset of plans. Simple plans are those plans where the agesttiatie
all the actions in a plan play a role by generating another aclioat is, the plan includes
no actions that the user beks ae related to each other by enablement. Simple plans can
also be generated by PlanCon.

In this paper we hee rot worried about problems of the distinction between what the
user and system beles. That distinction is discussed by Pollack (1986) in a paper on plan
inference. Sheroposes that models of plan inference invessation must include this
distinction. If this does not happen plan inference \aillds will the communication that it
is meant to support. Pollack has implemented a plan inference model in SPIRIT which is a
small demonstration system that answers questions about computer mail. She makes a neat
distinction between'act-types’ and “actions’. Act-types are types of actions and corre-
spond to what we call action frameéctions correspond to specific actions to aehie
some act-typeFor example, ‘cat” and “more” are actions specified in our PRINT frame
where the frame can be thought of as an act-tygidks & Ballim (1987) hae poposed a
first implementation of a “belief enginetalled MewGen that contains heuristics for the
default ascription of belief. Whope to include an instantiation of this belief engine within
OSCON to model the interaction of system and user planning on the basiseohglif
beliefs and plans.

We will close with a question raised byiMhsky et d. (1984,p. 590) , “Probably
the most significant problem in UC (Unix Consultantyolies representational issues.
That is, hav can the various entities, actions and relationships that constitute the UC
domain best be denoted in a formal languagd tAs hoped that we hee made a start in
answering this question and nyamore.

Acknowledgements

We wish to acknowledge Yorick s, Jerry Ball and Dan Fass from the Natural
Language Group at the Computing Research Laboratory ferdprg interesting com-
ments on this wrk. Dr. Stephen Hegner at the Wersity of Vermont also contriied
salient points.

References

Algai¢, S. and Arbib M. A. (1978The design of well-structured and correcograms
New York: Springer-Verlag

Arens, Ygal (1986) CLUSTER: an apmad to mntetual langua@ge uwunderstanding.
Report No. UCB/CSD 86/293, Computer Science Division (EECS)yetsity of
California, Berkelg, California 94720, April.

Billmers, Meyer A. & Garifio, Michael G. (198%uilding knowledge-based operating sys-
tem consultants In Proceedings of the Second Conference on Atrtificial Intelligence
Applications, Miami Beach, Decembhdd9-454.

Bobraow, D.G. & Winograd, T(1977)An overviav of KRL, a knowledg representation lan-
guage Cognitive Sience, Vol. 1, No. 1, 3-46.

Brachman, R.J. (1979n the epistemological status of semantic netwoltksAssociatve
Networks: Representation and use of knowledge by computers,AwMer (Ed.),
Academic Press: NeYork, 3-50.

Carberry Sandra (1983)racking user goals in an information-seekingzeonment Pro-
ceedings of the National Conference on Atrtificial Intelligence (AAAI-83) veisity
of Maryland, Washington, D.C.

Douglass, Robert J. & Keer Stephen J. (1982)n expert consultant for the UNIX opr
ing system: Bridging the gap between the user and command Egraantics
Proc. Fifth National Conference of the Canadian Society for Computational Studies
of Intelligence (CSCSI)/SCIEO Conference, Saskatoon, Saskaichislay.

Fass, D.C. (1986 ollative Semantics: an appach to coherence Memoranda in Com-
puter and Cognite Sience, Memorandum MCCS-86-56, Rio Grande Research
Corridor, Computing Research Laboratpfgox 30001, Nes Mexico State Unuer-
sity, Las Cruces, NM 88003-0001.

Fikes, R.E. and Nilsson, N.J. (19) RIPS: A n& approad to the application of the@m
proving to problem solving Artificial Intelligence, Vol. 2.

Floyd, R. W (1967) Assigning meanings to gmrams In Mathematical Aspects of Com-
puter Science, Proc. American Mathematical Soc®typosium in Applied Mathe-
matics, Vol. 19, ed. J.. Bchwartz., Providence, Rhode Island, 19-31.

Gabrielan, A. & Stickng M.E. (1987)Hierarchical representation of causal knowlezg
Proc. Western Conference on Expert Systems, July 2-4, 1987, Disneyland Hotel,

Anaheim, California.

Goldstein, I.B & Roberts, R.B. (197Mludge, a khowledg-based scheduling ggram. In
Proc. IJCAI-5, 257-263.

Hayes, Philip J. (1982Yniform help facilities for a cooperative user interfacBroc.
National Computer Conference, AFIPS, Houston, 469-474.

Hayes, Philip J. & Szadty, Pedro A. (1983)Graceful interaction through the COUSIN
command interface International Journal of Man-Machine Studies Vol. 19,
285-306.

Hegner Stephen J. & Douglass, Robert J. (198%powled@ base design for an opating
system expert consultanProc. of the Fifth National Conference of the Canadian
Society for Computational Studies of Intelligence (CSCSI), London, Ontario,
Decemberl59-161.

Hegner Stephen J. (1987Repesentations of command langeakehavior for an opeat-
ing system expert consultation facilityTechnical Report CS/TR87-02, CS/EE
Department, Unersity of Vermont, Burlington, Vermont, USA.

Hendrix, G. G., Sacerdoti E. D., Sdgvicz, D. & Slocum, J. (1978peveloping a natual
language nterface to comple data ACM Transactions on Database Systems
(TODS), Vol. 3, No. 2, June, 105-147.

Hoare, C. A. R. (1969\n axiomatic basis for computerggramming Communications
of the ACM, Vol. 12, No. 10, 576-583, October.

Hoare, C.A.R. & Wirth, N. (1973An axiomatic definition of the gramming languge
PASCAL Acta Informatica, Vol. 2, 335-355.

Kautz, Henry A. & Allen, James. K1986) Genenlized plan ecognition Proc. Fifth
National Conference on Artificial Intelligence, Philadelphia, Pensylvania, Vol. 1
(Science), 32-37, August.

Kemke, Christel (1987Repesentation of domain knowleglgh an ntelligent help system
In Human-Computer Interaction — INTERACT ’'87, H.J. Bullinger and B. 8hak
(Eds.), Elsevier Science Publications B(North-Holland), 215-220.

Litman, Diane J. & Allen, James @984)A plan recanition model for clarification subdi-
alogues Proc. 10th International Conference on Computational Linguistics, and,
22nd Annual meeting of the Association for Computational Linguistics (COL-
ING-84), Stanford, California, 302-311, July.

Martin, Paul; Appelt, Douglas & Pereira, Fernando (1983anhsportability and gnerality
in a natual-language nterface systemin Bundy, Alan (Ed.) Proc. IJCAI-8, Karl-
sruhe, West GermgnAugust, 573-581.

McDonald, James E.; Stone, J. D., & Liebelt L. S. (198&)luating a method for structur

ing the user-system interfaceProceedings of the 27th Annual Meeting of the
Human Factors Societ§34-837.

McDonald, James E.; Dearholt, Donald W.; Paap, Kennet& Bchvaneeldt, Roger W
(1986) Human factos in computing systemsProc. CHI'86 conference (Marilyn
Mantei & Peter Orbeton Eds.Bpecial issue of the SIGCHI Bulletin, Boston,

285-290, April.

McDonald, James E. & Schmeseldt, Roger W (1987) The application of user knowleglg
to interface design Memoranda in Computer and CogvetiSience, Memorandum
MCCS-87-93, Rio Grande Research Corrjdaymputing Research LaboratpBox
30001, N&v Mexico State Uniersity, Las Cruces, NM 88003-0001.

Mc Kewitt, Paul & Wilks, Yorick (1987)Transfer Semantics in an Operating System Con-
sultant: the formalization of actions involving objearsfer. In Proceedings of the
Tenth International Joint Conference on Artificial Intelligence (IJCAI-87), Vol. 1,
569-575, Milan, ItalyAugust.

Mc Kewtt, Paul (1986ajParsing embedded queries about UNIXlemoranda in Computer
and Cognitre Sience, Memorandum MCCS-86-72, Rio Grande Research Corridor
Computing Research Laboratpigox 30001, N&v Mexico State Uniersity, Las
Cruces, NM 88003-0001.

Mc Kewtt, Paul (1986bBelecting and instantiating formal concegrfres Memoranda in
Computer and Cognite Sience, Memorandum MCCS-86-71, Rio Grande Research
Corridor, Computing Research Laboratoiox 30001, Nes Mexico State Unier-
sity, Las Cruces, NM 88003-0001.

Owicki, S. & Gries, D. (1976aln axiomatic proof technique for parallelggrams 1
Acta Informatica, Vol. 6, 319-340.

Owicki, S. & Gries, D. (1976bYyeifying properties of parallel grgrams: an axiomatic
approach Communications of the ACM, Vol. 19, 279-285.

Pagan, Frank G. (1981)formal specification of mgramming languges: a panoamic
primer. Prentice-Hall: Nev Jersgy.

Pelavin, Richard N. & Allen, James FL987)A model of concurrent actions having tempo-
ral extent Proc. Sixth National Conference on Atrtificial Intelligence (AAAI-87),
Seattle, Washington, Vol. 1, 246-250, July.

Pollack, Martha E. (1986) model of plan inference that distinguishes between the beliefs
of actos and observes. In Proc. of the Association of Computational Linguistics
Conference, 207-214.

Sandwvall, Erik & Ronnquist, Ralph (1986A representation of action structes Proc.
Sixth National Conference on Artificial Intelligence (AAAI-87), Seattle, Washington,
Vol. 1, 89-97, July.

Sparck-Jones, Karen (1983hifting meaningapresentations In Bundy, Alan (Ed.) Proc.
IJCAI-8, Karlsruhe, West GermgnAugust, 573-581.

Stanat, Donald .R& M cAllister, David F. (1977) Discrete mathematics in computer sci-
ence Prentice-Hall, Inc. : Engleood Cliffs, Nev Jerssy.

Tyler, Sherman W& Treu, Siegfried (1986Adaptive interface design: a symmetric model
and a knowledge-based implementatidrhe third ACM-SIGOIS conference on
Office Information Systems, Association of Computing Machin8i@OIS Bulletin
(formerly SIGQA Bulletin), Vol. 7, Nos. 2-3, 53-60, Summer-Fall.

Wallace, Mark (1985 Communicating with databases in natural langeaEllis Horwood
Limited: ChichesterEngland.

Waltz, David (1975) Natural language acess to a laye database: an engineering
approach Advance papers IJCAI-4, Thilisi, Georgia, USSR, Sept, 868-872.

Waltz, David (1978)An English languge question answering system for adarelational
database Communications of the ACM, Vol. 21, No. 7, Jub26-539.

Wilensky, Robert; Arens, Ygal & Chin, David (1984)Talking to UNIX in English: An
overview of UC. Communications of the ACM, Vol. 27, No. 6, June, 574-593.

Wilensky, Robert; Mayfield, Jim; Albert, Anthony; Chin, Bia; Cox, Charles; Luria,
Marc; Martin, James and Wu, Dekai (1986 — a pogress eport Report No.
UCB/CSD 87/303, Computer Science Division (EECS),vesity of California,
Berkelgy, California 94720, July.

Wilensky, Robert (1986)Some problems and gposals for knowledy representation
Report No. UCB/CSD 86/294, Computer Science Division (EECS)yethiiy of
California, Berkelg, California 94720, May.

Wilensky, Robert (1987)Some complexities of goal analysiBreprints of Conference on
Theoretical Issues in Natural Language Processing-3 (TINLAP-3) Computing
Research Laboratarilew Mexico State Uniersity, 97-99, January.

Wilks, Yorick and Ballim, Afzal (1987Multiple Agents and the Heuristic Ascription of
Belief In Proceedings of the 10th International Joint Conference on Artificial Intelli-
gence (IJCAI-87), Milan, ItalyVol. 1, 118-124; also as CRL Memoranda in Com-
puter and Cognite Sience, MCCS-87-75; and to appear in Noel E. Sha(kd.),
Advances in Cognite Sience, Chichester: Ellis Horwood.

Wilks, Yorick (1986)Projects at CRL in Natural Langga Rocessing Memoranda in
Computer and Cognite Sience, Memorandum MCCS-86-58, Rio Grande Research
Corridor, Computing Research Laboratpfgox 30001, Nes Mexico State Unuer-
sity, Las Cruces, NM 88003-0001.

Wilks, Yorick; Fass, Dan; Guo, Cheng-Ming; McDonald, James E.; Platg, & Slator,
Brian M. (1987)A tractable machine dictionary as asouce for computational
semantics Memoranda in Computer and Cogvati Sience, Memorandum
MCCS-87-105, Rio Grande Research Corriddomputing Research Laboratory
Box 30001, Ner Mexico State Uniersity, Las Cruces, NM 88003-0001.

Yun, David Y Y. & Loeb (1984)The CMS-HELP expert systenn Proc. of the Interna-
tional Conference on Data Engineering, IEEE, Computer Sodiety Angeles,
459-466.

