

1

Chapter 1

Introduction

Entity-relationship (ER) modelling (Chen, 1976) focuses on high level conceptual models

designed to facilitate database design in the development of information systems and

relational databases. The success of the design of these models is measured by the level of

accuracy with which they can reflect the real world environment (Dullea et al., 2003).

Entity-relationship modelling can be a daunting task (Storey and Goldstein, 1988; Batra

and Antony, 1994; Moody, 1996; Marsden and Staniforth, 1996; Antony and Batra, 2002)

to both designers and students alike due to its abstract nature. However, the conceptual

phase, which involves ER modelling, is considered to be one of the most critical tasks to

the overall success of the system (Carolyn and Begg, 1999). Any errors, mistakes or

inconsistencies incurred at this stage can be very costly later especially when a system has

already been implemented. Boehm (1981) reported that the cost difference to correct an

error in the early phases of software development as opposed to post-implementation phase

is on the order of 1:100. In addition to the abstract nature of ER modelling, most of the

input to this task involves natural language such as English, documented as requirements’

specifications, which are also inherently ambiguous.

Much research has attempted to apply natural language processing (NLP) to extract

knowledge from requirements’ specifications with the aim of designing databases. Recent

advances in this field suggest promising approaches that may assist database designers or

novices learning database modelling concepts. Although research on NLP techniques in

database design has been extensive (e.g. Eick and Lockemann, 1985; Tseng et al., 1992;

Tjoa and Berger, 1993; Meziane, 1994; Buchholz et al., 1995; Burg et al., 1996; Gomez et

al., 1999; Harmain and Gaizauskas, 2003; Meziane and Vadera, 2004), research on the

formation and use of heuristics to aid the construction of logical databases from natural

language has been scarce. In general, human experts draw on their own heuristics to decide

2

whether an element should be represented as an entity or a relationship, for instance, in a

conceptual model. It is desirable for a database design tool to be capable of imitating the

way a human expert carries out the design task (Storey, 1993). The main goal of this thesis

is to introduce new heuristics to assist the automated production of an ER model from a

natural language specification. To realize the utilities of these heuristics, a tool called ER-

Converter has been implemented. Results generated by ER-Converter are evaluated against

human performance and also existing systems. This research can be utilized, for instance,

as part of a domain model in an intelligent tutoring system (ITS) for Databases.

1.1 Overview of Data Modelling

The first step in designing a database application is to understand what information the

database must store (Ramakrishnan, 1998). This is known as requirements analysis. The

information gathered in this step is used to develop a high-level description of the data to be

stored in the database, along with the data constraints. This step is referred to as conceptual

design, and it may be completed out using the ER model.

An ER model is built around the basic concepts of entities, attributes, relationships and

cardinality. An entity is an object that exists in the real world and is distinguishable from

other objects. Examples of entities include a “student”, an “employee” and a “book”. These

are typically derived from nouns. A collection of similar entities is called an entity set. An

entity is described using a set of attributes. Attributes may be derived from adjectives and

adverbs. The attributes of an entity reflect the level of detail at which we wish to represent

information about entities. For example, the student entity set may have “id_number”,

“name”, “address”, “course” and “year” as its attributes. A relationship is an association

among two or more entities. Relationship can be derived typically from verbs in the

requirements’ specifications. For example, we may have a relationship from this sentence:

“A student may be enrolled in many courses”. The verb phrase “enrolled in” implies a

relationship between the entity student and course. Cardinality represents the key constraint

in a relationship. In the previous example, the cardinality is said to be many-to-many, to

indicate that a student can take many courses and a course can be taken by many students.

In an ER diagram, an entity is normally represented by a rectangle. An ellipse usually

3

represents an attribute and a diamond shape shows a relationship. Cardinality is represented

by ‘1’ for one-sided, ‘M’ and ‘N’ for many-sided. For example, in a one to one relationship,

the cardinality may be presented as 1:1 while in a many to many relationship, it may be

represented as M:N. Figure 1.1 shows an example of an ER diagram. The double line

represents the participation of the relationship, i.e. whether it is optional or mandatory.

Figure 1.1. Example of an ER diagram using the Chen notation (Chen, 1976)

Conceptual database design produces a set of relation schemas and integrity constraints that

can be regarded as a good starting point for the final database design. However, the relation

schemas may suffer from inconsistencies and redundancies. Thus, given a relation schema,

a decision has to be made as to whether it is a good design or if further decomposition is

needed. The decomposition process into several classes of relational schemas that obey

some set of rules is referred to as normalization.

1.2 Difficulty in ER Modelling

The difficulties in dealing with conceptual and logical design of databases have been well

documented in past research studies (Storey and Goldstein, 1988; Batra and Antony, 1994;

Moody, 1996; Marsden and Staniforth, 1996; Antony and Batra, 2002). Some educators

also expressed their concern on whether they are teaching database design properly to

students (Carpenter, 1992; Kleen, 1993). As most information systems need a reliable

database, the correctness of database design is significant in the quality of these systems.

M

Student

enrolled
 in

Course

works on

Project

N

1 1

4

However, due to its complexity, database design can be error-prone, especially when

handled by novice designers (Batra and Antony, 1994).

Batra and Antony (1994) have studied the processes employed by novice designers engaged

in database design to gain an understanding of error causing factors. These factors are

important for system developers and researchers in building tools and techniques that could

prevent database design errors and thereby enhance the quality of information systems.

Their study, which focussed on conceptual data modelling, showed that there are three

factors that account for errors in database design:

1) Complexity of the task

Past experiments (Batra et al., 1990) suggested that novices face much more difficulty in

modelling relationships rather than entities. One of the reasons stems from the fact that

given a set of entities, there are potentially a very large number of possible relationships.

2) Use of heuristics that lead to biases

Heuristics are simple procedures which are often guided by common sense, meant to

provide good but not optimal solutions to difficult problems, easily and quickly (Zanakis

and Evans, 1981). In general, heuristics are often useful, but sometimes they may lead to

severe and systematic errors called biases. An example of a useful heuristic is a

requirement that specifies that the degree of a relationship should be a minimum (binary).

Another useful heuristic is that if it has been determined that two entities have a binary

relationship, they will not be involved in another higher degree relationship. Although these

are valid most of the time, the designer should be careful to ensure that the heuristics do not

lead to a bias in modelling the relationships.

3) Inexperience and incomplete knowledge of the novice

Given the restricted length of training, it is not surprising that a novice has limited

knowledge and skills. Experts often draw from past experiences, but whether their

experience can be applied to novices still remains a question. The important issue is how

can the novices be trained effectively and efficiently?

5

Moody (1996) suggested four reasons why ER models are difficult to understand:

1. ER models “look” technical

To the average user, the meaning of an ER model is not obvious. In addition, they do not

look very different from the other technical diagrams used in the system development

process like network communication diagrams or system architecture diagrams – they

consist of similar graphical representations such as geometrical shapes connected with

lines.

2. The ER model does not handle complexity well

ER models are not able to cope with the large size and complexity of data models

encountered in real world situations. When the number of entities becomes very large, the

ER model becomes difficult to understand and manage.

3. Users find ER models abstract and difficult to relate to

Classification and generalization in ER models are two mechanisms that are used to derive

entities. Classification is an abstraction used for grouping real world instances into classes

or concepts. Entities (e.g. student, book) represent classes of things rather than instances.

However, users often find abstract representations of requirements difficult to relate to and

need concrete examples to understand what they mean.

Generalization is a mechanism to construct more abstract concepts based on similar

properties (attributes or relationships) of more specific entities (Elmasri and Navathe,

2004). This is represented through the use of subtypes and supertypes. In Figure 1.2

Postgraduate and Undergraduate are subtypes of Student. Student is the supertype of

Postgraduate and Undergraduate. The symbol ‘o’ means ‘overlapping’ which indicates that

there may be cases where a postgraduate can also be an undergraduate, possibly in a

different course. The symbol ‘�’ means that a subtype is part of a supertype. For example,

Postgraduate is part of Student. However users often find that highly generalised

representations of data are difficult to understand. The level of abstraction of these models

is a major barrier to their acceptance and understanding in practice.

6

4. ER models are focused on design rather than analysis

ER models have been used to define the structural aspects of data, for the purpose of

design. The current modelling representations have been focused on effective design rather

Figure 1.2. Representation of subtypes and supertypes

than effective analysis. This raises a question: for whose benefit are data models anyway?

For the technicians or users? The reason for having ER models is to represent information

requirements in a way that could be understood by users. It was not meant to describe the

way in which data would be stored in the computer (Elmasri and Navathe, 2004).

The discussion above gives some evidence of the difficulty designers and students face in

database design, specifically in Data Modelling. To further support this evidence, a survey

has been carried out as part of this research to determine the perceived difficulty of the

subject area. The motivation was to find out whether students still find Data Modelling a

challenging subject.

1.2.1 Analysis on the difficulty of Database Modelling subject

A survey was carried out to determine how difficult students found the subject of

Databases, particularly in the areas of Data Modelling. A questionnaire was used and is

given in Appendix A.

STUDENT

Postgraduate Undergraduate

7

The survey was conducted in the School of Computer Science at the Queen’s University of

Belfast. Thirty nine students participated in this study. They were undertaking the Masters

course in Computer Science and Applications, a computing course for graduates with

primary degrees in disciplines other than Computer Science. The questionnaires were

distributed during the Databases lecture. At that time, the lectures in ER modelling and

Normalization had been presented and the students had completed practical exercises on

those subjects.

The majority of the participants (71.8%) had more than 3 weeks of experience in using

databases. 81.6% of the participants had used INGRES, a database management system

(DBMS). Most of the participants (92.3%) had used SQL (Structured Query Language),

one of the query languages in databases.

When asked about the importance of the Database Systems course, 56.4% agreed that it is

important while 25.6% of them thought that is a very important subject. Thus, it can be

concluded that the majority of these students believe that the Database course is one of the

important subjects in computing. Carpenter (1992) also states that formal database courses

are needed for proper training of database designers to ensure a proper database design as

this stage is a very critical stage in the development of an information system.

The participants in the survey were asked to rate the difficulty of the selected topics from

Databases on a scale of very easy (1) to very difficult (4). Table 1.1 shows the results

obtained:

Subject Very easy

(%)

Easy

(%)

Difficult

(%)

Very difficult

(%)

Introduction to Databases 7.7 76.9 7.7 -

Entity-Relationship Modelling 2.6 48.7 48.7 -

Normalization 2.6 12.8 71.8 12.8

The Relational Model 2.6 25.6 71.8 -

SQL 5.0 48.7 41.0 2.6

Table 1.1: Difficulty of Database subject areas

8

With regards to the ER Modelling, nearly half of the students find the topic difficult. The

participants were also asked a few questions on general understanding of both subjects.

When asked whether they understand the basic concepts about entities, relationships and

attributes, 74% of them find the concepts clear to them. However, when asked about their

ability to construct an ER model for a given problem, only 31% reported that they are able

to do it most of the time, another 59% could do it sometimes while 10% reported that they

are seldom capable of constructing it. 74% of them scan the sentences for nouns, verbs and

other part of speech tags when they are determining the entities and relationships in an ER

model. This is an important source of information as it provides some knowledge on how a

similar task could be performed by an ER-Converter tool. This analysis also confirms that

currently, students still perceive Databases to be a difficult subject which has been reported

in the literature.

1.3 Objectives of research

The main aim of this research is to develop heuristics, algorithms and software to transform

natural language input text of database problems into ER models. The primary objectives

are summarized as below:

• Develop new heuristics to transform natural language specifications of database

problems into Entity-Relationship (ER) models

• Design and implement, ER-Converter, a tool to assist the transformation

• Evaluate the approach against human performance and compare to other work in the

field

The overall aim of this thesis is not to produce a fully automatic tool that will replace

human analysts but rather to assist them by performing semi-automatic analysis of the

requirements’ specifications and produce an ER model for the analysts to review and refine.

In the educational context, ER-Converter could serve as part of a dynamic domain model of

an ITS.

9

1.4 Thesis Structure

Chapter 2 discusses previous work that applies natural language processing to database

modelling, Intelligent Tutoring System (ITS) and ITS in Databases. The approaches and

techniques used in processing natural language requirements’ specifications for conceptual

modelling are reviewed. As ITS is an area where this research can be applied, related ITSs

in Databases are also reviewed.

Following on from this, issues relating to Natural Language Processing (NLP) in database

design are discussed in Chapter 3. Problems encountered whilst processing natural

language like the presence of ambiguities and solutions to them are presented. This chapter

also elaborates on the parser used in this research, namely Memory Based Shallow Parser

(MBSP) (Zavrel and Daelemans, 2003). This parser is used to tag words in natural language

specifications to determine appropriate parts of speech (POS). The tagged text will act as an

input to the ER-Converter tool.

The next step involves the development of a major focus in the thesis, i.e. to propose new

heuristics to be utilized in the transformation from natural language to ER models. This is

presented in Chapter 4. Existing heuristics in the literature are also discussed. Weights

associated with each heuristic are also discussed. Before the proposed and existing

heuristics were selected for implementation, a manual test was carried out to determine the

contribution of the heuristics. The results on the training dataset are presented. The

selection of the final set of heuristics is justified, based on a number of criteria.

Once the final set of heuristics is selected, the next step is to implement these heuristics to

assess their utility in a practical environment in ER-Converter, a tool to transform natural

language requirements’ specifications to an ER model which is discussed in Chapter 5.

Heuristics that have been selected as outlined in Chapter 4 are implemented in ER-

Converter. Each of the steps involved in the production of an ER model are elaborated

through sample sentences.

10

Having implemented ER-Converter, the results produced by the system are discussed in

Chapter 6. The basic measures used in this research are recall and precision. New measures

like ask_ user are also introduced in this chapter. ER-Converter produces favourable results

though it requires limited human intervention.

Chapter 7 summarizes the work carried out in this research with comparison to other related

work. The performance of ER-Converter is compared against other systems where figures

are available. However, due to the different datasets used in the evaluation, direct

comparison cannot be carried out. Future research directions are also presented in this

chapter. Among the extensions suggested are the integration of WordNet and semantic

interpretation.

11

Chapter 2

Literature review

This chapter surveys work on a range of systems that apply natural language processing in

databases and Intelligent Tutoring Systems (ITS) for Databases. The ITS literature is

reviewed since it provides one of the contexts where this research work could be applied.

2.1 Application of natural language processing (NLP) to database design

Natural languages are common tools for people to describe and communicate their

understanding of the world. Because both ER diagrams (ERD) and natural languages

satisfy similar human needs, their correspondence has been studied (Chen, 1983). Chen

(1983) proposed some basic rules for translation between English sentences and ER models

(ERM). A summary of the basic translation rules is shown in Table 2.1. These translation

rules can be used in the conversion of an English language description of database

requirements into ER models. Though this mapping can be performed by a human, there

are certain limitations in machines which prevent them from carrying out this task. One of

the reasons for this stems from the limitations of current technologies in NLP in matching

human knowledge, for example in identifying a specific category for a word. For example,

the words “Pat Clooney” can be easily identified as a possible candidate for an entity but is

not easily identifiable by a machine. Thus, this mapping can only serve as a basis for a

manual or semi-automatic process of transforming an English specification into an ER

model (Chen, 1998).

Much work has tried to apply natural language to extract knowledge from requirements’

specifications or dialogue sessions with designers, with the aim to design databases (Eick

and Lockemann, 1985; Storey, 1988; Tseng et al., 1992; Tjoa and Berger, 1993; Meziane,

1994; Buchholz et al., 1995; Burg et al., 1996; Gomez et al., 1999; Harmain and

Gaizauskas, 2003; Meziane and Vadera, 2004). The relevant tools and methodologies,

12

which specifically analyse natural language requirements as input for conceptual design,

are now discussed in the following sub-sections.

English Grammar Entity Relationship Model (ERM) Structure

Common noun Entity type (a possible candidate)

Proper noun Entity (candidate)

Transitive verb Relationship type (candidate)

Intransitive verb Attribute type (candidate)

Adjective Attribute for entity

Adverb Attribute for relationship

Gerund (a noun converted from a verb) An entity type converted from a relationship

type

Clause A high-level entity type which hides a detailed

ERM

Table 2.1 Correspondence between English structure and ERM constructs (Chen, 1998)

2.1.1 ANNAPURNA

Eick and Lockemann (1985) proposed concepts, methods and tools to support the

extraction, integration, transformation and evaluation of terminological knowledge

(obtained from natural language statements) that is based on database design techniques in

a project called ANNAPURNA. This project aims to provide a computerized environment

for semi-automatic database design covering all phases from knowledge acquisition

obtained from the experts up to generating an optimal database schema for a given database

management system. ANNAPURNA concentrates on the phases concerned with acquiring

the terminological rules. The term ‘terminological rules’ here refers to the terminology used

to describe the universe of discourse (UoD). The need for acquiring the terminological

knowledge was driven by the fact that different experts and the knowledge designer may

use different terminologies and will represent rules concerning the same objects in a

different way.

13

The first step in acquisition of the terminological knowledge involves extracting the

knowledge from queries and rules that have the form of natural language expressions. The

queries and rules are usually obtained from a user group who are assumed to share the same

terminological knowledge. The knowledge obtained would then be put into the form of S-

diagrams. Figure 2.1 shows an example of an S-diagram. An S-diagram is a graphical data

model which can be used to specify classes (for example ‘room’, ‘door’ and

‘physical_object’), subclass connections between classes (for example ‘rooms’ and ‘doors’

are ‘physical_objects’) and attributes, which describe the properties of members of the

classes (for example ‘from_room’, ‘to_room’ and ‘by_door’). An attribute has a domain

class and a range class. For example, the attribute ‘by_door’ has the domain_class

‘connect’ and the range_class ‘door’. Cardinalities can be associated with the attributes and

may be restricted using the labels (represented by arrows) multivalued, unique, optional

and onto. A double arrow, as shown in Figure 2.1, indicates a label ‘onto’. An arrow with

the letter ‘S’ shows a subclass connection. A tool, AISCHYLOS, which is part of the

ANNAPURNA project, has been developed to generate S-diagrams from the grammatical

structure of a natural language sentence using heuristic rules.

Figure 2.1. An example of an S-diagram (Eick and Lockemann, 1985)

Once the formalization is completed using S-diagrams, complete collective S-diagrams

have to be derived for each user group from the individual S-diagrams (integration phase).

To improve the process of knowledge integration, quality and similarity measures are used.

S

physical object door

room

Connect

S

by_door

to_room

from_room

14

A quality measure will translate the S-diagrams to be integrated into a canonical form (by

applying S-diagram transformations). This process guarantees that entities with similar

structural properties will be described in the same way and entities that are structurally

different will be represented in a different way. Similarity measures are used to detect

synonyms, homonyms and subclasses. The limitation of this work is that the use of S-

diagrams performs best when the complexity is small.

2.1.2 VCS (View Creation System)

VCS (View Creation System) (Storey, 1988) elicits the ER entities, attributes and

relationships from the user by posing questions formulated in English. VCS formalizes, as a

set of rules, a methodology for creating user views. These rules are encoded to form the

knowledge base of VCS. VCS engages the user and poses queries in a dialogue session

designed to elicit information requirements while simultaneously trying to detect and

resolve inconsistencies and ambiguities. This task requires a considerable amount of user

participation while the elicitation process is taking place.

The system selects primary keys from candidate keys using heuristics. All the entities and

relationships are transformed into an initial set of relations. Each entity is then converted

into a separate relation whilst each relationship is represented by a foreign key or separate

relation (depending upon the cardinalities) (Storey, 1993). Once the relations are

established, VCS, with the aid of the user, eliminates partial and transitive dependencies.

The final output is a set of relations in the 4th normal form.

VCS’s knowledge is represented as a set of procedural and production rules. It employs

around five hundred rules, stored in the knowledge base. These rules are obtained from

database design experts in consultation sessions in which they were asked to design a

database for a hypothetical application. An example of a rule based on database theory is

shown as follows:

IF: a relationship is of the form A is_a B

THEN: add the key of entity B to the set of candidate keys of entity A

15

VCS has been tested on eight real-world problems with users of varying skills in designing

databases. The result shows that VCS is useful for users with some prior knowledge of

database theory, but it did not perform well for those that did not. Another limitation is that

VCS has a very limited capability in learning about which attributes are commonly used as

keys in a particular domain. In terms of differing views from different experts in their own

areas in an organization, VCS could perhaps consider resolving this through view

integration in order to avoid bias.

2.1.3 Tseng et al. (1992)

Tseng et al. (1992) studied the inter-relationship between natural language constructs and

the Entity-Relationship (ER) conceptual schema. A methodology is presented whereby it

maps natural language constructs (in terms of queries) into relational algebra through an ER

representation. The language processing follows three stages. First, the sentence is parsed

according to a predefined grammar. Semantic roles are then built. These semantic roles are

then mapped to an ER schema. The mapping is done by referring the corresponding verbs

and nouns to the data dictionary. Each of the semantic roles is mapped into an entity

relation and its headnoun and modifiers are mapped into the corresponding attributes of that

entity based relation. A headnoun is a main noun in a phrase; for example, “The Irish

supplier” has a headnoun ‘supplier’ and ‘Irish’ is the modifier of the headnoun. Verbs that

relate to these semantic roles are then mapped into relationship relations that associate the

entity relations. A logical form is developed by extending the ER representations to capture

natural language semantics. This logical form can also be represented in a form similar to

ERM and can be transformed into relational algebra. Figure 2.2 illustrates how a logical

form can be represented as an ER schema from a natural language query, “List the suppliers

who supply red parts”.

The predicate “sname= ?” is defined as a pseudo predicate. It represents the target attribute

which is to be output to the user. The natural language conjunctives ‘and’ and ‘or’ were

mathematically analysed in Tseng’s study. The logical form can finally be transformed into

relational algebra for query execution.

16

Figure 2.2. An example of the logical form (Tseng et al., 1992)

The methodology presented in this work argues that other intermediate forms suffer from

bias to natural language constructs and much effort is needed to transform them into

database query languages like SQL. Using the logical form in this methodology, the

mapping using a representation similar to the ERD can efficiently transform a logical form

to relational algebra. However, the data dictionary has to be changed every time a new

database is used.

2.1.4 DMG (Data Model Generator)

Tjoa and Berger (1993) proposed a tool called Data Model Generator (DMG) which

transforms requirements’ specifications in natural language into concepts of an EER model.

The transformation is based on the assumption that syntactic structures of the language can

be translated into data modelling concepts. German was chosen as the input language.

DMG is a rule based design tool which maintains rules and heuristics in several knowledge

bases. A parsing algorithm, which accesses information from a grammar and a lexicon, is

designed to meet the requirements of the tool. During the parsing phase, the sentence is

parsed by retrieving necessary information from the grammar, represented by syntactic

rules and the lexicon. Word categories, word phrases and semantic roles are constituents

which describe the sentence at different levels of detail. The syntactic structure of the

sentence is represented graphically as a parse tree or by the flat structure of the linguistic

concepts in the Linguistic Base. The parsing results are processed by rules and heuristics

which set up a relationship between linguistic and design knowledge. DMG has to interact

with the user if the word does not exist yet in the lexicon or the input of the mapping rules

is ambiguous. In the sentence transformation phase, the parser triggers rules to determine

Suppliers Shipments Parts

Subject Object

headnoun modifier

sname= ? Colour=Red

17

linguistic concepts or relationships, which become entries in the Linguistic Base. The

linguistic structures are then transformed by heuristics and rules into EER concepts. A

selection of syntax and semantic-based heuristics to determine entity types, attributes,

generalization hierarchies, relationships and cardinalities is presented in Tjoa and Berger

(1993). An example below shows the appropriate heuristics applied to the given sentence:

“Every project has a project number”

H_E1: enttype: {project, project_number};

H_A1: project number � is attribute of � project;

H_E1 states that all nouns in the text are converted into entity types. H_A1 is a heuristic to

determine attribute type. It states that if a sentence includes a main verb which is a modal

verb with infinitive “have”, then all nouns of the semantic role ACCOBJ (accusative

object) are attributes of the noun which is part of the semantic role SUBJ (subject). DMG

needs to interact with the user if there are any ambiguities or the input test does not

represent the requirements of the user completely. Once the transformation rules and

heuristics are applied, any occurring conflicts due to synonyms, homonyms or structural

conflicts like connection traps are resolved by the designer before the final EER data model

is produced.

Though the work has presented a selection of heuristics and rules for the transformation of

natural language specifications to EER models, DMG has not been developed into a

practical tool. The utility of the presented heuristics in DMG is not evaluated. User

interaction can be extensive especially if the input text does not represent the complete

requirements of the user.

2.1.5 FORSEN

FORSEN (Meziane, 1994; Meziane and Vadera, 2004) is an interactive approach for

producing formal specifications from natural language requirements’ specifications in

English. The aims are to identify ambiguities present in natural language specifications and

to identify the entities and relationships. The system first generates an entity-relationship

18

(ER) model from the input text. The entities and relationships are used as a basis for

producing Vienna Development Method (VDM) (Jones, 1990) data types.

The ER entities and relationships are identified based on the view that nouns denote entities

and verbs may indicate relationships. However, as this does not hold true for all cases, this

method is inadequate. Arguments and the degrees of the relationships also need to be

identified. Thus, the approach begins by using natural language techniques to translate

sentences to a meaning representation called logical form language. The logical forms are

the basis for identifying the entities and relationships. The quantifiers in the logical forms

are used to identify suitable degrees for the identified relationships. Figure 2.3 shows the

approach used by FORSEN in identifying ER models semi-automatically using formal

specifications.

The translation process takes English sentences as inputs and produces the logical form in

the following structure:

 determiner (Base; Focus)

Nouns are usually represented as one place predicates. For example, “aircraft” is

represented by aircraft(X). For verbs, depending on their category, they may be represented

by predicates having nil, one, two or three arguments. For example, the verb ‘give’ with

three predicates can be represented as give(X; Y; Z). The translation process is done in two

phases. Firstly, a syntax analysis is performed to produce all possible parsings in terms of a

syntax tree, according to the defined grammar. Next, the syntax tree is then transformed

into a unique logical form. Once the logical forms are produced, the relevant ER elements

are identified by mapping the suitable terms and predicates of the logical form.

One of the limitations of FORSEN is that it does not handle conjunctions or pronoun

references. The requirements’ specifications need to be analysed manually in order to solve

these problems before FORSEN can be used. As sentences may be ambiguous, this may

result in alternative logical forms. The analyst has to manually select the intended meaning

before the task can be resumed. FORSEN also has not been evaluated in a practical

environment.

19

Figure 2.3. FORSEN approach (Meziane and Vadera, 2004)

2.1.6 RADD (Rapid Application and Database Development)

Buchholz et al. (1995) developed a knowledge-based dialogue tool in German for

producing a skeleton diagram of an Enhanced Entity-Relationship (EER) model. This tool

is part of a larger database design system known as Rapid Application and Database

Development (RADD), which consists of other components that form a complex tool. In

order to obtain knowledge from the designer, a moderated dialogue is carried out during the

design process. This moderated dialogue can be regarded as a question and answer session.

During the session, the designer describes the structure of an application in natural

language (German) and the dialogue tool reacts appropriately to each input sentence. The

result of the syntactic, semantic and pragmatic analysis is used for controlling the dialogue.

For example, if the designer’s input is incomplete, a question will be initiated by RADD.

Specification

Natural language
analysis

Selection of entities
and relationships

Identification of
degrees

E-R models

Grammar

Quantifier
based selection
criteria

Partial E-R models Logical form

Logical form

20

Once the knowledge is acquired through the dialogue, the input will undergo syntactic and

semantic analysis. A special phrase structure grammar which uses the ID/LP (Immediate

Dependence/Linear Precedence) format was developed for the syntactic analysis. The

grammar formalism describes part of the German language based on analysis of user-input.

The grammar analyses main and subsidiary clauses, relative clauses, prepositional clauses

and basic verb phrases. The lexicon contains lexeme and morphological rules. A special

parser has also been implemented which uses the grammar as well as the lexicon and

transforms natural language input into syntax trees. The linguistic corpus was obtained by

carrying out a number of interviews with librarians and library users (‘Library’ has been

chosen as the domain knowledge base). It consists of more than 12,000 lexical units.

Semantic analysis will then be performed to identify the meaning of sentences. A model of

semantic roles based on Jackendoff’s hypothesis (Jackendoff, 1983) is used for this

purpose. It consists of the following roles which refer to the objects partaking in the action:

Cause, Theme, Result/Goal, Source, Locative, Temporal, Mode, Voice/Aspect. The roles of

a sentence are used to clarify linguistic completeness and to support the extraction of the

design. The following example shows the semantic roles of the sentence; “The user

borrows a book with a borrowing-slip”:

Verb type: verb of movement (borrow)
Cause (subject): the user
Theme (object): a book
Mode: with a borrowing-slip

The transformation of the structure of natural language sentences into EER model

structures is a process which is based on heuristic assumptions and pragmatic

interpretation. The aim of the pragmatic interpretation is to map the natural language input

onto an EER model structure using the results of syntactic and semantic analysis. Common

rules are used for making general assumptions about how information gained from general

sentences is related to entities, relationships, sets, keys and other EER structures. The

results of the transformation processes are then transferred into a Data Dictionary which

has been developed as part of RADD database design system.

One major limitation in RADD is that the accuracy of the EER model produced depends on

the size and complexity of the grammar used and the scope of the lexicon. An extension of

21

the lexicon is necessary to ensure a high level of accuracy of the result. Another open

problem is the ‘integrity’ of the designer description of an application. A contradiction in

the designer’s own views can cause conflict and affect the end result.

2.1.7 COLOR-X

In Burg and van de Riet (1996), a natural language and scenario-based approach to

requirements engineering is proposed. In this context, a scenario refers to a sequence of

events, describing the behaviour of parts of the system and its environment. Starting with

an informal description of a scenario, formal event models are developed which reflect the

information of the scenarios in a natural way. This is part of a larger project entitled

COLOR-X (an acronym for COnceptual Linguistically based Object-Oriented

Representation for Information and Communication Systems) which is based on strong

linguistic theories and addresses both the issues of dynamic and static aspects of the

system. COLOR-X has the main objective of generating object-oriented programming code

from a natural language based modelling technique. The COLOR-X project is divided into

several parts. Color-X Static Object Model (CSOM) represents the static models. Models

define the overall structure of the system to be built by showing the objects, classes of

objects and the relationships between them. The CSOM model contains the overall

structure of the Universe of Discourse (UoD) for the programming code generator.

The formal event models are known as CEMs (COLOR-X event models). These mainly

show the sequence of actions and events that take place in a particular UoD. The following

example illustrates a trace of events that could and should be performed in the UoD. Figure

2.3 shows the corresponding CEM model:

Requirements document: “A user can borrow a book from a library. If the user has

borrowed a book he has to return it within three weeks, before he is allowed to borrow a

book again.”

22

Figure 2.4. Example of a COLOR-X Event Model (Burg and van de Riet, 1995)

In Figure 2.4, a box represents an event that could or should take place, a straight arrow

represents the actual occurrence of the event and a ‘lightning’ arrow shows the fact that the

specific event did not take place. Modality of the sentences can be represented through the

PERMIT-box and MUST-box. The PERMIT-box is triggered by the words ‘can’ and

‘allowed to’ in the requirements document. The MUST-box is caused by the word ‘has to’.

A MUST-event requires two outgoing arrows to succeeding events: the obligatory event

has taken place or the obligation is violated. Since in the example there is no event

specified that has to be completed when the book is not returned within three weeks, the

outgoing ‘lightning’ arrow ends in an end-node (Burg and van de Riet, 1995). Table 2.2

shows the general form of the CPL (Conceptual Prototyping Language) specification

language used in the CEM example:

CPL specification language Meaning/ Values

Mode FACTUAL | MUST | NEC |PERMIT

Tense ACTION | DONE | PROSP | PERF | PRET

Predication A relation between n terms T1….Tn

Ti A term denotes a (set, with cardinality c, of) object(s)

id Identification of the objects

sit Situation in which this CPL specification is supposed to

hold

Table 2.2. General form of CPL specification language

 MUST

Return(ag=user)
(go=book)
(dest=library)
(tmp=time T2)

Id: T2 < T1+3*week

PERMIT

Borrow (ag=user)(go=book)
(src=library)(tmp=timeT1)

23

The event models model the dynamics of the system as a whole, and their contents are

paraphrased back into natural language sentences. Natural Language paraphrasing is used

as one of the techniques to validate requirements. This similar paraphrasing approach is

also used by Rolland and Proix (1992). Burg and his colleagues claimed that this technique

tackles the problem caused by two conflicting concerns in requirements engineering

namely the concern of the analyst to develop a formal requirements model and the user’s

need to communicate these requirements in their own terminology. A tool, CPL2nl

(Conceptual Prototyping Language to natural language) has been developed to carry out the

natural language paraphrasing task. This tool generates natural language sentences from

specifications of CPL, a formal conceptual modelling technique. The output forms the

underlying representation of CEMs. The validated CEM models are used as a basis for

analysis and design models.

COLOR-X stems on strong linguistic theories and addresses both the dynamic and static

aspects of systems through the utilization of CEM and CSOM models. One of the

limitations however, is that though the transformation from informal scenarios into formal

CEM models is supported with a lexicon, the process itself is not automated. A human

analyst has to manually complete the creation of CEMs like defining the events and

dependencies between events, though this task is supported by a CASE (Computer Aided

Software Engineering) tool.

2.1.8 E-R Generator

E-R Generator (Gomez et al., 1999) is a rule-based system that takes natural language

specifications as inputs and generates ER model elements such as entities, attributes and

relationships for small domain applications. ER-Generator is part of a larger system which

also consists of a parser and semantic interpreter known as a Natural Language

Understander (NLU). Sentences entered by the user are parsed and semantically interpreted

by the semantic interpreter, which then outputs the final knowledge representation

structure. These final knowledge representation structures act as input to E-R Generator.

Figure 2.5 depicts the main components of E-R Generator. The E-R Generator consists of

two kinds of rules: specific rules and generic rules. These rules are two major sources of

24

knowledge used by the E-R Generator. Specific rules are linked to the semantics of some

words in sentences. They are defined for a verbal concept, or predicates when its semantics

indicate that an action specific to the concept must be performed by the E-R Generator. The

predicates are referred to as NL-relations. NL-relations may have one, two or more

arguments. The arguments refer to the thematic roles of the NL-relation. They may be

nouns or NL-relations themselves. All arguments that refer to physical objects like

Figure 2.5: The E-R Generator approach (Gomez et al., 1999)

‘employee’ are called object structures. Examples of specific rules are those that construct

hierachical ER relationships among ER entities like the is-a verbal concept, or those that

identify key attributes. The following example illustrates how a specific rule for defining

hierarchical relations is established:

“Each person keeps a record of documents of interest. Documents may be books, identified

by author, name and title, journal articles, identified by journal volume, number, author

name, title and private correspondence, identified by sender and date.”

Natural Language

Understander

Specific rules

General rules

Rule Firing
Engine

Knowledge Representation
Structures and Logical

Forms

Model Building Rules

Entity-
Relationship Model

25

E-R Generator creates the ER entities ‘document’, ‘book’, ‘journal article’ and ‘private

correspondence’ and establishes the relations:

• book is-a document-of-interest

• journal article is-a document-of-interest

• private correspondence is-a document-of-interest

These relations are not translated into relationships, but are maintained by E-R Generator to

keep track of the inheritance of attributes among ER entities.

Generic rules, on the other hand, identify ER entities and relationships on the basis of the

logical form of the sentence and on the basis of the ER entities and relationships under

construction. There are three types of generic rules: unary, binary or n-ary rules. In general,

unary rules result in the definition of attributes; binary rules may define attributes, entities

and relationships while n-ary rules result in the definition of relationships. Most sentences

in a database description introduce binary ER relationships. Table 2.3 shows the binary rule

cases. For example, in case 2, suppose there exists two entities, ‘company’ and ‘books’ in

the database and no relation exists between them. If a user enters the sentence “the

company sells books”, E-R Generator creates the relationship ‘sell’ and relates it to

‘company’ and ‘books’. Similarly, if both ‘company’ and ‘books’ do not exist in the

database, E-R Generator then creates ‘company’ as an entity whilst ‘books’ becomes the

attribute of ‘company’ (case 10).

E-R Generator identifies the entities, relationships and attributes based on the

representation structures built by the NLU and on the current state of the database design.

The task is carried out by accessing the structures that represent NL-relations, a-structures

and the hierarchical NL-relation forms, object structures. All the structures are examined in

two passes. In the first pass, some structures may result in the generation of ER elements.

In the second pass, the saved structure from the first pass that caused no action may be

considered here by some rules, particularly the unary rules. Specific rules are tried first

before the generic rules. The generic rules are fired regardless of the verbal concept of an

NL-relation. Their actions are based on the arguments of the NL-relation and on the entities

and relationships currently defined in the database model.

26

 Argument 1 Argument 2 Relation

Case 1 Entity Entity Yes

Case 2 Entity Entity No

Case 3 Attribute Entity No

Case 4 Does not exist Entity No

Case 5 Entity Attribute No

Case 6 Attribute Attribute No

Case 7 Does not exist Attribute No

Case 8 Entity Does not exist No

Case 9 Attribute Does not exist No

Case 10 Does not exist Does not exist No

Table 2.3: Binary rule cases (Gomez et al., 1999)

One of the limitations of E-R Generator is that it may need user intervention in order to

resolve ambiguities. This includes requesting assistance following concepts in the

hierarchy, attaching attributes and confirming the suggestion of key attributes. The amount

of user interaction increases depending on the type of the problem such as ambiguity

caused by intersentential anaphora. Another limitation is the lack of background knowledge

to describe the database application that E-R Generator needs as the techniques are based

on semantic interpretation.

2.1.9 CM-Builder (Class Model- Builder)

CM-Builder (Harmain and Gaizauskas, 2003) is a natural language based CASE tool which

aims to support the analysis stage of software development in an object-oriented

framework. The tool uses natural language processing techniques to analyse software

requirements documents and produce initial conceptual models represented in Unified

Modelling Language (Booch et al., 1999).

There are two versions of CM-Builder, i.e. CM-Builder 1 and CM-Builder 2. In CM-

Builder 1, a significant amount of user interaction is needed to select the correct candidate

classes, attributes and relationships. This has been improved in CM-Builder 2 where the

system uses several modules to process the natural language specification text to produce a

27

conceptual model without user interaction. The OOA (Object-Oriented Analysis) Module

basically converts all nouns into candidate classes and verbs into relationships. For every

candidate class, its frequency in the text is considered before the item is selected. The most

frequent candidates are the most likely classes. Attributes are found from simple heuristics

like possessive relationships and the use of verb phrase like ‘to have’. However, no detailed

information is given in the literature on the heuristics applied in determining the attributes.

WordNet (Fellbaum, 1998) is also employed to help determine attribute names from

adjectives.

CM-Builder still has some limitations in its linguistic analysis. For example, attachment of

postmodifiers such as prepositional phrases and relative clauses is limited. Other

shortcomings include the state of the knowledge bases which are static and not easily

updateable nor adaptive.

2.2 Summary of systems that apply NLP to database design

All the systems and methodologies reviewed utilize various natural language processing

techniques in designing databases. Table 2.4 presents a summary of the systems reviewed,

their aims, target users and the techniques used. Approaches like ANNAPURNA (Eick and

Lockemann, 1985), Tseng et al. (1992) and FORSEN (Meziane, 1994) are based on

simplification that the input language is formalized. One of the disadvantages is the limited

expressiveness of formal representations (Tjoa and Berger, 1993). The user is restricted in

putting forward his views of the UoD as he is unable to convey the knowledge using

natural language. It may also be time consuming to adhere to the strict rules and

sophisticated data abstraction considerations (Tjoa and Berger, 1993). However, these

approaches may help to eliminate problems like ambiguities in natural language.

Other systems like E-R Generator (Gomez et al., 1999) and CM-Builder (Harmain and

Gaizauskas, 2003) produce conceptual models directly from natural language requirements’

specifications. Although this approach may suffer from ambiguities, fuzziness and

redundancy of natural language, the advancement in NLP techniques could improve

performance. VCS (Storey, 1988) and RADD (Buchholz et al., 1995) hold dialogue

sessions with experts or database designers in eliciting user views. One disadvantage of the

approach is the amount of the interaction time needed between the user and the system. As

28

System Aim Type of user Techniques used

ANNAPURNA
 (Eick and Lockemann,
1985)

To provide a computerized
environment for semi-
automatic database design

Database
Designer

Expert of
Universe of
Discourse
(UoD)

�� S-Diagrams
�� Heuristics

View Creation System
(VCS) (Storey, 1988)

To provide an interactive
system for eliciting user
views

Database
designer

End user

�� Procedural and
production rules

�� Heuristics

Tseng et al. (1992) To map natural language
contructs into relational
algebra through ER
representation

Database
Designer

�� Logical forms

DMG
(Tjoa and Berger, 1993)

To support designer in
extracting knowledge from
requirements’ specifications

Database
Designer

�� Rules
�� Heuristics
�� Dialogue

FORSEN
(Meziane, 1994)

To obtain ER models from
language specification

Database
designer

�� Logical forms

Dialogue Tool (RADD)
(Buchholz et al., 1995)

To obtain a skeleton design
of EER model from
designer

Database
Designer

�� Dialogue
�� Syntactic analysis

– ID/LP format
�� Semantic analysis

– using
Jackendoff’s
hypothesis

�� Heuristics
�� Attribute Grammar
�� Pragmatic

interpretation
COLOR-X
(Burg and van de Riet,
1996)

To facilitate the process of
generating conceptual
modelling

Database
designer

�� CEMs
�� CSOMs
�� paraphrasing

E-R Generator
(Gomez et al., 1999)

To generate ER models
from natural language
specifications

Database
Designer

�� Rules
�� Semantic

interpretation

CM-Builder
(Harmain, 2000;
Harmain and
Gaizauskas, 2003)

To build object-oriented
conceptual models

Systems
Analyst

�� Frequency analysis
�� Discourse

interpretation

Table 2.4 Systems that apply NLP to database design

the problem becomes more complex, the user may have to spend quite a considerable time

answering various questions posed by the system. In comparison, a computerized system

has ‘patience’ though bombarded with many problems to be solved. However, as noted

29

from all the systems reviewed in Table 2.4, full automation in designing databases is almost

impossible due to the abstract nature of the problems and ambiguities in natural language.

Heuristics, based on linguistic rules, are reported to be utilized in many of the systems like

ANNAPURNA (Eick and Lockemann, 1985), VCS (Storey, 1988), DMG (Tjoa and

Berger, 1993) and RADD (Buchholz et al., 1995). However, only DMG (Tjoa and Berger,

1993) presents a precise set of heuristics used in deriving an EER model. What appears to

be lacking in most of the systems reviewed is formal evaluation or testing to verify their

usefulness in the context of a real world application. CM-Builder (Harmain and

Gaizauskas, 2003) performs a formal evaluation in terms of recall and precision, to validate

the results of the output.

2.3 Heuristics in database design

The word “heuristic” is derived from the Greek “heuriskein”, meaning to “discover”

(Zanakis and Evans, 1981; Groner et al., 1983). This suggests that a heuristic may be

applied to something requiring exploration or investigation or to a chance encounter. To

practitioners, heuristics are simple procedures, often guided by common sense, that are

meant to provide good but not necessarily optimal solutions to difficult problems, easily

and quickly (Zanakis and Evans, 1981). A slight distinction needs to be made between

heuristics and rules as both are reportedly applied in database design tools (e.g. Eick and

Lockemann, 1985; Tjoa and Berger, 1993; Buchholz et al., 1995; Gomez et al., 1999).

Rules represent a definite assumption (Tjoa and Berger, 1993) or can be theoretically

derived under certain assumptions (Batra and Zanakis, 1994). Heuristics are largely “rules-

of-thumb” based mainly on observations, common sense, intuition and experience (Batra

and Zanakis, 1994) or serve as an aid to learning, discovery, or problem-solving by

experimental and especially trial-and-error methods (Merriam-Webster Dictionary, 1997).

Zanakis and Evans (1981) gave several instances where the use of heuristics is

advantageous. One of these instances is that heuristics are simple and easily understood by

users and therefore likely to be implemented. Another example is that a heuristic solution is

“good enough” if it produces results better than those currently realized.

30

In the context of database design, heuristics are applied mostly in conceptual design (Batra

and Zanakis, 1994), extracting knowledge from requirements’ specifications (Eick and

Lockemann, 1985; Tjoa and Berger, 1993) or through dialogue sessions with designers

(Buchholz et al., 1995) to model Entity-Relationships and in the refinement of pre-physical

database design or schemas (Cerpa, 1995; Rosenthal and Reiner, 1994). More recently, a

heuristics-based methodology has been proposed for creating and managing ontologies for

the development of database designs (Sugumaran and Storey, 2002). It is evident that

heuristics-based approaches are gaining popularity as a means of solving problems in

database design.

Research on the formation and use of heuristics to aid the construction of logical databases

structures from natural language has been scarce. DMG (Tjoa and Berger, 1993) proposes a

large number of heuristics to be used in the transformation from natural language to ER

models. However the work has not yet been developed into a practical tool. Tjoa and

Berger (1993) proposed both syntactic and semantic heuristics to be applied in extracting

knowledge from requirements’ specifications. Although E-R Generator (Gomez et al.,

1999) and RADD (Buchholz et al., 1995) utilized heuristics in their work, they do not detail

the precise set of heuristics used in their approach. Chen (1983) suggested that the basic

constructs of English sentences can be mapped into ER schemas in a natural way and

presented a set of rules. Though the set are referred as “rules”, Chen mentioned that they

are better viewed as “guidelines” as it is possible to find counter examples to them. Chen’s

“rules” are therefore regarded as heuristics as they are largely “rules-of-thumb” based on

observations rather than theoretically derived.

When dealing with heuristics, many decisions are based on beliefs concerning the

likelihood of a certain event happening (Kahneman et al., 1982; Griffin and Tversky,

2002). These beliefs are commonly expressed in statements such as “I think that…”,

“Chances are that …” and so forth. Some beliefs are expressed in numerical form as odds

or subjective probabilities (Kahneman et al., 1982). For example, MYCIN (Buchanan and

Shortliffe, 1984) uses certainty factors to indicate the strength of a fact. MYCIN uses

certainty factors as an alternative to probabilistic reasoning. Certainty factors range from –1

(definitely false) to +1 (completely true).

31

2.4 WordNet

WordNet (Fellbaum, 1998) is an on-line lexical reference system which differs from the

standard dictionary in which English nouns, verbs, adjectives and adverbs are organized

into synonym sets, each representing one underlying lexical concept. It groups English

words into sets of synonyms called synsets, provides brief definitions, and maintains the

various semantic relations between these synonym sets. WordNet aims to produce a

combination of a dictionary and a thesaurus that is more intuitively accessible, and to

support automatic text analysis and artificial intelligence applications.

WordNet is comprised of four parts: the lexicographers’ source files, software known as

Grinder to convert these files into the WordNet lexical database, the WordNet lexical

database and a suite of software tools to access the database. All word forms are arranged

into synsets. These are further organized into a set of lexicographers’ source files by

syntactic category like noun, verb, adjective and adverb. Each word form is known by its

orthographic representation, syntactic representation, semantic field and sense number.

Relational pointers, which can be lexical or semantic are created to represent the relations

between the word forms. Lexical relations can exist between relational adjectives and the

nouns they relate to and between adverbs and adjectives from which they are derived.

Semantic relations that represent a relation between meanings are appended to the list of

word forms in the synset.

In conceptual modelling, WordNet has been utilized, for example in Color-X (Burg and van

de Riet, 1998) and CM-Builder (Harmain and Gaizauskas, 2003) to assist the user in

determining the meaning and context of a word. In Color-X, for instance, WordNet can be

used to disambiguate the meaning of a verb by examining synonyms. For example, the verb

‘sell’ would result in a few senses and the user needs to select the suitable meaning in its

context. In CM-Builder, WordNet is used to identify hidden attributes that may arise from

adjectives.

32

2.5 Intelligent tutoring systems (ITSs)

One context where ER-Converter can be applied is in the area of Intelligent Tutoring

System (ITS) (Sleeman and Brown, 1982), as part of the domain model. This section

provides a brief overview of ITSs and its components namely the domain model, the tutor

model, the student model and the user interface.

Computer-based instruction systems that display some degree of “intelligence” have been

used in education for over 20 years. Computer-Based training (CBT) (Dean and Whitlock,

1992) and Computer-Aided Instruction (CAI) (Self, 1988) were among the first such

systems that were introduced to teach students using computers. While both CBT and CAI

may seem to be effective in helping learners, they are incapable of providing individualized

attention and feedback as a human tutor could have given to the students. Thus, a new field

of research has emerged known as intelligent tutoring systems (ITSs).

An intelligent tutoring system (ITS) is a software system that uses artificial intelligence

(AI) techniques to tutor people in a given domain. The goal of intelligent tutoring systems

is to provide a learning experience for each student that approaches the standard of learning

that he/she would receive from a human tutor. To achieve its goal, intelligent tutoring

system software monitors each student’s interactions and builds a ‘student model’ for each

individual. This model comprises the student’s performance on training/problem-solving

and remediation exercises; knowledge of all information and remediation received; the

knowledge mastered, failed and misunderstood by the students; and the student’s learning

style. Apart from the student model, two other important models in an ITS include the

domain model and the tutor model. The domain model represents the knowledge of the

subject area while the tutoring model contains methods on how to select, sequence and

present materials to the students. A more detailed discussion of these three models is

presented in the following section.

ITS systems are also intended to facilitate learning-by-doing: transforming factual

knowledge into experiential knowledge. They attempt to combine the problem-solving

experience and motivation of ‘discovery’ learning with the effective guidance of tutorial

33

User Interface

Domain Model

Knowledge
Expertise

Tutor Model

Knowledge
Didactics

Student Model

Knowledge
Diagnosis

interactions. To enable this, the system must have its own problem-solving expertise, its

own diagnostic or student modelling capabilities and its own explanatory capabilities. In

order to orchestrate these reasoning capabilities, it must also have explicit control or tutorial

strategies specifying when to interrupt a student’s problem-solving activity, what to say and

how best to say it; all in order to provide the student with instructionally effective advice

(Sleeman and Brown, 1982).

2.5.1 Components of an ITS

An intelligent tutoring system should comprise the following four components: the domain

model, the tutor model, the student model and the user interface (Burns and Capps, 1988).

Figure 2.6 shows the relationships between the main components of an ITS.

Figure 2.6: The Components of an ITS

The domain model

The domain model (sometimes referred as the expert model) contains knowledge of the

specific domain to be taught. It forms the backbone of any intelligent tutoring system

34

(Anderson, 1988) as it provides the domain intelligence. The intelligent tutoring system

uses its domain knowledge to reason about and solve a problem posed by a student or set

by the system. The knowledge or expertise has to be encoded and represented in such a way

that it supports reasoning that resembles the human problem-solving process within the

teaching domain (Siemer and Angelides, 1998).

Three approaches have been used to encode knowledge in the domain model. These are

known as black box models, glass-box models and cognitive models.

Black-box models

A black box model is a way of reasoning about the domain without requiring any

codification of the knowledge that underlies human intelligence. It can be used as a judge

of correctness as it generates correct input-output behaviour over a range of tasks in the

domain. The classical example of a black box model is the unique work on SOPHIE

(Brown et al., 1982). The underlying circuit simulator, SPICE, a black box expert, was used

to determine the reasonableness of various measurements that a student would make in

troubleshooting faulty electronic circuits. This expert is used only to check the consistency

of a student’s hypotheses and answer some of his questions. However, its mechanisms are

concealed from the student since they are not the mechanisms the student is expected to

learn (Burton and Brown, 1982).

Glass-box models

The second approach to encoding knowledge in the domain model is using the glass-box

model. This approach uses knowledge-engineering techniques to control the tutorial

mechanisms of the system. A rule-based formalism is usually used to represent the

knowledge. The implementation does not necessarily correspond to the way a human expert

reasons. It allows only for explanations of the information process inherent in the rules of

its knowledge base. An example of this glass-box model is GUIDON (Clancey, 1982), an

ITS which teaches physician consultancy. GUIDON uses MYCIN, an expert system for

diagnosing bacterial infections as the domain model within an ITS. Some difficulties arose

from this project. For example, the actual reasoning process used by MYCIN to deploy its

35

knowledge, an in-depth backward search, is not the way the knowledge is deployed by

humans. In addition, the highly compiled rules of MYCIN were difficult for GUIDON to

understand and too complex to be directly taught to novices.

Cognitive models

A lesson learned from the GUIDON project is that for tutoring systems to be effective, the

way the knowledge is deployed is equally important. The domain model must deploy its

knowledge according to the way a human does. This principle leads to the cognitive

modelling approach. The goal of the cognitive modelling approach is to develop a

simulation of problem solving in a domain in which the knowledge is composed into

meaningful, human-like components and deployed in a human-like manner. In this way, the

system can communicate the domain knowledge clearly to the student. Cognitive domain

models distinguish between three types of domain knowledge: procedural, declarative and

qualitative. Procedural knowledge is concerned about how to perform a task such as

mathematical problem solving. Meanwhile, declarative knowledge conveys knowledge in

the form of a set of organized facts to enable human reasoning. For example, there are

domains like geography where the tutorial goal is to convey declarative knowledge in the

form of a set of facts appropriately ordered so that one can reason with them. Qualitative

models allow one to reason about behaviour using mental models of systems such as when

troubleshooting an electronic device.

Procedural knowledge in a cognitive domain model usually takes the form of a rule-based

production system. BUGGY (Burton, 1982) and the LEEDS modelling system (Sleeman,

1982) are among the systems that use this rule-based approach. These systems involve a set

of if-then rules matched to a working memory of facts. This working memory resembles

the short-term memory of a human. Declarative knowledge representations are useful when

there is a need for the student to understand the principles and facts of a domain and

applying them. However, this does not mean that the aims of procedural and declarative

tutoring are mutually incompatible. Sometimes the nature of the subject matter requires the

student to be facile about the rules of a problem domain but clear about the justifications for

the rules. This can be the case in the domain of medical diagnosis (Clancey, 1982).

36

The student model

An intelligent tutoring system is a computer program that instructs the student in an

intelligent way. It infers a model of the student’s current understanding of the subject

matter and uses this model to adapt the instruction to the student’s needs (VanLehn, 1988).

This model is referred to as the student model. Student modelling is the most important part

of an ITS since the student has the central role in the teaching process (Stankov, 1996). The

behaviour of an ITS depends largely on the student model, which in turn depends on the

domain model for the diagnosis of the student’s knowledge. An ideal student model should

contain the aspects of the student’s knowledge, feeling and behaviour that might affect the

student’s learning (Tong, 1997).

The tutoring model

An intelligent tutoring system should display various tutoring characteristics. These are

contained in the tutoring model. The characteristics of the tutoring model include (Halff,

1988):

a) controls over the tutorial discourse, i.e. the representation of the instructional

knowledge for sequencing and selecting the appropriate materials of the subject

matter,

b) the ability to respond to the student’s queries about instructional goals and content,

c) strategies to offer help when needed and ways of delivering it.

The goal of this model is to circumscribe the nature of tutoring and to implement it as a

solution to the educational problem. The central issues in the tutoring model are the

problems of developing methods for selecting and sequencing material and methods for

presenting it.

The user interface

The user interface acts as a front-end to an ITS and it provides a means of interaction

between the student and the system. The aim of the user interface is to enhance

‘conversation’ between the system and the student to facilitate the communication of

37

knowledge between both parties (Tong, 1997). Miller (1988) emphasizes the need to make

appropriate tradeoffs in the design of ITSs due to several issues. First, the learner working

with an ITS must learn some subject matter that he or she may not understand. An ITS

should not complicate the matter by having a complex interface to deal with. If the user

interface is poorly designed, the tutoring session will probably be ineffective. The goal of

interface design is therefore to make the interface transparent.

2.6 ITSs for database design

There are several existing intelligent tutoring systems for the database domain. However,

not many of them focus specifically on the topic of Data Modelling. The following sub-

sections review each of the ITS systems.

2.6.1 DB-Tutor

DB-Tutor (Raguphati and Schkade, 1992), an intelligent tutoring system for database

design, was developed using hypertext. It is designed to assist users in database design by

providing examples and graphics to illustrate database design techniques. Here ‘database

design’ refers to the ability of the database designer to apply a number of guidelines and

rules-of-thumb in designing a database. This sometimes involves creativity and use of

heuristics in arriving at a good design. The domain was restricted to conceptual database

design using the relational model. The information on databases was sorted into related

topics and presented in a nonlinear manner using hypertext in the form of nodes and links.

The idea of hypertext is to link related information together, irrespective of its location. A

node is a continuous flow of text. All terms within a topic that referenced another topic

were represented as links. For example the two topics ‘Normalization’ and ‘Relational

Models’ were represented as a link from one topic to the other.

DB-Tutor was implemented using a hypertext software tool. Only three of the primary

components of ITS were present in the system; the domain model, which contains the

information on database design, the user interface and the tutoring model, which provides

facilities for the presentation of the information. With the absence of the student model, an

38

important component of an ITS, this system is incapable of monitoring the student’s

progress and current understanding of the subject matter. As noted previously, student

modelling is the most important part of an intelligent tutoring system since the student has

the central role in the teaching process (Stankov, 1996).

2.6.2 Canavan (1996)

Canavan (1996) developed a prototype for an intelligent tutoring system in database design,

in the topic of Normalization for advanced UK GNVQ (General National Vocational

Qualification) level students. The prototype was partially built as part of her investigation

into how far intelligent computer aided instruction (ICAI) and intelligent tutoring system

(ITS) can be brought to bear on the problems of education. The prototype was limited to the

test and tutorial element of the ITS due to time constraints and limited resources.

Figure 2.7 shows the outline of the initial prototype. It is a menu-based system where users

are presented with the appropriate screens during the tutoring session. To start with, the

user is presented with an options menu from which he may choose any of the nine tutorials

or exercises. For the tutorial option, the user will be presented with some background

information on the topic. He is then given the option of choosing an example or a question.

If the question is answered incorrectly, the user is given the option to proceed to a tutorial

before moving to a next topic. Ideally, the system should be able to give some feedback or

hint during the exercise, depending on the attempt the student makes. In addition, the

system should direct the user to the appropriate material depending on his capability, rather

than allowing the user to make the decision.

2.6.3 SQL-Tutor

Another intelligent tutoring system in the database domain, SQL-Tutor (Mitrovic, 1998;

Mitrovic and Ohlsson, 1999), tutors students in the dominant database language, SQL

(Structured Query Language). It is designed as a guided discovery-learning environment

and supports problem solving, conceptual and meta-learning. It is based on Constraint-

Based Modelling, a student modelling approach proposed by Ohlsson (1992). A constraint-

based model represents knowledge about a domain as a set of constraints on correct

solutions. The constraints partition the universe of all possible solutions into correct and

39

incorrect ones. This approach concentrates on the violations of the basic principles in the

domain of instruction. Constraint violations are identified by inspecting the student’s

solution and comparing it to the stored ideal solution. If a constraint is violated, this

outcome will be recorded in the student model and appropriate action is taken by the

system. For example, when a student makes a mistake in an SQL statement, the system will

generate the correct solution alongside the student’s solution to point out the error.

Feedback is generated from SQL-Tutor to explain each of the mistakes in the student’s

solution.

Figure 2.7: Outline of the initial prototype structure (adapted from Canavan, 1996)

The components of the system include the interface, a pedagogical module and a student

modeller. Figure 2.8 shows the architecture of SQL-Tutor. The pedagogical module

generates feedback messages and selects practice problems. The instruction is

individualized in the sense that both types of actions are based on the student model. The

student modeller records the history of each constraint. This record contains information

about how often the constraint was relevant for the ideal solution to the practice problems

the student attempted, how often it was relevant for the student’s solution and how often it

40

was satisfied or violated. This record is used by the pedagogical module. There is no

domain model for SQL-Tutor. The domain knowledge is instead represented in the form of

constraints in the student modeller. Currently, the published system only deals with the

SELECT statement in SQL.

Figure 2.8: The architecture of SQL-Tutor (Mitrovic and Ohlsson, 1999)

2.6.4 COLER

COLER (Constantino-Gonzalez and Suthers, 2000) is a World Wide Web (WWW)-based

computer-mediated collaborative learning environment for entity-relationship modelling.

An agent is designed for coaching the students in a collaborative learning environment.

Students begin by constructing individual entity-relationship diagrams and then work in

small groups to agree upon a group solution.

COLER’s implementation is based on architecture for intelligent collaborative learning

systems from other software, Belvedere. The system was implemented in Java. The

implementation concentrated on the coach module, which was built to monitor participation

and to identify and evaluate differences between diagrams to encourage students to

collaborate. COLER provides four different modes of operation according to the type of

41

user (student/professor) and the selected type of session (individual/group). The interface

consists of a problem description window, a private workspace, a shared workspace and a

chat window. The problem description window presents an ER modelling problem.

Students construct their individual solutions in the private workspace. The shared

workspace is used to construct a collaborative ER diagram. The chat window is used by the

students to communicate among themselves. Each student’s clients contain a private coach,

which monitors the private workspace of its students called CMS (currently monitored

student). The coach also monitors the shared workspace and records the students’ opinions

in the workspace and in chat discussions. However, no natural language interpretation is

attempted.

There are no apparent domain or tutoring modules present in the system. A form of student

monitoring is conducted in the coach module which consists of four sub-modules. Table 2.5

describes the function of each of sub-module.

Sub-module Function
Differences Recognizer This module either finds differences

specifically related to the currently
added object or finds all “extra work”
that the student can contribute to the
group.

Diagram Analyzer This module detects ER diagram
anomalies. Currently, it is only syntax-
based.

Participation Monitor This monitor attends to the activity in
the group diagram. If a session is left
idle for a period of time, it will report
the event. It also monitors whether
each student is participating (too much
/ too little). It also tracks each
student’s contribution.

Personal Coach This module receives feedback from
other modules and generates
potentially applicable advice and
selects the advice to give, if any.

Table 2.5: Function of COLER’s coach sub-modules

The current published version of COLER only has access to the student’s private

workspace and the shared workspace. A student is only able to compare his solution with

42

the group’s solution, not with a particular colleague. Constantino-Gonzalez and Suthers

(2000) reported that a future version would incorporate this feature to create opportunities

for proper collaborative learning.

2.6.5 Kermit

Kermit (Suraweera and Mitrovic, 2002), an ITS for ER modelling was developed as a

practice environment for students to model databases for a given problem, with the aim of

individualised instructions. Kermit is based on constraint modelling, a student modelling

approach that focuses on errors.

The system consists of a user interface, a student modeller, a pedagogical module and a

knowledge base. It evaluates the student’s answers by comparing them with the correct

answers in the knowledge base. The knowledge base is represented in descriptive form and

consists of constraints used for testing the student’s solution against the system’s ideal

solution. The constraints deal with both syntactic and semantic errors. The syntactic

constraints concentrate mainly on syntactic errors and these are independent of the system’s

ideal solution. An example of a syntactic error would be a simple constraint like “an entity

name should be in upper case”. Semantic constraints operate on the relations between the

student solution and the system’s solution. “The student’s solution should consist of all the

entities present in the ideal solution” is an example of a semantic constraint.

An animated pedagogical agent, implemented using Microsoft Agent, is used in the

learning environment to facilitate learning. The agent offers instructional messages and

displays a strong visual presence. However, once the agent presents feedback messages like

pointing out an error, the student does not have the opportunity to refer to the feedback

once the agent has completed his speech. The student needs to correct all of his errors

before referring back to the feedback.

In contrast to a typical ITS, Kermit does not contain a domain module that is capable of

solving the problems given to students. The authors of Kermit mentioned that developing a

problem solver for database modelling would be extremely difficult, if not entirely

43

impossible. However, the research work presented in this thesis shows that this challenge is

possible in a semi-automated environment.

2.7 Summary

This chapter has reviewed a range of systems, from those that apply natural language

processing to databases to intelligent tutoring systems (ITSs) for Databases. The different

techniques adopted in the NLP systems that attempt to transform natural language to

conceptual models were reviewed. A number of the systems reviewed reported on the

utilization of heuristics to aid database design. However, only DMG (Tjoa and Berger,

1993) presented a set of detailed heuristics for the transformation from natural language to

EER models. A summary table of the review of the systems that apply NLP in Database

design was presented and discussed. A few of the systems like E-R Generator (Gomez et

al., 1999) and CM-Builder (Harmain and Gaizauskas, 2003) reported the results on their

systems’s evaluation. Other relevant issues such as heuristics in database design and

WordNet were also reviewed. ITSs and their components were also discussed. ITS is one

context where ER-Converter can be applied. The next chapter discusses the issues of NLP

in database design in more detail.

44

Chapter 3

Natural language processing in database design

This chapter discusses natural language processing and its application in database design.

The use of natural language requirements’ specifications in eliciting the knowledge to be

modelled and the potential presence of ambiguities in the document are also discussed. This

chapter also elaborates on Memory-Based Shallow Parser (MBSP), the parser used to

process natural language requirements’ specifications. The techniques used in each of the

modules of the parser and their applications in natural language processing are discussed.

3.1 Brief overview of database systems analysis

Database problems can be expressed with natural language descriptions of the application

which are known as requirements’ specifications. It is a formal document in natural

language that describes the universe of discourse (UoD) or the world to be modelled. Users

or so-called domain experts usually provide the description in the specification. Figure 3.1

shows the stages of database systems analysis involved from producing the requirements’

specifications up to the physical database design.

The process of obtaining an initial specification is known as elicitation. Systems analysts

who are responsible for this analysis in the early stage of the information system

development usually carry out this task. During this stage, the primary task of the systems

analyst is to map the initial specification on to concepts of a particular conceptual

modelling technique.

45

Figure 3.1: The stages in database systems analysis

An example of a requirements’ specification based on a university environment, taken from

Willits (1992) is as follows:

The university wishes to maintain a student database. The student will be identified by a

student registration number. Other details include the student’s programme, the name of

the study advisor, together with the code of each module which a student studies, its title,

its lecturer and room number. For each module completed, the student obtains a grade and

a number of credits.

 U se r 1 U s e r 2

 N a tu r a l la n g u a g e
re q u ir e m e n ts

N a tu ra l la n g u a g e
p ro c e s s in g

 C o n c e p tu a l /I n te rn a l
m a p p in g

S to re d s tr u c tu re d e f in i tio n
(In te rn a l sc h e m a)

S to r e d d a ta b a s e (in te rn a l v ie w)

… … ..U s e r n

C o n c e p tu a l
S c h e m a

46

The next stage involves natural language processing of the specification before the natural

language/conceptual mapping is completed. In the natural language processing (NLP)

stage, the syntactic and semantic knowledge captured (extracted/deduced) during the

natural language specification analysis is processed. Natural language processing is

performed based on the application of heuristics to the specification. The result would be

processed further to determine the salient elements of Entity-Relationship models in the

conceptual phase.

Once the conceptual model or view is completed, the next stage involves the

conceptual/internal mapping. In this stage, the physical structure of the database is

determined. This usually involves the data design and determination of the storage

structures which result in the creation of the necessary physical tables and their

implementation.

3.2 Natural language processing in database design

Natural language processing enables the computer to ‘understand’ human language through

analysis, manipulation and generation. This can refer to anything from morphological

analysis to higher-level Artificial Intelligence-like tasks such as processing user queries in

natural language. Morphological analysis is concerned with the study of the construction of

words from more basic components or meaning units called morphemes (Allen, 1995).

Manipulation may involve tasks like stemming. Stemming determines the morphological

root of a given word form. For example, the stemmer, a program which accomplishes the

task of stemming, should identify the word “swimming” based on the word “swim”. In

terms of generation, the natural language processing tasks may involve applications such as

a text-to-speech system that synthesizes natural sounding speech from ordinary text and a

report generator which produces a report from texts.

Generally, natural language processing follows three stages: parsing, semantic

interpretation and contextual/world knowledge interpretation (Luger and Stubblefield,

1997; Allen, 1995). The first stage, parsing, analyses the syntactic structure of sentences.

Parsing not only verifies that sentences are syntactically well formed, but also determines

47

their linguistic structure. This ensures that the sentence is a legitimate sequence of words in

a language. This phase identifies major linguistic relations such as subject-verb, verb-

object and modifier. This is often represented as a parse tree. Most parsers employ

knowledge of language syntax, morphology and some semantics. An example of a parse

tree for the sentence, “The man likes the car” is shown in Figure 3.2.

Figure 3.2: Parse tree for the sentence “The man likes the car”

Research at the syntactic level of analysis is primarily concerned with the construction of

wide-coverage grammars, efficient parsing strategies and grammar formalisms (Neri and

Saitta, 1997). These have led to the development of grammars like structure grammars,

context-free grammars and context-sensitive grammars.

The second stage is semantic interpretation, which produces a representation of the

meaning of the text. This stage focuses on issues such as what type of knowledge

representation formalism is used for determining meaning and how to interpret utterances

like:

“I saw her painting. ”

which could mean any of the following:

48

a) “I saw her painting the wall.”

b) “I saw her painting (artwork) at the gallery.”

This type of ambiguity may be resolved by determining the context of the word. Further

evidence may come from the immediate textual context, or from a general understanding of

the real world. In the context of the given sentence, for example, there may be some

evidence from a preceding sentence which denotes that the subject is in a museum. This

additional world knowledge can be used to filter the inappropriate parses in order to resolve

the ambiguity.

The final stage involves adding structures from a knowledge base to the internal

representation of the sentence to produce an expanded representation of the sentence’s

meaning. This adds further world knowledge required for complete understanding. Some

examples of world knowledge are facts in a given context such as “the man likes the

Jaguar”, “Jaguar is not an animal” and “Jaguar is a car”. These facts may be represented

using type hierarchies, a method of expressing knowledge about the structure of the world.

As Jaguar may represent both a living object, i.e. an animal or a non-living object, for

instance, a vehicle, these facts need to be ascertained before the meaning is deduced. The

resulting structure represents the meaning of the natural language text and is used by the

system for enhanced understanding.

In database design, natural language processing usually involves analyzing the

requirements’ specifications and looking for linguistic structures that can be mapped to the

conceptual schema. The emphasis is on the extraction of relevant information and correct

interpretation of the knowledge extracted in order to produce a sound conceptual model.

Most of the efforts require studying the relationship between sentence structure and the

model to be mapped. However, due to limitations in natural language specifications such as

ambiguities in natural language, this presents numerous challenges in processing the

documents. These issues will be discussed further in the following section.

49

3.2.1 Ambiguities in natural language specifications

The main disadvantage of using natural language requirements’ specifications is the

potential presence of ambiguities. This leads to two issues. The first is the detection of

ambiguities and the second is the resolution of the ambiguities. In natural language

processing, it is essential to remove any ambiguities before proceeding to further analysis to

minimize any errors during the modelling. According to Somers (2000), ambiguities can be

categorized as:

• Lexical ambiguity

• Structural ambiguity

In database design, these ambiguities are sometimes present in the requirements’

specifications.

Lexical Ambiguity

Ambiguity may arise at a lexical level where a word may have more than one interpretation

(sometimes referred to as word senses) (Allen, 1995). This type of ambiguity may happen

as a word can represent different parts of speech and have different meanings. Parts of

speech refers to the classification of words depending on how they are used. For example

the word ‘store’ may mean a business establishment or it may indicate something that is

kept for future use. It may represent a noun, an adjective or a transitive verb depending on

the context.

This type of ambiguity may be resolved when the syntactic category of the word is

identified. This is possible through natural language processing techniques such as parsing

as this can often identify the part of speech of the ambiguous word. This understanding may

come from the more or less immediate textual context, or from a general understanding of

the real world (Somers, 2000). For example, consider sentences (1) and (2):

“The store is located in Ballymena.” (1)

50

“The system must store information about the patient.” (2)

In sentence (1), the word ‘store’ is a noun that acts as a subject. Due to the juxtaposition of

the word, it is easier to deduce that the word ‘store’ is a noun. In (2), the word ‘store’ is a

verb which requires a subject prior to its use. Due to the different parts of speech in

different contexts, the correct interpretation of the sentence is easier to obtain automatically

when the context is determined.

Structural Ambiguity

Ambiguities may also arise from how a sentence is structured. Structural ambiguity results

when the combined lexical ambiguity of the words making up a sentence means that it has

several interpretations. Two common forms of structural ambiguity are attachment

ambiguity and coordination ambiguity. Attachment ambiguity as illustrated in sentence (3),

can pose a problem as some knowledge is needed as there may be several interpretations

leading to different meanings.

 “The boy saw his dad with a pair of glasses.” (3)

Structural ambiguity leads to the following two interpretations:

a) “The boy saw (his dad with a pair of glasses).”

 The boy saw his dad and his dad was wearing glasses at that point of time.

b) “The boy saw (his dad) with a pair of glasses.”

The boy saw his dad whilst wearing a pair of glasses.

In general, a natural language understanding system may not be able to decide which

interpretation is intended. However, the ambiguity can be highlighted and user intervention

requested to choose the correct interpretation.

51

Coordination ambiguity occurs when there are different sets of phrases that can be

conjoined by a conjunction like and (Jurafsky and Martin, 2000). For example, the phrase

“young kids and adults” can be bracketed as [young [kids and adults]] meaning [young kids

and young adults] or [[young kids] and [adults]] which refers to young, juvenile kids but

not necessarily young adults. Due to the fact that there are many unreasonable parses for a

sentence affected by this type of ambiguity, disambiguation or choosing the correct parse

may be necessary (Jurafsky and Martin, 2000). Disambiguation algorithms generally

require both statistical and semantic knowledge (Jurafsky and Martin, 2000).

Structural ambiguities can be further classified according to the ‘range’ or scope of the

ambiguity they represent. These ambiguities can be categorised as:

• local ambiguities

• global ambiguities

• anaphora resolution

Local ambiguities can occur when some part of the sentence is ambiguous, having more

than one parse, even if the whole sentence is not ambiguous (Jurafsky and Martin, 2000).

Sentence (4) is an example of such ambiguity:

“The students taught by the direct method failed.” (4)

In the process of parsing the sentence, the word “taught” would be processed as a transitive

verb, with the reading that the student taught someone or something. But further analysis

may reveal that the students are the ones being taught i.e. “taught” is not a main verb but

instead a participle.

Global ambiguities, on the other hand, are caused by combinations of ambiguities: different

analysis involves different category choices (Somers, 2000). An example is shown in

sentence (5):

“John saw her playing cards.” (5)

52

This sentence either means John saw someone playing with cards or John actually spotted

the cards. The word “playing” can either be an adjective or a verb in the sentence resulting

in different interpretations.

Anaphora resolution is the identification of antecedents of pronouns. Anaphora refers to an

entity that has been mentioned previously in the discourse or text. Sentence (6) shows an

example of anaphora resolution:

“Each module is attached to one course where it has a name and a code.” (6)

In sentence (5), the word ‘it’ may be referring to either the module or the course. This is

ambiguous and may need some background knowledge to determine the correct

interpretation. In a natural language specification which will be analysed automatically, it is

important to resolve this sort of ambiguity and replace the anaphoric terms with their actual

reference or antecedent.

Another particular case of substitution apart from anaphoric resolution that may be

ambiguous is ellipsis. It occurs when certain words or phrases, which have been mentioned

earlier in the text, are omitted. For example, the noun phrase ‘a team of employees’ may be

replaced with just ‘employees’ in subsequent sentences. This occurs quite frequently in

natural language requirements’ specifications and should be resolved either prior to the

automated processing or in the program itself.

3.2.2 Solutions to ambiguity

Presented with many types of ambiguities, natural language requirements’ specifications

need to be pre-processed, either manually or automatically, to minimize any errors in the

interpretation of the text. In terms of manual processing, among the solutions adopted are:

• Controlled language

• Pre-editing

53

Controlled language or sometimes referred as restricted input is a controlled language

developed to limit the vocabulary, syntax and semantics of the input language (Harmain

and Gaizauskas, 2003). It is sometimes used to write software specifications and used by

tools to analyse these specifications to produce useful results. An example of such a system

is Attempto Controlled English (ACE) (Fuchs and Schwitter, 1996; Fuchs and Schwertel,

2003). Pre-editing usually involves some checking done of the specifications to adhere to

certain restrictions of the system. Meziane (1994) reported on pre-editing the specification

text to resolve the problems of conjunctions and pronoun references, which are not handled

by the implemented system, before proceeding to the automatic analysis of the text.

A potential solution to these problems is the incorporation of more sophisticated techniques

of analyzing the text to be processed. This usually involves the use of a parser, tagger and a

semantic interpreter. In this research, a parser known as Memory-based Shallow Parser

(MBSP) has been selected for the purpose mentioned above, that is, to analyse the natural

language requirements with the utilization of the natural language techniques that the parser

has to offer. MBSP was selected due to the accuracy of its tagger, as will be discussed in

Section 3.3.2, and its availability on the Internet. Other parsers like Snow-Based Shallow

Parser (Munoz et al., 1999) and Connexor (Tapanainen, 1996) were also considered. MBSP

and its approach used in the processing of the natural language input are discussed in the

next section.

3.3 Memory-based Shallow Parser (MBSP)

Shallow parsing is an essential component in text analysis systems in text mining

applications such as information extraction and question answering (Zavrel and Daelemans,

2003). Shallow parsing performs only partial analysis of the syntactic structure of sentences

as opposed to full-sentence parsing. The parsing includes detecting the main constituents of

sentences (for example noun phrases (NPs) and verb phrases (VPs)) and their head nouns,

and determining syntactic relationships like subject, object and adjunct relations between

verbs. This early step uncovers basic information like who, what and where in sentences.

54

In the MBSP approach, the syntactic analysis process is split up into a number of

classification tasks. These classification tasks can be segmentation tasks (for example in

deciding whether a focus word or tag is the start or end of NP) or disambiguation tasks (for

example whether a chunk is a subject NP or object NP). Output of some memory-based

modules is used as input to other memory-based modules.

The MBSP for English consists of the following modules:

• A tokenizer

• A tagger

• A chunker

• A subject/object detector

Each of these modules yields results in separate output files. The first three modules will be

explained in more detail in the following sections.

3.3.1 Tokenizer

A tokenizer basically breaks up the sequence of characters in a text by locating the word

boundaries, the point where one ends and another begins (Daelemans et al., 2000). The goal

is to break up the text into smaller units called tokens. Each token corresponds to a word

form, a number, a punctuation mark or other kind of unit to be passed on to subsequent

processing. In MBSP, the tokenizer splits punctuation marks like period, comma, question

mark and colon from words. For example the genitive clause ‘the client’s name’ will result

in 4 tokens. These tokens are ‘the’, ‘client’, ‘’s’ and ‘name’. These elements are later

tagged separately according to their part-of-speech (POS).

3.3.2 Memory-Based tagger

A POS tagger assigns the words in a text to their morphosyntactic categories based on the

characteristics of the words and the context in which they occur. POS tagging is the first

level of abstraction in text analysis and plays an important role in many language

technology applications such as information retrieval, speech recognition and text mining

55

(Jurafsky and Martin, 2000). Memory-based tagging is based on the idea that words

occurring in similar contexts will have the same POS tag. The tagging technique used in

Memory-Based tagger (MBT) is based on Memory-Based Learning (MBL). MBL is a

supervised classification-based learning method. It consists of storing the instances seen

during learning in memory along with the corresponding categories. A new instance can be

classified in a category by computing the distance between the new instance and the stored

instances in memory. The distance is computed using similarity metric, a feature of IB1-IG

(Daelemans and Van de Bosch, 1992), a memory-based learning algorithm that builds a

database of instances during learning.

MBT is a tagger generator (Daelemans et al., 1996). This means that it can be applied to

any annotated training corpus, and yields a working tagger that can accurately annotate

previously unseen text in the same manner as in the training corpus. For this purpose, a

lexicon and a disambiguator for known and unknown words are derived fully automatically

from the tagged example corpus.

The construction of a POS tagger is described in Daelemans et al. (1998). Given an

annotated corpus, three data structures are automatically extracted: a lexicon, a case base

for known words (words occurring in the lexicon), and a case base for unknown words. For

known words, cases comprise of information about a focus word to be tagged, and an

associated category (tag) valid for the focus word in that context. For unknown words, this

tag can only be guessed on the basis of the form or context of the word. During tagging,

each word in the text that is to be tagged is looked up in the lexicon. If the word is found,

its lexical representation is retrieved and the word’s context is determined. The resulting

pattern is disambiguated using extrapolation from the most similar words in the known

words base case. If a word is not found in the lexicon, its lexical representation is computed

on the basis of its form, its context determined and the resulting pattern is disambiguated

using extrapolation from the most similar cases from the unknown words case base. In each

case, the output is based on the best guess of the category for the word in its current

context.

Table 3.1 compares the accuracy of MBT with a number of alternative tagging methods.

These alternatives are Rule-Based (Brill, 1994), Trigram (Steeskamp, 1995) and

56

Maximum-Entropy (Ratnaparkhi, 1996). Based on the same corpus, each of these taggers

uses different features of the text to be tagged. Each of them has a completely different

representation of the language model.

Tagger Accuracy

(%)

Trigram 96.1

Rule Based 96.5

MBT 97.0

Maximum Entropy 97.4

Table 3.1: Accuracy of different taggers (Zavrel and Daelemans, 1999)

The results, shown in Table 3.1, show that MBT scores marginally better generalization

accuracy than two widely used methods, i.e. trigram tagging and rule-based tagging (Zavrel

and Daelemans, 1999). This may be due to the fact that in MBT, all information is stored in

memory, compared to probabilistic and other machine learning approaches adopted by the

other two taggers. The Maximum Entropy tagger performs better, which is due to the fact

that the tagger’s weighting is better able to deal with the dependencies in the rich feature-

set (Zavrel and Daelemans, 1999). Due to its comparable accuracy in tagging and ease of

access, MBT was selected for this research work for the tagging of natural language

requirements’ specifications. An example output from sentence (7) using the MBT tagger is

shown as follows:

Example sentence:

“A payment may settle the invoice in full or by instalments i.e. an invoice may be

associated with many payments.” (7)

Output:

A/DT payment/NN may/MD settle/VB the/DT invoice/NN in/IN full/JJ or/CC

by/IN instalments/NNS i.e./FW an/FW invoice/NNP may/MD be/VB

associated/VBN with/IN many/JJ payments/NNS./.

57

The output shows the generic format of the tagger. The full list of abbreviations of the Penn

Treebank II part of speech tags can be found in Appendix B.

3.3.3 Chunker

Phrase chunking involves the process of detecting the boundaries between phrases (for

example noun phrases) in sentences (Daelemans et al., 1998). Chunking can be regarded as

light parsing. In MBSP, NP chunking and bracket prediction is applied for the chunking

purposes.

In NP chunking, sentences are divided into chunks and labels are assigned to these chunks.

The process of chunking and labelling is carried out from left-to-right in a sentence and a

tag is assigned to each word. The types of chunks determined in this chunker include NP

(noun phrase), VP (verb phrase), ADJP (adjective phrase) and ADVP (adverb phrase). For

a noun chunk, the chunking starts from the beginning of a noun phrase up to the head noun,

thus excluding any complements or adjuncts following the head. Using the previous

example, the chunking process would provide the following output:

[NP A/DT payment/NN NP] [VP may/MD settle/VB VP] [NP the/DT invoice/NN

NP] {PNP [PP in/IN PP] [NP full/JJ NP] PNP} or/CC {PNP [PP by/IN PP] [NP

instalments/NNS NP] PNP} i.e./FW [NP an/FW invoice/NN NP] [VP may/MD

be/VB associated/VBN VP] {PNP [PP with/IN PP] [NP many/JJ payments/NNS

NP] PNP}./.

[NP…NP] brackets denote the noun phrases. An example of an NP chunk from the sample

for the phrase “A payment” is [NP A/DT payment/NN NP]. The structure {PNP…PNP}

represents a preposition and one or more NPs that together form a prepositional chunk.

Prepositional chunks that do not contain any NPs are not marked as PNPs but simply as

[PP...PP] to represent a preposition. Adjectival chunks [ADJP…ADJP] start from the

beginning of an adjectival phrase up to the head adjective, excluding any complements or

adjuncts following the head. Similar rules apply to the adverbial chunk, [ADVP…ADVP].

The verbal chunk [VP…VP] comprises a main verb, its entire modal and auxiliary verbs,

any intervening verbs and any directly following verbal complements of the main verb.

58

For adverbial functions, the classes for the adverbial function labels used are LOC

(locative), TMP (temporal), DIR (directional), PRP (purpose and reason), MNR (manner)

and “-” for none of the former. This task is performed by Subject Object Detector, a tool

which involves grammatical relation assignment. This tool attempts to resolve the

attachment between labelled phrases.

In bracket prediction, the task is to predict the sequence of closing and opening brackets

preceding a word. Closing all pending open brackets at the end of the sentence suffices to

construct an unlabeled parse tree of the sentence out of sentence predictions (Daelemans et

al., 1998). The input of the bracket predictor is a tagged sentence. For example, given a

tagged sentence “The/DT cat/NN liked/VBD it/PRP ./.”, the output is an unlabeled,

bracketed sentence as follows:

 [[[The] [cat]] [[liked][[it]]]].

3.4 Summary

This chapter has discussed the area of natural language processing in database design. The

main emphasis was on the use of natural language specifications in extracting knowledge of

conceptual modelling and potential ambiguities during the processing. This chapter has also

discussed the parser to be used in the implementation stage, Memory-based Shallow Parser

(MBSP). Each of the modules of MBSP and the techniques used were described. Memory-

based Tagger (MBT), the tagger used in MBSP has an accuracy of 97.0%. MBSP has been

selected due to its comparable accuracy and ease of access. The next chapter discusses the

heuristics-based approach to support the transformation of natural language requirements’

specifications to Entity-Relationship (ER) models.

59

Chapter 4

Heuristics in Database Design

This chapter introduces heuristics in general and their application to database design.

Heuristics for database design from existing literature are presented and discussed. A set of

proposed new heuristics that may improve the generation of ER models from natural

language specifications is presented in Section 4.2. Heuristics’ weights and their

application are discussed. Results on the training dataset, the heuristics’ selections and the

justification for these selections are presented and discussed.

4.1 Existing heuristics

Previously published heuristics to aid the construction of ER models from natural language

requirements’ specifications will now be presented. The scope of the language of the

specifications and heuristics used in this research is English. The list in Figure 4.1 shows

the abbreviations used in identifying the categories of each of the heuristics.

Abbreviation Category of heuristic

HE Entity type

HA Attribute type

HR Relationship type

HC Cardinality type

Figure 4.1: Abbreviations used for categories of heuristics

60

4.1.1 Heuristics to determine entity types

The following presents a set of previously published heuristics to determine entity types.

They are largely based on those given in Chen (1983) and DMG (Tjoa and Berger, 1993).

Heuristic HE1: All nouns are converted to entity types (Tjoa and Berger, 1993)

This heuristic assumes that all nouns can be directly mapped to entity types. This includes

all type of nouns such as collective nouns, common nouns, count nouns, mass nouns and

proper nouns. Examples of these nouns are ‘people’, ‘Washington’ and ‘peace’.

Heuristic HE2: A common noun may indicate an entity type (Chen, 1983; Tjoa and Berger,

1993)

A common noun is a type of noun that names any person, place, thing, or idea. An example

to illustrate the use of common nouns is as follows:

“The school has a principal and many teachers”.

Note that “school”, “principal” and “teachers” are common nouns and therefore this

heuristic implies that they correspond to entity types.

Heuristic HE3: A proper noun may indicate an entity (Chen, 1983; Tjoa and Berger, 1993)

A proper noun is a noun that names a specific person, place, thing or idea. An example is

shown below:

“Mr. Arnold Johnson works in the Human Resource department”.

In this example, “Mr. Arnold Johnson” and “Human Resource department” refer to a

specific person and place and therefore HE3 indicates that they indicate entities.

61

Heuristic HE4: A gerund may indicate an entity type which is converted from a

relationship type (Chen, 1983)

A gerund is a type of noun converted from a verb, also known as a verbal noun, usually

ending in –ing (for English). An example is as follows:

“Customers may hire many cars and the hiring is processed by a clerk”.

From the example given, the verb “hire” is converted to a gerund “hiring” as the subject of

the second clause. The verb “hire” can be said to correspond to a relationship type and this

has been converted into the entity type “hiring”. When a relationship type is converted into

an entity type, it usually inherits some form of attributes. In this example, “hiring” may

have attributes like “hiring number”, “clerk id” and “hiring date”.

Heuristic HE5: A clause may indicate a high-level entity type which hides a detailed Entity

Relationship Diagram (ERD) (Chen, 1983)

The clause is the main building block in English which includes a subject and predicate. A

clause or sub clause can be built upon another clause. The following example illustrates this

heuristic:

“The lecturer decides which project to assign to each student”.

In the example, the clause “which project to assign to each student” is sub-clause of the

verb “decides”. In this particular clause, “project” and “student” are entity types while

“assign to” denotes a relationship type. The entire clause could be viewed as an equivalent

to a high-level entity called assignment.

4.1.2 Heuristics to determine attribute types

This section presents a set of previously published heuristics to determine attribute types.

62

Heuristic HA1: A noun which takes the general form of TERM_SUFFIX such as noun_id,

noun_no, noun_type or noun_number may indicate an attribute type (Storey, 1988)

A noun such as “person_id”, “group_no”, “room_type” and “vehicle_number” may indicate

an attribute type. The TERM_SUFFIX representation is often used in database problems’

specifications. An example is shown as follows:

“Each textbook has a book_id and a title”.

The noun “book_id” in the above example may indicate that it is an attribute type.

Heuristic HA2: A noun phrase which follows the phrase “identified by” may indicate the

presence of attribute types (Gomez et al., 1999)

Examples are:

a) “A person, identified by person_id and a surname, can own any number of

vehicles”.

b) “Suppliers are identified by supplier_id”.

Heuristic HA3: A noun phrase succeeding the “has/have” verb phrase may indicate the

presence of attribute types (Storey, 1988)

“Have/has” verb phrases may indicate a relationship between an entity and its attributes.

Four types of interpretations of “has/have” are possible (Storey, 1988):

1. A possesses B

 An example that shows possession is:

“The car hire company has many branches”.

In this type of “has/have” phrase, the noun that occurs after the phrase does not usually

denote an attribute. The “possession” would normally show a relationship between two

63

entities. From the above example, “car hire company” and “branches” indicate that both

are entities. Therefore, the heuristic HA3 may not apply in these cases.

2. B component-of A

An example of this component-of interpretation is:

“The machine has a thermostat”.

In the example, “thermostat” can be interpreted as a component of “machine”. Therefore, it

represents an attribute of “machine”.

3. B instance-of A/ example-of A

An example of instance-of interpretation of have/has could be:

“The books have many volumes ”.

In this example, “volumes” is an instance of “books”. Both can be regarded as entity types

in the example.

4. B associated-with A in some other way

This type of interpretation commonly shows an association between two entity types or an

entity with its attributes. The following shows examples of this association:

“The library has many book suppliers”.

In this relationship, “book suppliers” may be regarded as an entity associated to “library”.

“The book has a publisher”.

64

In this case, “publisher” may become an attribute of “book” or another entity type linked to

it. This depends on whether the existence of “publisher” is highly significant in the business

environment where other attributes of “publisher” like publisher’s address, id and telephone

number are kept. It may also exist simply as an attribute to “book” when only the

publisher’s name, for example, is recorded in the particular environment. The heuristic may

apply in the latter case.

Heuristic HA4: An intransitive verb may indicate an attribute type (Chen, 1983)

If a main verb does not require another element to complete it, the verb is intransitive. Chen

(1983) has proposed that an intransitive verb may indicate an attribute type. The following

shows such an example:

“The train arrives every morning at approximately 8:15 am”.

In this example, the verb “arrives” does not require a direct object to complete the sentence

and thus is referred to as an intransitive verb. A hidden attribute type, “arrival time” may be

deduced from the verb “arrives” to denote the arrival time of the train. This is deduced from

the sentence where the arrival time is mentioned.

Heuristic HA5: An adjective can be an attribute type (Chen, 1983; Tjoa and Berger, 1993)

An adjective is a word or phrase naming an attribute, added to or grammatically related to a

noun to modify it or to describe it. An adjective is said to correspond to an attribute of an

entity. For example:

“The large photo album has extra charges on delivery”.

The adjective “large” may indicate an attribute of type “size” for the entity “photo album”.

Heuristic HA6: Genitive case in the noun phrase may indicate an attributive function (Tjoa

and Berger, 1993)

65

Case genitive indicates possession, or a relationship to another noun similar to that

expressed by “of” in English. As stated under Heuristic HE6, a case genitive may suggest

an attributive function. This can be shown in the following:

“The employee’s name is stored”.

 The noun “name” may suggest an attribute type to the entity type “employee”.

4.1.3 Heuristics to determine relationship types

This section presents previously published heuristics to determine relationship types. These

are as follows:

Heuristic HR1: An adverb can indicate an attribute for relationship (Chen, 1983)

An adverb is a word or phrase that modifies or qualifies another word, expressing a relation

of place, time, circumstance, manner, cause or degree. The following shows an example of

an adverbial phrase:

“The employee visits the site a maximum of twice a week”.

In this example, both “employee” and “site” are nouns and can be considered as entity

types. The verb “visits” corresponds to the relationship type. The adverbial phrase “twice a

week” describes the frequency of “visits”. Therefore, an attribute called “frequency of

visit” can be linked to the relationship “visit”.

Heuristic HR2: A transitive verb can be a candidate for relationship type (Chen, 1983)

A transitive verb is where a main verb requires a direct object to complete the sentence. It

may be a candidate for a relationship type. An example is shown below:

“A borrower may borrow many books”.

66

Note from the above example that “borrower” and “books” are both entity types.

“Borrower” is the subject followed by “books” as the direct object. The verb “borrow” is a

transitive verb and therefore corresponds to a relationship type.

4.1.4 Heuristics to determine cardinality types

Tjoa and Berger (1993) presented only one of the many heuristics they claimed to

determine cardinality types:

Heuristic HC1: A noun or a prepositional phrase whose noun is singular gets a minimal

and maximum cardinality of 1 (Tjoa and Berger, 1993)

Consider this example:

“The single room is meant for only one guest”.

In this example, “room” and “guest” are both singular nouns and these may suggest that the

cardinality is of type one-to-one.

4.2 Proposed new heuristics

Due to the desire to improve the accuracy of results, an additional set of new heuristics is

proposed here. These may be viewed as additional syntactic heuristics which may help to

improve the results in the determination of ER elements from English natural language

requirements’ specifications. Only heuristics based on syntax are considered and proposed.

These heuristics are presented in the following subsections.

4.2.1 Heuristics to determine entity types

The following are a set of proposed heuristics to determine entity types:

Heuristic HE6: If a noun occurs before a genitive, it may indicate an entity type

67

A genitive case indicates that the noun is dependent on the noun that follows it. The

genitive case always describes a property situation (possession) or has an attributive

function. For example:

“The student’s address is recorded”.

In this example “student” may indicate an entity type.

Heuristic HE7: If compound nouns are present, check the last noun. If it is not one of the

words in set S where S={number, no, code, date, type, volume, birth, id, address, name},

most likely it is an entity type. Else it may indicate an attribute type.

This heuristic places emphasis on the last word of a compound noun to determine whether a

word is either an entity or attribute. An example is shown below:

“The registration office also keeps a record of the registration number and registration

date”.

“Registration office”, “registration number” and “registration date” are all compound

nouns. In this example, “registration office” suggests that the noun is an entity type as its

last noun does not belongs to set S. Both “registration number” and “registration date”

suggest that they are attribute types.

Heuristic HE8: If a noun occurs before the verb ‘has’/ ‘have’, it may indicate an entity type

For relationships of the form A have/has B where A and B are both nouns, the occurrence

of A may indicate that it is an entity. This is true in cases where the relationship between A

and B implies B instance-of A or B component-of A. This is illustrated in the following

example:

“Each piece of equipment has an equipment number and a description”.

68

In this example, “equipment” may suggest that it is an entity type due to its occurrence

prior to the “has” verb phrase.

Heuristic HE9: If a noun occurs before the verb ‘identified by’, it may indicate an entity

type

The verb phrase “identified by” is commonly used in database problem specifications to

indicate the instances of an entity type. Therefore, the noun that occurs before the verb

phrase may imply that it is an entity. For example:

“Suppliers are identified by supplier id”.

“Supplier”, in this case, may indicate an entity type.

4.2.2 Heuristic to determine non-entity types

A proposed heuristic to determine non-entity types is presented below:

Heuristic HEX: If a noun belongs to any of the set X where X= {record, database,

company, system, information, organization, detail, interest, number, track} exclude it as a

potential entity type candidate

A noun such as record, database, company, system, information and organization may not

be a suitable candidate for an entity type. For example, company may indicate the business

environment and should not be included as part of the entity types. For example:

a) “An insurance company wishes to create a database to keep track of its operations”.

b) “An organization purchases items from a number of suppliers”.

c) “A database on diets is to be maintained that can store any number of diets”.

d) “A record is kept of customer payments and each customer is allocated a status

depending on their history”.

e) “A hospital wishes to computerize its information about staff, wards, patients and

operations”.

69

4.2.3 Heuristics to determine attribute types

Proposed heuristics to determine attribute types are:

Heuristic HA7: A noun phrase which precedes the verb phrase “is/are stored”, “is/are

recorded” or “is/are kept” or the phrase “is/are of interest” may indicate the presence of

attribute types

All the verb phrases indicated above usually indicate storage of data. This commonly refers

to storage of attributes. The noun phrase “is/are kept” is mainly used in American English.

Examples are as follows:

a) “The time and source of each document are stored”.

The attribute types that can be derived from this sentence are “time” and “source”.

b) “Each patient has a unique number and information such as his or her date of birth,

address and occupation is stored”.

In this sentence, the nouns that may indicate attribute types are “number”, “date of birth”,

“address” and “occupation”.

c) “The hour and length_of_use are recorded”.

In this example, the nouns “hour” and “length_of_use” may indicate attribute types.

d) “The booking number and room number are kept”.

 “Booking number” and “room number” may indicate attribute types in the given example.

70

Heuristic HA8: If a noun is followed directly by another noun and the latter belongs to set

S where S={number, no, code, date, type, volume, birth, id, address, name}, this may

indicate that both words are an attribute. Otherwise, it is most likely an entity (HE7).

In this case, the last word of a compound noun is checked to determine whether the noun

belongs to set S as described above. If it does, there may be a possibility that the compound

noun is an attribute type. An example is as follows:

“Every project has a project number and completion date”.

“Project number” and “completion date” both may indicate attribute types of “project”.

4.2.4 Heuristics to determine relationship types

A set of proposed heuristics to determine relationship types are presented here.

Heuristic HR3: The preposition “for” can indicate a relationship type

A preposition relates nouns, pronouns and phrases to other words in a sentence. The

preposition ‘for’ may indicate a relationship type where the subject and the object are entity

types. This is shown in the following example:

“Rooms are available for hire”.

In this case, both “rooms” and “hire” are entity types related through the preposition “for”.

Heuristic HR4: A verb followed by a preposition such as “on”, “in”, “by” and “to” may

indicate a relationship type

A verb may typically indicate a relationship type. However, this may not be true in all

cases. Consider this example:

“All employees work six days a week”.

71

In this example, the verb “work” may not represent a direct relationship type. On the other

hand, a verb followed by a preposition may indicate a relationship type. For example:

“People work on projects”.

In this example, “work on” represents a relationship type between the entity types “people”

and “projects”. Other examples may include “assigned to” and “managed by”.

Heuristic HR5: A verb that appears before an adjective “many” or “any” may indicate a

relationship

The adjective “many” or “any” may show the cardinality of an entity in connection with

another entity. A verb that appears prior to these adjectives may indicate a relationship

type. This can be shown in the following examples:

“A surgeon may perform many operations”.

In these examples, the verb “perform” that appears prior to the adjective “many” may

indicate a relationship type.

4.2.5 Heuristics to determine cardinality types

The cardinality or degree of a relationship is concerned with the maximum participation of

entity types. Adjectives, cardinal numbers and nouns may determine the cardinality of

relationship types. Proposed heuristics to determine cardinalities are presented below:

Heuristic HC2: The adjective “many” or “any” may suggest a maximum cardinality

A maximum cardinality usually signifies more than one occurrence of an entity type. Thus,

the adjectives “many” or “any” are often used in requirements’ specifications to describe

this. The following examples illustrate the use of “many” to suggest maximum cardinality:

72

a) “A surgeon can perform many operations”.

b) “A department may manage many projects”.

c) “Each diet may be made of any number of servings”.

d) “Each serving is made up of any number of food elements.”

Heuristic HC3: A comparative adjective “more” followed by the preposition “than” and a

cardinal number may indicate the degree of the cardinality between two entities

The phrase “more than” is a synonym for the adjective “many” to indicate a maximum

cardinality. An example is as follows:

“Each patient could have more than one operation”.

However, the phrase may also indicate an occurrence of multivalued attributes within an

entity such as the example below:

“There may be more than one such address for each supplier”.

In these cases, heuristic HC3 may not apply as cardinalities are only drawn between two

entity types and not between an entity type and its attributes.

Heuristic HC4: Cardinal number “one” or the adjective “single” may indicate cardinality

of one

The cardinality of one usually shows that for any single occurrence of an entity type, there

can possibly be at most one occurrence. Therefore, the cardinal number “one” may indicate

this type of cardinality. An example is as follows:

“Each project is managed by a single department.”

Heuristic HC5: The noun “none” or the cardinal number “zero” may indicate the lower

bound of a cardinality

73

The lower bound of a cardinality may indicate that the relationship is optional. The noun

“none” may be used in this type of cardinality. An example is as below:

“A person may work on none of the projects in his department”.

Heuristic HC6: The phrase “one or more” or the adjective “multiple” may indicate a

maximum cardinality.

The phrase “one or more” is another synonym to indicate maximum cardinality of a

relationship type. An example is as shown:

“Each area has one or more representatives”.

4.3 Development of the heuristics

In order to produce a set of functional heuristics, a number of stages, as shown in Figure

4.2, were involved. Early in the research work, a collection of existing heuristics from the

literature were gathered and analysed. The focus of the study at this stage was on

previously published heuristics, based on natural language syntax, to determine ER models

from natural language specifications.

The second stage involved the formation of new heuristics, which it was anticipated would

improve the accuracy of the results of the desired ER models. This involved analysing

natural language requirements’ specifications of database problems to determine the

potential new heuristics.

Once both the existing and new heuristics were compiled, a training dataset consisting of

10 database problems in English were used to test these heuristics. The training dataset can

be found in Appendix C. At this stage, a manual test was conducted to investigate the

practicality of each of the heuristics.

74

Collection of existing

heuristics

Formation of new
heuristics

Training dataset
(manual)

Selection of heuristics

Test dataset

Figure 4.2 Processes involved in the development of heuristics

The next stage involved the selection of the heuristics to be implemented. The selection of

each of the heuristics was based on a number of criteria as presented in section 4.6. The

selected heuristics were then implemented in the transformation tool, ER-Converter. The

test dataset, which consists of 30 database problems, was used in the final evaluation of

ER-Converter. The test dataset can be found in Appendix D.

4.4 Heuristic weights

In this research work, similar concepts to certainty factors as used in MYCIN, as given in

Section 2.3, are adopted to represent uncertainty when dealing with the heuristics. The

difference in comparison to MYCIN though, is that the negative weights do not mean that

the confidence level of the evidence is low. Each of the heuristics is given a positive or

negative weight depending on the level of confidence. Positive weights are assigned to

entity type, relationship type and cardinality type heuristics. Negative weights are assigned

to attribute type heuristics. This is due to the fact that a noun may indicate an entity type or

75

an attribute type. As relationships and cardinalities deal with different parts-of-speech

(POS), problems of multiple evidence occurring between the two categories is impossible.

Relationships are commonly denoted by verbs whereas cardinalities can be identified

through adjectives or cardinal numbers. Therefore, their weights are assigned with positive

values only.

The negative weights are assigned such that if more than one heuristic from either the entity

or attribute type categories are applied to a word, this would reduce the sum of the total

weights. The sum of weights can be outside of –1 and +1 range. Values approaching zero

are treated as “low confidence”. Two or more “weak” pieces of evidence are combined to

give the weight an acceptable level of confidence. When these “low confidence” values fall

within the threshold of –0.2 and 0.4, the user will be prompted to intervene in deciding the

word’s ER category. These threshold values resulted from the observations of the training

dataset, where the occurrences of some multiple contradicting heuristics to a word may

identify the wrong ER elements if their total weight lies within certain thresholds values.

Therefore, the aim of the threshold values is to minimize these errors and instead, request

human intervention in deciding to determine a word’s ER element category. In doing so,

this task also aims to achieve optimal threshold values where the incorrect results and user

interventions can be minimised. Early in the investigation, initial threshold values of –0.4

and 0.4 were used based on intuition. However, as more database problems were processed,

it was observed that, from the occurrence of two multiple contradicting heuristics on a

word, HE7 and HA3, where the total weight is –0.3, the word is always an attribute. This is

due to the fact that the list of suffixes in the set S, as described in heuristic HE7 in section

4.2.1, is not exhaustive and may be extended to suit any application domains in future

work. In order to optimise the results, the negative value of the thresholds, -0.4 has been

changed to –0.2. Table 4.1 shows each heuristic selected for use in the tool, ER-Converter,

with their assigned weights. The method and justification for their selection is explained in

Section 4.6.

The heuristics’ weight values are assigned according to the confidence level that the event

is true. For example, HE1 (one of the heuristics to determine entity types) states that a

common noun may indicate an entity type. It has been given a weight of 0.5.

76

Though the assignment of the weights is based on intuition, these weights were also

compared and reflected against the results obtained from the training set. For each of the

heuristics, the average correctness of the heuristics applied were produced and compared

against the intuition-based values. As the sample of the training set is small with a total of

10 examples, it is difficult to place weights simply by judging the results on this basis. In

addition, the granularity of the weights is not critical at this point. For example, a choice of

weight with the value of either 0.7 or 0.68 is not likely to make much difference to the

predicted result. However, when the weight is placed with a 0.1 difference between each

heuristic (for example 0.8 and 0.9), the total weight would provide a marked indication of

the ER category for a word, depending on the threshold values.

Heuristic Weight Status
HEX 100 New
HE1 0.5 Old
HE7 0.6 New
HE8 0.7 New
HE9 0.7 New
HA1 -0.9 Old
HA2 -0.7 Old
HA3 -0.9 Old
HA7 -0.5 New
HA8 -0.8 New
HR4 0.8 New
HR5 0.8 New
HC2 0.9 New
HC3 0.6 New
HC4 0.5 New
HC5 0.5 New
HC6 0.5 New

Table 4.1: Heuristics’ weights

Most of the values assigned lie between –1 and 1 with the exception of HEX which is

assigned a value of 100. This value acts as a safe border that differentiates between an

entity type and a non-entity type. For example, there may be much evidence occurring for a

word indicating it is an entity type. This is reflected in the total sum of the weights of all

evidence found. As both entity types and non-entity types have positive values, a value of

100 and over indicates that a word is a non-entity type.

77

Consider this example:

“A company undertakes projects for clients. The client’s name and address are stored”.

In the first sentence, the noun “company” is identified as a non-entity through the

application of HEX. It has been assigned a weight value of 100. There is evidence that

suggests “client” is an entity type from the application of heuristic HE1. HE1 states that a

noun may indicate an entity type. However, in the second sentence, “client” may be an

attribute type due to the occurrence of the phrase “are stored” as described in heuristic

HA7. The total weight of the two heuristics is the summation of both weights ((-0.5) +0.5)

which results in 0. This value lies between thresholds –0.2 and 0.4 inclusive which triggers

prompting for user assistance in determining the category of the word “client” (either an

entity type or attribute type).

4.5 Results on training dataset

In order to test the newly developed heuristics, a manual test was completed prior to the

implementation of an automated tool, ER-Converter. This stage is seen as an important

phase as the heuristics’ contributions need to be ascertained before proceeding to the

implementation phase. Ten examples, as given in Appendix C, were selected as the training

dataset. These examples, which are natural language requirements’ specifications, were

gathered mainly from database text books.

Table 4.2 presents the training dataset results. The evaluation measures considered at this

stage are Correct, Incorrect and Ask User. Correct refers to an entity relationship (ER)

element in the solution that matches an element in the ‘answer key’ which were solutions

produced by a human analyst. An ER element is regarded incorrect if there is a

contradicting match with the answer key. An ER element is categorised under Ask_User

when the total weight lies between the threshold of –0.2 and 0.4 and user assistance is

requested in obtaining its ER category.

78

 Example Correct Incorrect

Ask

user % correct

Dept. Proj 25 0 1 96.2

Instr_Course 29 1 0 96.7

Supplier 22 1 0 95.7

Hospital 44 7 2 83.0

Vehicle

Registration 14 3 1 77.8

Articles 29 4 2 82.9

Buildings 25 4 2 80.7

Documents 19 1 0 95.0

Vehicle Driver 17 2 0 89.5

Training Course 34 10 0 77.3

Average 87.5

Table 4.2 Training dataset results

In Table 4.2, both Vehicle Registration and Training Course have a low percentage

correctness. Most of these errors resulted from the use of the conjunction ‘and’ in the

sentences, whereby the nouns occurring after this conjunction are treated as entity types. As

this does not hold true for all cases as the nouns may also imply attribute types, this

contributes most of the errors in both examples. The overall percentage of correctness of

the training dataset is 87.5%. This indicates that the heuristics-based approach is viable.

However, the contribution of the new heuristics needs to be ascertained in order to

determine their utility.

Table 4.3 shows contribution of the new heuristics for each example in the training dataset.

The following formulas (1) and (2) are used to calculate the contribution of the heuristics:

(1)

(2)

Frequency _ correct _ new
Contribution _ new

Frequency _ correct _ new Frequency _ correct _ old
=

+

Frequency _ correct _ old
Contribution _ old

Frequency _ correct _ new Frequency _ correct _ old
=

+

79

The previously published heuristics contribute most in the training dataset results with an

average of 62.3%. However, based on these training dataset results, it can be concluded that

the new heuristics show adequate contribution that merits further steps to be taken in terms

of implementation to confirm this on a larger dataset.

Example

Frequency

correct (new)

Frequency

correct (old)

% contribution

(new)

% contribution

(old)

Dept. Proj 6 19 24.0 76.0

Instr_Course 6 23 20.7 79.3

Supplier 9 13 40.9 59.1

Hospital 17 27 38.6 61.4

Vehicle Registration 7 7 50.0 50.0

Articles 10 19 34.5 65.5

Buildings 8 17 32.0 68.0

Documents 4 15 21.1 78.9

Vehicle Driver 6 11 35.3 64.7

Training Course 27 7 79.4 20.6

Average 37.7 62.3

Table 4.3 Contribution of new and old heuristics

4.6 Justification on heuristics’ selection

Presented with a collection of existing and newly proposed heuristics, a decision needs to

be made on selecting a set of heuristics for the implementation. In the context of this

research, ideally the three defining criteria that can be used for heuristic’s selection

includes:

a) application can be automated

b) frequency of use and percentage of correctness

For the manual investigation using the training dataset, criterion (b) has been chosen to

select the heuristics. An analysis on the frequency of count, percentage of use and

percentage of correctness for each of the heuristics (both existing and new) is carried out

and the result is presented in Table 4.4.

80

Heuristic Weight ER-element Old/

New

Frequency

count of

heuristics

applied

% use %

correct

Selection

(Yes/No)

Difficulty

of

automation

(High/Low)

HEX 100 Non entity New 31 9.9 93.5 � Low

HE1 0.5 Entity Old 135 43.3 82.2 � Low

HE3 0.5 “ Old 0 0.0 - � Low

HE4 0.5 “ Old 0 0.0 - � Low

HE5 0.5 “ Old 0 0.0 - � High

HE6 0.5 “ New 1 0.3 100.0 � Low

HE7 0.6 “ New 18 5.8 77.8 � Low

HA1 -0.9 Attribute Old 32 10.3 93.8 � Low

HA2 -0.7 “ Old 16 5.1 100.0 � Low

HA3 -0.9 “ Old 12 3.8 100.0 � Low

HA4 -0.4 “ Old 0 0.0 - � High

HA5 -0.3 “ Old 0 0.0 - � Low

HA6 -0.3 “ Old 1 0.3 0.0 � Low

HA7 -0.5 “ New 24 7.7 79.2 � Low

HA8 -0.8 “ New 13 4.2 100.0 � Low

HR1 0.5 Relationship Old 0 0.0 - � Low

HR2 0.5 “ Old 0 0.0 - � High

HR3 0.3 “ New 1 0.3 0.0 � Low

HR4 0.8 “ New 19 6.1 89.5 � Low

HC1 0.5 Cardinality Old 0 0.0 - � Low

HC2 0.9 “ New 4 1.3 100.0 � Low

HC3 0.6 “ New 4 1.3 100.0 � Low

HC4 0.5 “ New 2 0.6 50.0 � Low

Total 313 100

Table 4.4: Frequency count of heuristics applied in the training sets

81

Frequency _ of _ heuristics _ applied
Use 100

Total _ frequency _ of _ heuristics _ applied
= ×

The selection of the final heuristics is based on the percentage of use and correctness of

each of the heuristics when applied to the training set. The following formula is used to

calculate each of the heuristics’ use in the training set:

A heuristic was selected if it was applied in more than one case. In addition to the selected

heuristics in Table 4.4, five new heuristics were added to the final list. These are HE8, HE9

HC5, HC6 and HR5. These additional heuristics resulted from the refinement of existing

heuristics and new evidence found prior to the selection of the test dataset. The refinement

of the existing heuristics resulted after the manual test was carried out. For example,

heuristic HE8 states that if a noun occurs before the verb ‘has’/ ‘have’, it may indicate an

entity type. Previously, only nouns that occur after the verb phrase were considered to

denote attribute types, as defined by heuristic HA3.

One of the existing heuristics, HE2, is omitted from the selection. The main reason for the

omission is due to the fact that HE2 is a subset of HE1. Since common nouns occur

regularly in the specifications, the application of both heuristics at the same time would

lead to biases. This is due to the fact that the chances that a noun is an entity are always

higher due to the total weight of both heuristics. Thus, a decision was made to omit HE2

from the selection.

4.7 Summary

This chapter has discussed heuristics in general and their application to database design.

The main focus of this chapter is on the previously published heuristics found in the

literature and the proposal of a set of new heuristics to improve the results from the semi-

automatic generation of ER models based on natural language requirements’ specifications.

A manual test shows 87.5% correctness in determining the ER elements using the

combination of both the new and existing heuristics. The new heuristics contribute 37.7%

towards the correctness of the results. This provides a solid ground for the proposed

82

heuristics to be implemented. A total of 12 previously published and newly proposed

heuristics out of 21 in total were selected for the implementation, as listed in Appendix E.

The next chapter discusses the implementation of the previous and newly proposed

heuristics in an automated tool, ER-Converter.

83

Chapter 5

ER-Converter

In the previous chapter, a heuristics-based methodology was proposed to transform a

natural language requirements’ specification in English into an Entity-Relationship (ER)

model. This chapter discusses how this approach has been implemented. The tool is called

ER-Converter and is implemented in Perl. Section 5.1 discusses how the input text is

syntactically analysed by ER-Converter and how the output of this analysis is used to

derive the elements of the ER model based on the application of heuristics. A worked

example is used to illustrate the application of the heuristics.

5.1. The Entity-Relationship Converter tool

Figure 5.1 shows the architecture of the ER-Converter tool. Natural language requirements’

specifications are to be parsed by the Memory Based Shallow Parser (MBSP) before any

further processing is performed. The parsed and tagged file is then analysed by ER-

Converter to produce the ER elements from the specification.

The size of the ER-Converter program is approximately 1200 lines of code. On average,

ER-Converter takes 1 second to completely process a specification and generate the ER

elements, but this excludes the parsing. The parsing takes approximately 1.5 seconds to

parse a sentence and produce the part of speech tags for each word in the sentence. The size

of the specifications range from 24 to 100 words each. For the testing, a Pentium II

computer system, which runs Windows ME, was used. The hard disk was 20GB with

248MB RAM.

84

Figure 5.1: Architecture of ER-Converter tool

The processing task requires several steps to be carried out in order to achieve the desired

ER model from the natural language input, each of which is listed below:

• Step 1: Part of speech tagging using Memory-Based Shallow Parser (MBSP)

• Step 2: Identification of attributes and entities from tagged text file

• Step 3: Human intervention

• Step 4: Attachment of attributes to their corresponding entity

• Step 5: Attachment of entities to their corresponding relationship

Natural Language
Requirements
Specification

Memory - Based
Shallow Parser

Heuristics - based
ER analysis

User
assistance

Entity types Attribute
types

Relationship
types

Cardinalities

ER - CONVERTER

(MBSP)

85

• Step 6: Attachment of entities to their corresponding cardinality

• Step 7: Output of final result

The following sections detail each of the steps involved. An example scenario called

‘Company’ is used throughout these steps to illustrate the tasks carried out:

The company is organized into departments. Each department has a unique department

name and a unique number. A department may manage many employees but an employee

can only be managed by one department. The employee name and employee id are

recorded. A department may have several locations.

Figure 5.2 shows the completed ER model, a diagrammatic form or the ‘answer key’ for the

given scenario.

Figure 5.2: An Entity-Relationship model of the ‘Company’ scenario

5.1.1 Part of speech tagging using Memory-Based Shallow Parser (MBSP)

The process begins by reading a plain text file containing a requirements’ specification of a

database problem written in English. Examples of such specifications can be found in

Appendix C. In order to obtain the corresponding syntactic category for each word, the

sentences must be parsed. For this purpose, a parser is required to obtain each word’s part-

of-speech (POS) tag. Part of speech tagging means assigning each word in an input

Department manages Employee

name

number

location

1 M

Name Id

86

sentence its proper part of speech such as noun, verb and determiner to reflect the word’s

syntactic category (Brill, 1992). The parser used here is Memory-Based Shallow Parser

(MBSP) (Zavrel and Daelemans, 1999), which includes a Memory-Based Tagger (MBT)

(Daelemans et al., 1996) to produce part-of-speech tags for each word in a sentence. MBT

takes an annotated corpus as input, and produces a lexicon and memory-based POS tags as

output. The POS tags provide a useful abstraction of words whereby words can be

classified according to their POS classes. For example, a noun may indicate a potential

entity or attribute depending on its context. The result obtained from the last sentence from

the ‘Company’ scenario using MBSP is shown in Table 5.1:

Words tagged Result Meaning

 (Penn Treebank POS)

A DT Determiner

department NN Noun, singular mass

may MD Modal

have VB Verb, base form

several JJ Adjective

locations NNS Noun, plural

. . .

Table 5.1: Example using MBSP

5.1.2 Identification of attributes and entities from tagged text file

The parsed and tagged text is then fed into ER-Converter to identify suitable data modelling

elements from the specification. The aim at this stage is to extract the nouns, verbs and

adjectives which are the indicators of the entities, attributes, relationships and cardinalities

of an ER model from the tagged input. Normally, a noun may indicate an entity or an

attribute. A verb may indicate a relationship. A cardinal number or an adjective may

indicate cardinality. The input text is read and processed sentence by sentence by ER-

Converter.

87

The set of heuristics identified in Chapter 4 are applied to further determine which ER

element (entity, attribute, relationship or cardinality) a word belongs to. This is the core

part of text analysis in ER-Converter. Heuristics are applied to any relevant words within

certain word categories that meet the heuristics’ criteria. As there are exceptions and

ambiguities when dealing with the ER constructs, a human instructor may overrule these

heuristics at a later stage.

Part of the algorithm to apply a selection of heuristics to determine entities and attributes is

presented in Figure 5.3. In this context, ‘apply’ refers firstly to the identification of a match,

which meets the heuristic’s condition. When a match is found, the applied heuristic’s name,

weight value, sentence number and the ER element it indicates are stored in a record. The

ordering of the heuristics under the same category (for example, heuristics to determine

entities) is not significant.

Figure 5.3: Extract from the algorithm for heuristics to determine entities and attributes

�
��� ������	
����
��	����������������
������
��
�����������
��� ������	
�����������

����� �
�	������	����������������
���

��������������� ���	����	�
�!��"�#"��

����������	
�	��

�����
�������

������
������$�%����

����
�&'���(�
����&'���(�)�*���#������������	�����
�����������������
���
"����!�����+������"�,-./0����������"�,-120���

����� �
�	������%.�34&'���(��������
���

�������
�����

������������������%.�34&'���(������"�-1��
���
���

��5�� �
�	�4�
�����4����	�
�����
���

�� !��#� �
����� ���� �����	
�� ����� �����	
� �
� ���� ��� �����	
� ��� ������
�� 	
�	��

��
���	������������
������1���"�,-1/0�
��

����������

��������
��������
.6&.�
���

��!��#��
�����,��������	�	
��,���������	�	
��
�������������	�	
����������
��	
�	��

��
���	������������
������1���"�,-1/0�
��

����������

��������
�������
.6&.�
���

��!��#��
����� ���� ��� ��������
����,���� ��� ��������
����������
��	
�	��

�����	������
������
������1���"�,-1/0�
��

����������

��������
��������
.6&.�
���

��!��#��
�������������
����,��������
����������
��	
�	��

�����	������������
������
1���"�,-1/0�
��

����������

��������
��������

��7�� ���

��!��#��
����� �����
� ���,���0����������
�#������

������������"�,-150�
��

�������
.6&.�

��8�� ���

��������
������������� ���#"�

���
�����,����
������#"0������"�,-1�0�
��

������� ����
������.6&.�

��9�� ���

�� ����� #�������
�� ���� ���

���� ��
� .(�6'�.�
���� .(�6'�.�)*��	�����
��
�#�����	�����"���"�
�����������
�����������:�
�������
����+������"�,-.(0�.6&.�

��/�� 1���"�,-.�0�
�������

88

In ER-Converter, the heuristics for determining entities and attributes are applied first

followed by the heuristics for determining relationships and cardinalities. This is performed

in such a way that entities and attributes are already determined once the relationships and

cardinalities are identified to enable the necessary attachments of the corresponding entities

to these ER elements. Figure 5.4 shows an extract from the algorithm to identify

relationships.

Figure 5.4 Extract from algorithm for heuristics to determine relationships

Before an attachment is completed, the roles of the nouns to be attached to the relationships

are checked to ensure that they have been identified as ‘entities’. A similar procedure is

used to determine cardinalities from the parsed and tagged text file. Figure 5.5 shows an

extract from the algorithm to determine cardinalities:

To illustrate the processes used, consider the following sentence from the ‘Company’

scenario:

“A department may have several locations.”

������	
����
��	�������

������	
� ���������
��� ����������
"���,!��#0������

������
� ����������
"���,�������
���0��	
�	����������4#����������
��������4��
���

�������4#������������,��
�
"0�1$������4��
���������,��
�
"0�
� 1

�	
4����
����
���
��#�

�,��
�
�������0�����"�-�7�
�

89

Figure 5.5 Extract from algorithm to determine cardinalities

From this sentence, the noun ‘department’ appears before the ‘have’ phrase. ER-Converter

will deal with this by applying heuristic HE8 (as described in Section 4.2.1) that states that

a noun that occurs before the verb ‘has/have’ may indicate an entity type. The

corresponding information regarding the application of the heuristic is stored and updated if

there is further evidence that suggests ‘department’ is an entity type or otherwise. Figure

5.6 shows the structure of the record where information on each relevant word is stored.

WORD stores the relevant word to which a heuristic is applied. WORD_SENTENCE_NO

stores the position of the sentence where the word is found. This information may also be

needed for attachment purposes, like the attachment of an attribute to its entity.

HEURISTIC_APPLIED keeps an array of heuristics applied to the particular word being

stored. TOTAL_WEIGHT is the total weight of all the heuristics applied to the word.

VALUE assigns the ER element of the word, i.e. whether it is an entity, attribute, a

relationship or a cardinality. All this information is needed for the analysis and the

determination of the ER element value a word indicates.

Weights are assigned to each heuristic to determine the confidence of the ER element a

word is assigned to. Each heuristic carries different weights (as discussed in Section 4.4).

All weights for entity types, relationship types and cardinality types carry positive values.

For attribute types, all of the weights are assigned negative values, i.e. if a situation occurs

������	
����
��	�������

������	
� ���������
��� �������,���"0����,��"0������"�
�����
�	�-���
.6&.�
��� �������,�����

��0������"�
�����
�	�-�5�
.6&.�
��� �������,���0����,������0������"�
�����
�	�-�7�
.6&.�
��� �������,����0����,:���0������"�
�����
�	�-�8�
; ��
�; ��
�
�	����������4#��������������4��
���
� �������4#������������,��
�
"0�1$������4��
���������,��
�
"0�

� 1

�	
�	��������
"�
��#�

�,��
�
���0��

90

$myrec = {
 WORD => $string,
 WORD_SENTENCE_NO => [@word_sentence_no],
 HEURISTIC_APPLIED => [@applied],
 TOTAL_WEIGHT => $weight_value,
 VALUE => $er_element,
};

Figure 5.6: Record structure to store words’ information

where a noun may represent an attribute type and at the same time it may also indicate as an

entity type, the negative weight will reduce the strength of the noun as a strong entity type.

These are the only two categories that may have conflicting evidence as a noun may

represent an entity type or an attribute type. Other heuristics for the relationship types and

cardinality types will not contradict each other as they deal with different POS tags.

Relationship types are mostly based on verbs and therefore their weights are assigned with

positive values.

Each word may have single, multiple or contradicting heuristics applied to it. The

construction of the sentences often influences this decision. An example where multiple

heuristics are applied is as follows:

“Each department has a unique department name and a unique department number.”

The compound noun “department name” consists of two compound nouns. As its second

noun “name” belongs to the set S (as described in Section 4.2.3), “department name” may

indicate an attribute type and therefore HA8 is applied. As it also appears after the verb

‘has’, HA3 is also applied. Therefore, the extracted output from ER-Converter regarding

this sentence is as below:

department/NN name/NN has been applied with HA8, HA3

at sentence 2,2.1

1 The number 2,2 refers to the sentence where each of the heuristic, i.e. HA8 and HA3 are applied. In this
example both heuristics are applied at sentence 2.

91

In this case, the multiple evidence falls under the same category and would therefore

strengthen a word’s certainty factor in being correctly categorized as an attribute. On the

other hand, if there was contradicting evidence occurring for the word, this may suggest

otherwise. This conflicting evidence needs to be resolved. Therefore, each heuristic is

assigned a weight depending on the confidence level. An example shows the output of ER-

Converter on a word from the sample sentence and its corresponding total weight:

department/NN name/NN has been applied with HA8, HA3.

at sentence 2, 2.

It has the total weight of -1.7

The value is Attribute

In the output, details regarding the heuristics applied, the sentence number where they are

applied and the total weight is shown. In the example given, two heuristics, HA8 and HA3

are applied, both at sentence number 2 through the indication ‘at sentence 2, 2’. The

combined weight of all heuristics applied is used to determine the if a word is an attribute

or an entity, with negative values implying an attribute and positive values implying an

entity.

5.1.3 Human intervention

At this stage, a human instructor may have been requested to intervene if a conflict arises in

determining the ER category of a word. In cases where multiple heuristics are applied to a

word that may indicate it being an entity and an attribute and the total weight lies between

the threshold of –0.2 and 0.4 as explained in section 4.4, human intervention is requested.

Once a response is received from the user, the value will be updated to reflect the changes.

User intervention is mostly requested to solve contradicting evidence resulting from entity

types and attribute types.

92

5.1.4 Attachment of attributes to their corresponding entities

The next step requires each attribute type identified to be attached to its parent entity type.

There are two situations in which ER-Converter considers the attachment. This is

elaborated as follows:

a) When the association is clear

The attachment of attributes to their corresponding entities are possible when the

relationship is visibly mentioned in the specification text. For example, consider the

sentence below from the ‘Company’ scenario:

“Each department has a unique department name and a unique number.”

From the example, the verb ‘has’ indicates an association between the entity ‘department’

and attributes ‘department name’ and ‘number’. In order to attach the attributes to their

parent entity, heuristics applied to the words are used to establish these relationships. The

link between the applied heuristics to the words in the same sentence may help to establish

the attachment. Table 5.2 shows the relation between heuristics in the attachment process:

Entity type

heuristic

Attribute type

heuristic

HE8 HA3

HE9 HA2

Table 5.2: Relationship between heuristics for determining attribute attachment

HE8 states that if a noun occurs before the verb ‘has/ have’, it may indicate an entity type.

HA3 states that if a noun occurs after the verb ‘has/have’, it may indicate an attribute type.

These two heuristics are directly related to each other and can be used to attach the

attributes with their corresponding entity. HE9 and HA2 both concern the identification of

93

entity type and attribute type from the verb ‘identified by’. A sample output from the

example given shows the attachment of attributes to the entity ‘department ’:

The entity is department/NN

The attributes are

department/NN number/NN,locations/NNS

b) When no direct relation is mentioned in the text

In some cases, the direct relationship between the attributes and their parent entity is not

explicitly given in the text. Consider this example:

“The employee name and employee id are recorded.”

‘Employee name’ and ‘employee id’ are both attribute types. As there is no indication in

this particular sentence to show that ‘employee’ and these attributes are related, the

attachment between these ER elements may be overlooked due to lack of world knowledge.

However, the entity ‘employee’ and the attribute ‘employee address’, for instance, may

indicate that there is a relationship of entity-attribute between these two items based on the

similarity of their names. Assuming that ‘employee’ is mentioned somewhere else in the

text which indicates that it is an entity type, ER-Converter attempts to attach all the

attributes with the suffix from set S where S ={number, no, code, date, type, volume, birth,

id, address, name} to that entity. The output from this given example is shown as follows:

The entity is employee/NN

The attributes are

employee/NN name/NN,employee/NN id/NN

c) When no relation is stated

In cases where there is no relation mentioned between entities and their attributes explicitly

in the text and the attributes fall outside the set S, both the entities and attributes remain

unattached.

94

5.1.5 Attachment of entities to their corresponding relationships

The relationship types are identified through the application of heuristics HR4 and HR5, as

discussed in Section 4.2.4. Both deal with a verb that is followed either by a preposition or

an adjective to determine the relationship type. Entity types to be attached to the

relationship type are determined prior to the attachment of the relationship to them. Nouns

that occur prior and post to the verb, which have been identified as entity types, are the

candidates for the entities to be attached. Consider the following example from the

‘Company’ scenario:

 “A department may be managed by an employee.”

In the given example, HR4 is applied to the verb and preposition ‘managed by’ indicating it

as a relationship type. The entities attached to this relationship are ‘department’ and

‘employee’ as both nouns occur on the same sentence and were identified previously as

entity types. The output is shown as follows:

From the relationship record:

The relationship is managed/VBN by/IN

1st entity is department/NN

2nd entity is employee/NN

at sentence 3

5.1.6 Attachment of entities to their corresponding cardinality

The cardinality, sometimes referred to as a degree of a relationship, concerns the maximum

number in the participation of entity types. Basically, the cardinality can be represented as

follows:

a) one-to-one (1:1)

b) one-to-many (1:M)

c) many-to-many (M:N)

95

Cardinality types are identified through the use of adjectives like ‘many’ or cardinal

number ‘one’ in the input text. The process of attaching the corresponding entities to its

cardinality is similar to the attachment in relationship types. Nouns that occur prior and

post to the cardinalities, which have been identified as entity types, are the candidates for

the entities to be attached. There is a constraint in the ‘Company’ scenario where a

department may manage many employees but an employee can only be managed by one

department. In this case, ER-Converter will apply the appropriate heuristics, i.e. HC2 for

the adjective “many” to indicate a many-sided cardinality and HC4 for the cardinal number

“one” to show a one-sided cardinality. ER-Converter will represent this as two separate

cardinalities.

From the cardinality record:

The cardinality is many (department/NN, employee/NN)

at sentence 5

The cardinality is one (employee/NN, department/NN)

at sentence 5

The first cardinality represents the many-sided from department to employees whereas the

second cardinality represents the one-sided from employee to department.

5.1.7 Output of final result

ER-Converter produces five types of output (in text format):

• A list of candidate entity types and their corresponding attributes

• A list of relationship types and their corresponding entities

• A list of cardinality types and their corresponding entities

• A list of individual ER elements (entities, attributes, relationships or cardinalities)

with the heuristics applied, the sentence number where these are applied, the total

weight and the ER element assigned to the word.

96

An extract of the overall output from the ‘Company’ scenario is presented in Figure 5.7.

The entity is employee/NN
The attributes are
employee/NN name/NN,employee/NN id/NN,

The entity is department/NN
The attributes are
locations/NNS,department/NN name/NN,department/NN number/NN,

From the relationship record:
The relationship is managed/VBN by/IN
1st entity is employee/NN
2nd entity is department/NN
at sentence 2

From the cardinality record:
The cardinality is many (department/NN,employees/NNS)
at sentence 2
The cardinality is one (employee/NN,department/NN)
at sentence 2

Figure 5.7: Extract of output from ‘Company’ scenario

5.2 Summary

This chapter has presented the implementation of ER-Converter, which transforms natural

language input database specifications text into ER-models using a heuristics-based

methodology. The architecture of ER-Converter was presented and explained. The seven

steps involved in the processing of ER-Converter were described. A sample scenario,

‘Company’ was used throughout the Chapter to illustrate the various steps involved in

translating natural language specifications into ER models. The final output from ER-

Converter is presented in the final section. The aim is to achieve the closest match as

possible to the ER model in the ‘answer key’. The following chapter will discuss a more

detailed quantitative evaluation of ER-Converter’s results.

97

Chapter 6

Experimental results

One of the main objectives of this research is to develop heuristics as a technique to

transform natural language requirements’ specifications to Entity-Relationship (ER)

models. This chapter will present and discuss the results of experiments carried out using

the heuristics discussed in Chapter 4 and the ER-Converter tool discussed in Chapter 5. An

overview of evaluation types and approaches adopted are presented whilst the evaluation

metrics are introduced and the evaluation results are discussed.

6.1 Evaluation types

Evaluation plays an essential role in natural language processing for both system

developers and users. It also plays a crucial role in guiding and focussing research.

Hirschman and Thompson (1995) broadly distinguish three kinds of evaluation, appropriate

to three different goals:

6.1.1 Adequacy evaluation

This type of evaluation determines the fitness of a system for a given task. Basically it

evaluates whether the system does what is required and how satisfactorily the task is carried

out.

6.1.2 Diagnostic evaluation

This refers to the production of a system performance profile with respect to some

classification of the possible inputs or test suites. It usually involves a large amount of data

as this is needed to determine the coverage of the system and fix any faults if found.

98

6.1.3 Performance evaluation

This type of evaluation measures the performance of a system in one or more specific areas.

It is useful in cases where a comparison is made between two different implementations of

a technology or successive generations of the same system. Performance evaluation has

long been used in information retrieval and many of its concepts have now been suitably

adopted to the area of natural language processing. Generally, there are three levels of

specificity that are considered when performance evaluation is carried. The concepts that

must be taken into account are:

• Criterion: what are the main interests of the evaluation? (e.g. precision, error rate

and speed)

• Measure: the relevant property of system performance which attempts to determine

the chosen criterion (for example ratio of hits plus misses, seconds to process and

percentage incorrect)

• Method: how the appropriate value for a given measure and a given system is

determined: some form of concurrent or post-analytic measurement of system

behaviour over some benchmark task.

The most relevant evaluation in this research is performance evaluation. The main interest

is the measurement of correctness the system produced in comparison with the correct

solutions produced manually by human analysts. This will be described in more detail in

the next section.

6.2 Evaluation metrics

The following metrics have been applied in accordance with the performance evaluation’s

level of specificity. Harmain (2000) and Harmain and Gaizauskas (2003) have also adopted

these metrics in their work. In addition to the existing metrics, new ones are defined to suit

the need of the quantitative evaluation of this research.

99

6.2.1 Criterion

The criterion applied is how closely the models produced by the system compare to those

produced by human analysts (system responses versus answer key) (Harmain, 2000). In ER

modelling, there is no single solution to a problem as different human analysts can usually

derive different solutions due to the abstract nature of the problem. Thus, these models

cannot be categorised strictly as correct or incorrect but rather good or bad (Harmain and

Gaizauskas, 2003). In the evaluation of this research, the solutions produced by human

analysts and those provided in database textbooks are considered as good models and

treated as the standard models or answer key.

6.2.2 Measure

The approach in this research uses methods for evaluating Information Extraction systems,

primarily Message Understanding Conferences (MUC) evaluations (Grishman and

Sundheim, 1996), i.e. recall and precision. These are the basic measures used in evaluating

search strategies. In any system, both precision and recall should be as close to 100% as

possible. However, in general, an increase in precision tends to decrease recall and vice

versa.

In the context of this research, the definition of recall and precision below are adopted as

used by Harmain and Gaizauskas (2003) and Grishman and Sundheim (1996) and new

measures are defined. The new measures are undergenerated, ask_user, unattached and

wrongly_attached. In contrast to both precision and recall, all the new measures introduced

below should be as close to 0% as possible. The measures employed are as follows:

Recall

Recall is the percentage of information available that is actually found. In this research

context, it refers to the percentage of the correct information returned by the system. The

correct information is then compared with those produced by human analysts or answer

key. The following formula is used to calculate recall:

100

[1]

The number of the correct ER elements generated by ER-Converter is represented by

Ncorrect . The number of the ER elements as present in the answer key or Nkey is actually the

number of correct ER elements (Ncorrect) plus the number of ER elements that are part of the

answer key but wrongly identified in their ER element’s category (Npart_correct), the number

of missing elements (Nundergenerated) and the number of solutions provided by ER-Converter

through user intervention (Nask). Thus, the formula is refined as follows:

[2]

Similarly, for the following measures, Nkey = Ncorrect + Npart_correct + Nundergenerated + Nask

Overgenerated

Overgenerated measures how much extra information is found in ER-Converter output that

is not found in the answer key. Harmain and Gaizauskas (2003) term this overspecification.

This may arise from the use of synonyms in the requirements’ specifications. The following

formula is used to measure overgenerated:

[3]

where Novergenerated refers to the number of overgenerated items given by ER-Converter

which are not specified in the answer key.

Undergenerated

Undergenerated is a measure to represent missing ER elements that are found in the answer

key but not in the ER-Converter’s output. Nundergenerated represents the number of missing

items. The following formula [4] is used to measure undergenerated:

= correct

key

N
Recall

N

correct

correct part _ correct undergenerated ask

N
Re call

N N N N
=

+ + +

overgenerated

correct part _ correct undergenerated ask

N
Overgenerated

N N N N
=

+ + +

101

[4]

Ask_user

Ask_user measures the degree of user assistance requested of ER-Converter. This user

intervention is requested when an ER-element has a low absolute value in its weight and

falls between two thresholds. Nask is the number of the requests for user assistance and the

formula is as follows:

Unattached

Unattached is a measure of ER elements correctly identified by ER-Converter that are not

attached to their corresponding items. This may refer to attributes that are not attached to

their corresponding entities and also entities that are not attached to their corresponding

relationships or cardinalities. This inaccuracy needs to be taken into account as the error

will be reflected in the output of the system. However, unattached is measured at a second

level of the evaluation. This is due to the fact that the ER elements that are unattached are

in fact correct ER elements (Ncorrect), i.e. they are part of the answer key and correctly

indentified in their corresponding ER element’s category. Nunattach represents the number of

unattached ER elements. The following formula [6] is used to measure unattached:

[6]

Wrongly_attached

Wrongly_attached measures the degree of the correctly identified ER elements that are

wrongly attached to other items. Similar to unattached, wrongly_attached is measured on

the second level of the evaluation. The number of the wrongly attached items is represented

by Nwrongattach. The following formula [7] is used to calculate this measure:

[5]

[7]

undergenerated

correct part _correct undergenerated ask

N
Undergenerated

N N N N
=

+ + +

ask

correct part _ correct undergenerated ask

N
Ask _ user

N N N N
=

+ + +

unattach

correct part _ correct undergenerated ask

N
Unattached

N N N N
=

+ + +

wrongattach

correct part _correct undergenerated ask

N
Wrongly attached

N N N N
=

+ + +

102

Precision

Precision is a measure of percentage of correctness of the information produced. It reflects

the accuracy of the system in obtaining the correct result. The standard precision formula is

as follows:

[8]

In this research, a more detailed formula is used to evaluate the accuracy of the results

produced. Apart from Nincorrect, other additional figures such as Nask and Novergenerated need to

be taken into account. The following formula is thus defined to calculate precision:

[9]

Figure 6.1 shows a Venn diagram to illustrate the concept of evaluation measures used in

the evaluation of this research. Each set and their meaning is explained in Table 6.1. The

letters referred to the coloured regions.

Figure 6.1: Venn Diagram to illustrate evaluation measures

correct

correct incorrect

N
Pr ecision

N N
=

+

correct

correct part _correct ask incorrect overgenerated

N
Pr ecision

N N N N N
=

+ + + +

A

B
C F

E D

103

Set Meaning

A∪B∪C∪E The set of correct elements produced by human

analysts or known as answer key.

A∪C∪D∪E∪F The set of elements retrieved by ER-Converter.

A The set of correct elements retrieved by ER-Converter.

B The set of correct elements not retrieved by ER-

Converter or undergenerated.

C The set of partially correct elements retrieved by ER-

Converter whereby the elements are part of the answer

key but wrongly identified in their ER element

categories.

D The set of incorrect elements retrieved by ER-

Converter.

E The set of elements whereby ER-Converter requests

assistance from the user.

F The set of overgenerated elements retrieved by ER-

Converter.

Table 6.1. Definition of each of the sets in Venn Diagram (Figure 6.1)

6.2.3 Method

A manual method has been employed where the results produced by the system are

compared with the answer key. The ER elements evaluated under this study include

entities, attributes, relationships and cardinalities. Each of the correct answers that matches

the answer key is given one point. For every error or mismatch that occurs, each of these is

also given a point, each depending on its category. These errors can either be classified as

incorrect, overgenerated, undergenerated, ask_ user, unattached and wrongly_attached.

104

The evaluation is split into two levels. The first level evaluates the results using the

measures recall, precision, overgenerated, undergenerated and ask_ user. These measures

are calculated using the formulas defined in Section 6.2.2.

The second level evaluates the attachment errors that occur in the results. The categories

involved under this evaluation are Unattached and Wrongly_attached. For these categories,

each of the ER elements below is given a point where they are either unattached or wrongly

attached:

a) entity

b) attributes attached to corresponding entity

c) relationship

d) entities attached to their corresponding relationship

e) cardinality

f) entities attached to their corresponding cardinality

6.3 Evaluation of results

The evaluation results from applying the ER-Converter to the test dataset are presented

here. The output from ER-Converter is compared against the answer key produced by a

human analyst. The evaluation methodology as defined in Sections 6.1 and 6.2 is applied

and the previously existing and new measures are utilized for evaluation purposes. The test

dataset can be found in Appendix D.

6.3.1 Overall result

Table 6.2 shows the summary of the results for each sample in the test dataset.

105

Dataset Ncorrect Npart_correct Nincorrect Novergenerated Nundergenerated Nask

Airplane 9 0 1 0 2 0
Bank 14 1 2 1 0 1
Boat hire 8 0 2 0 0 0
Bus 7 0 2 0 2 0
Cars 13 0 6 1 0 0
Clientnew 9 0 0 0 0 1
Company 16 1 0 0 0 1
Computernew 11 0 1 1 1 0
Doctor 8 0 1 0 1 0
Dreamhome 11 0 3 0 0 0
Elect_supp 14 0 3 0 0 0
Employee 12 0 0 0 1 0
Fault 16 3 2 1 2 1
Hospitalnew 10 0 3 0 1 0
Invoice 14 0 0 0 2 0
Library 14 0 3 0 1 0
Librarybook 20 0 1 0 2 0
Machine 11 0 0 1 0 0
Musician 18 0 0 0 1 0
Order 18 0 2 2 0 0
Painter 6 0 0 1 1 0
Photograph 10 1 1 0 1 0
Professor 21 0 0 0 1 0
Project 14 3 0 1 0 0
Reliablerentals 6 0 1 0 1 1
Salesrep 9 0 1 0 0 0
Stud_hall 13 0 0 1 1 0
Student 12 1 0 0 0 0
Travel 10 2 1 0 0 1
Univ_d'base 9 0 3 0 0 0

Table 6.2: Results from ER-Converter applied to test dataset

The raw data from Table 6.2 is then mapped to the formulas defined in Section 6.2. The

results are given in Table 6.3.

106

Dataset

Recall

 (%)

Precision

 (%)

Over

Generated

(%)

Under

Generated

(%)

Ask_ user

(%)

Airplane 81.8 90.0 0.0 18.2 0.0
Bank 87.5 73.7 6.3 0.0 6.3
Boat hire 100.0 80.0 0.0 0.0 0.0
Bus 77.8 77.8 0.0 22.2 0.0
Cars 100.0 65.0 7.7 0.0 0.0
Clientnew 90.0 90.0 0.0 0.0 10.0
Company 88.9 88.9 0.0 0.0 5.6
Computernew 91.7 84.6 8.3 8.3 0.0
Doctor 88.9 88.9 0.0 11.1 0.0
Dreamhome 100.0 78.6 0.0 0.0 0.0
Elect_supp 100.0 82.4 0.0 0.0 0.0
Employee 92.3 100.0 0.0 7.7 0.0
Fault 72.7 69.6 4.5 9.1 4.5
Hospitalnew 90.9 76.9 0.0 9.1 0.0
Invoice 87.5 100.0 0.0 12.5 0.0
Library 93.3 82.4 0.0 6.7 0.0
Librarybook 90.9 95.2 4.5 9.1 0.0
Machine 100.0 91.7 9.1 0.0 0.0
Musician 94.7 100.0 0.0 5.3 0.0
Order 100.0 81.8 11.1 0.0 0.0
Painter 85.7 85.7 14.3 14.3 0.0
Photograph 83.3 83.3 0.0 8.3 0.0
Professor 95.5 100.0 0.0 4.5 0.0
Project 82.4 77.8 5.9 0.0 0.0
Reliablerentals 75.0 75.0 0.0 12.5 12.5
Salesrep 100.0 90.0 0.0 0.0 0.0
Stud_hall 92.9 92.9 7.1 7.1 0.0
Student 92.3 92.3 0.0 0.0 0.0
Travel 76.9 71.4 0.0 0.0 7.7
Univ_d'base 100.0 75.0 0.0 0.0 0.0
Average 90.4 84.7 2.5 5.5 1.6

Table 6.3 Evaluation results

107

From the results in Table 6.3, it is observed that ER-Converter achieved a high average

recall of 90.4%. ER-Converter has successfully produced relevant Entity-Relationship (ER)

elements, i.e. elements that matched 100% of the answer key, in 23% of the problems. With

a high degree of recall, the heuristics-based ER-Converter is capable of applying the

corresponding heuristics to the relevant items. An investigation revealed that all of the

missing or undergenerated items are either relationships or cardinalities. The

undergenerated relationships may be due to the fact that verbs are not translated directly as

relationships. However, it may not be appropriate to translate all verbs into relationships, as

this does not hold true for all cases. With respect to the cardinalities, these are mainly due

to synonyms and implicit phrases that imply cardinalities. For example, from the phrase

“each bus is allocated a particular route”, the adjective ‘particular’ may imply a one-sided

cardinality. To overcome this, additional adjectives may be incorporated within the existing

heuristics.

In terms of precision of the result produced, ER-Converter scored an average of 85% on the

test dataset. The results support the hypotheses that a syntax-only heuristics-based approach

to transform a natural language requirements’ specification to an ER model can be utilized

to aid conceptual modelling in the early stages of database systems development.

An investigation on the test dataset that have the highest and lowest results for precision

was undertaken. The dataset Employee, Invoice, Musician and Professor have the highest

percentage of precision, i.e. 100%. This means that the all the ER elements produced by

ER-Converter are correct. However, the second level evaluation reveals that Employee,

Invoice and Professor have unattached elements in the results produced whilst in Invoice,

two of the ER elements are wrongly attached. The unattached ER elements in Employee

are due to the fact that the sentence contains anaphoric references. This problem is explored

further towards the end of this section. The unattached elements in Invoice and Professor

are due to unattached entities to their corresponding relationships. Musician has no

unattached or wrongly attached elements in its output. The 100% precision in Musician is

highly influenced by the frequent use of the have/has verb phrases. For example, the fourth

sentence is structured as follows “Each song has a title and an author”. Four out of five

sentences of the dataset have this structure and they were all correctly identified in terms of

possession (A possess B). The respective heuristic applied in these instances is HA3.

108

The dataset Cars has the lowest precision of 65%. This is partly due to the incorrect

identification of ‘manufacture’ as an entity in a noun phrase. The respective sentence is as

follows: “Each model is made up from many parts and each part may be used in the

manufacture of more than one model”. An analysis of the output produced by ER-

Converter revealed that the error resulted from the interpretation of manufacture as an

entity as it is tagged as a noun by MBSP. Heuristic HE1 has been applied. As no evidence

suggests otherwise throughout the problem, manufacture remains as an entity due to

application of HE1. This sort of error also explains why HE1 contributes most in the

incorrectly applied heuristics in the applications as shown in Table 6.3. In the actual

solution of the problem manufacture is not an ER element. This incorrect entity is then

attached to a relationship and a cardinality, which adds further errors.

An interesting result to note is on the degree of the user assistance, referred to as the

Ask_User measure in the evaluation. A user’s response is sought when ER-Converter is

unsure as to whether an ER element is an attribute or an entity, depending on their weights.

From the evaluation results, it is evident that human intervention in the ER-Converter is

minimal with only 1.6% of Ask_User on average. Despite the low amount of interaction

with the user, the overall results from ER-Converter are good. Although full automation is

seen as impossible due to incomplete presentation of knowledge, ambiguities and

redundancies (Eick and Lockemann, 1985), this research has shown that it is still possible

to provide an almost complete automation with limited user assistance on the solutions

produced. The strength lies in the use of present and newly formed heuristics.

Table 6.4 presents the results of the unattached and wrongly attached ER elements. These

ER elements are correctly identified but either unattached or wrongly attached to their

corresponding items. These attachment problems may result from structural ambiguities of

the sentences in the specification text, lack of world knowledge and some limitations of

ER-Converter. These limitations are elaborated further in Section 6.3.5.

From Table 6.4, the average percentage of unattached elements for the test dataset is 7.9%.

109

Dataset Nunattached Nwronglyattached

 Unattached

(%)

Wrongly_

attached

(%)

Airplane 3 1 27.3 9.1
Bank 0 0 0.0 0.0
Boat hire 0 1 0.0 12.5
Bus 0 0 0.0 0.0
Cars 0 1 0.0 7.7
Clientnew 4 0 40.0 0.0
Company 2 0 11.1 0.0
Computernew 0 0 0.0 0.0
Doctor 0 1 0.0 11.1
Dreamhome 0 2 0.0 18.2
Elect_supp 4 2 28.6 14.3
Employee 6 0 46.2 0.0
Fault 1 3 4.5 13.6
Hospitalnew 0 0 0.0 0.0
Invoice 2 0 12.5 0.0
Library 2 3 13.3 20.0
Librarybook 1 0 4.5 0.0
Machine 0 0 0.0 0.0
Musician 0 0 0.0 0.0
Order 0 1 0.0 5.6
Painter 0 0 0.0 0.0
Photograph 0 0 0.0 0.0
Professor 2 0 9.1 0.0
Project 2 0 11.8 0.0
Reliablerentals 1 0 12.5 0.0
Salesrep 0 6 0.0 66.7
Stud_hall 0 1 0.0 7.1
Student 0 4 0.0 30.8
Travel 2 1 15.4 7.7
Univ_d'base 0 0 0.0 0.0
Average 7.9 7.5

Table 6.4: Unattached and wrongly_attached results

110

Employee has the highest unattached elements with 46.2%. An investigation showed that

the sentence below from Employee contributes a significant proportion of the error:

“His name, address, telephone number, job title, date of joining and salary are to be kept.”

From this sentence, ER-Converter is unable to determine whom ‘his’ is referring to. This

type of ambiguity is referred to as ‘anaphoric reference’. Due to this lack of knowledge and

limitations of the tool, this results in the unattached attributes of the entity ‘employee’.

Semantic interpretation of the sentences may help in resolving the problem of anaphoric

references. A suggestion on how the sentences could be structured to minimize this type of

error is described in Section 6.3.5.

The wrongly attached ER elements have an average of 7.5% in the final results. The dataset

Salesrep generates the most wrongly attached ER elements, 66.7%. The errors resulted

mostly from the wrongly attached nouns that appear in the same sentence as the actual ER

elements to be attached. This is one of the limitations of the ER-Converter in handling the

juxtaposition of the nouns identified as entity types, where the leftmost noun is always

selected to be the parent entity, though this may not be true in all cases. However, the result

can be improved if the sentence wording is re-structured accordingly. In the test dataset,

most of the database problems, which were taken from database textbooks, were not

modified or pre-edited before they were parsed and processed by ER-Converter.

6.3.2 Contribution of individual heuristics

Table 6.5 shows the percentage of correctness of each selected heuristic in the test dataset.

Each heuristic’s individual contribution is also presented. HA1 and HC5 do not contribute

at all due to nil application in the test dataset. The new heuristics contribute 55% of the

total frequency of correctly applied heuristics in the test dataset. In terms of individual

contribution of the new heuristics, HA7 has the highest contribution of 8.3%. HA7 deals

with specific verb phrases, as described in Section 4.2.3, which may indicate attribute

types. As these phrases occur quite frequently in requirements’ specifications, this is the

main factor in the contribution of HA7.

111

Heuristic Status

Frequency

correct

Frequency

incorrect

%

correct

%

contribution

HEX New 34 1 97 6.0

HE1 Old 114 32 78 20.0

HE7 New 26 6 81 4.6

HE8 New 44 3 94 7.7

HE9 New 15 3 83 2.6

HA1 Old 0 0 0 0

HA2 Old 30 1 97 5.3

HA3 Old 113 12 90 19.9

HA7 New 47 5 90 8.3

HA8 New 45 1 98 7.9

HR4 New 33 6 85 5.8

HR5 New 32 9 78 5.6

HC2 New 14 2 88 2.5

HC3 New 3 0 100 0.5

HC4 New 17 3 85 3.0

HC5 New 0 0 0 0

HC6 New 2 1 67 0.4

Totals 569 85 100

Average (new) 55

Table 6.5: Frequency of heuristics applied correctly and incorrectly

In Table 6.5, HA3 and HE1 are the two most frequently applied heuristics in the test

dataset. HA3 deals with ‘have/has’ verb phrases. This verb phrase occurs very frequently in

almost every requirements’ specification to show possession or attributes of entities. Hence,

the high frequency of its application is expected. HE1 deals with nouns. As the number of

nouns far outweighs other parts of speech (POS), HE1 is frequently applied.

6.3.3 Weight applications

Weights are assigned to each of the heuristics to determine their reliability in determining

an ER category. This approach has been realised in the implementation and proves useful in

112

determining an ER element. The following categorization describes how an ER element can

be determined by utilizing the weights applied to it:

a) Single heuristic

The application of single heuristics accounts for 53% of the cases in the test dataset. In

these cases, the weight of each of the individual heuristics decided which category an

element fell into. An example from the dataset Airplane is given as follows:

airplane/NN has been applied with HE8.

at sentence 1.

It has the total weight of 0.7

The value is Entity

b) Multiple concurring heuristics

The example below shows one of the many cases where multiple heuristics are applied in

the test dataset. This accounts for 39% of the cases in the test datasets. When each of the

heuristics belongs to the same category (for example HA2 and HA3 both indicate

attributes), this adds to the total value of the element’s weight. Hence, the more evidence or

heuristics are applied, the stronger or higher the level of confidence in an item.

capacity/NN has been applied with HA2, HA3.

at sentence 3, 3.

It has the total weight of -1.6

The value is Attribute

c) Multiple contradicting heuristics

Another category of multiple heuristics is contradicting heuristics. These heuristics account

for around 8% of the cases in the test datasets. User intervention will be requested when the

weights of these heuristics lie between identified threshold values. There are cases where

two contradicting heuristics may not need user intervention where one of the heuristics has

113

a significantly stronger weight than the other. An example below shows an example of

multiple contradicting heuristics.

vehicle/NN has been applied with HE2, HA7.

at sentence 2, 2.

It has the total weight of 0

The value is Ask User

6.3.4 Rejected heuristics’ results

In chapter 4 (Section 4.5), a manual investigation using a training dataset was carried out to

select the heuristics to be implemented based on certain criteria. This section looks again at

those heuristics that were rejected in the process. The main reason why these heuristics

were rejected was due to nil contribution or poor frequencies of their application in the

training set. However, it remains possible that they could contribute to a different dataset

and hence must be considered at this point.

As shown in Table 6.6, there is evidence that the rejected heuristics are not making any

significant contributions in the test dataset. Two measures were taken into consideration:

i) frequency of use

ii) percentage of correctness of the applied heuristics.

Though HE6 and HA6 shows an encouraging percentage on correctness, their low

application across the 30 samples in the test dataset is not convincing enough to warrant

them in terms of implementation. In addition, the overall aim of the heuristics’ selection is

to find a small set of manageable heuristics to be implemented.

114

Heuristics

Frequency

applied

Frequency

correct

% correct

HE3 0 0 -

HE4 3 1 33.3

HE5 - - -

HE6 3 2 66.7

HA4 2 0 0.0

HA5 24 0 0.0

HA6 3 2 66.7

HR1 10 0 0

HR2 69 26 37.7

HR3 0 0 -

HC1 0 0 -

Table 6.6: Rejected heuristics’ frequencies in test dataset

6.3.5 Problems identified as result of evaluation

Ambiguities that may be present in requirements’ specifications may lead to inaccuracy or

errors in ER-Converter’s output. The different types of ambiguities that may arise have

been discussed in Chapter 3. In this section, sentence constructs are analysed and discussed.

Most of the problems are due to comma splices and coordinating conjunctions like and, but

and or. Pre-processing rules to be adhered to when preparing natural language

requirements’ specifications, which will improve further the accuracy of the output are

presented below.

Attachment problem

In entity-attribute attachment, ER-Converter utilizes some of the applied heuristics in

determining which elements are to be attached. As ER-Converter attaches the attributes of

an entity to its parent entity based on the leftmost identified entity in the sentence, some

115

sentence structures may result in wrongly attached ER attributes to their entity. For

example:

“An employee belongs to one or more libraries, each with a name and location”.

In the example, name and location are attached to employee instead of the actual entity i.e.

library. The sentence may be broken down further to eliminate this problem. In such

circumstances, an ideal solution is to break the sentence into simpler sentences. Pre-editing

may be necessary to reduce the ambiguities and hence improve the results. The sentence

from can be simplified further for clarity as shown below:

“An employee belongs to one or more libraries. Each library has a name and location.”

This gives rise to rule 1 as follows:

Rule 1: Break down the sentence if there are comma splices or a coordinating conjunction

that may result in wrongly attached ER elements

Active/passive voice

Sentences are said to be in active voice if the subject does or "acts upon" the verb in them.

The order of the active sentences can be changed in such a way that the subject is no longer

active, but is, instead, being acted upon by the verb - or passive. As passive voice sentences

sometimes add words and change the normal ‘doer-action-receiver of action’ direction, this

may result in some inaccuracy in the result of the ER-Converter. This is due to the fact that

some words’ POS tags are different when the sentence is in active or passive form. An

example is:

“A patient is treated by many doctors.”

This passive voice sentence can be changed to an active one as follows:

“Many doctors treat a patient.”

116

The active voice sentence is more direct and hence helps ER-Converter in establishing a

relationship between ‘doctors’ and ‘patients’. This rule can be stated as below:

Rule 2: Convert all passive voice sentences to active voice form.

The limitation of the verb ‘has’

The verb ‘has’ is the basis of one of the heuristics to determine attribute types, i.e. HA3 and

it is commonly used in requirements’ specifications mainly to indicate a relationship

between an entity and its attributes. However, in certain circumstances, the use of ‘has’

may mean otherwise. Consider the following example:

“Each department has a set of employees, a set of projects and a set of offices.”

In this example, all the nouns after the verb ‘has’ do not indicate attributes of the entity

‘department’. ‘Employees’, ‘projects’ and ‘offices’ are also entity types that exist in the

business environment. However, from the application of the heuristic HA3, ER-Converter

may suggest that they are all attribute types based on this sentence alone. Therefore, for

such a sentence, this may be better replaced with other synonyms like ‘consists of’,

‘comprises’ or ‘contains’. The sentence can be rewritten such as follows:

“Each department consists of a set of employees, a set of projects and a set of offices.”

A rule on this limitation can be defined as follows:

Rule 3: For every sentence that contains the verb ‘has’ and where the nouns following this

verb may not indicate attribute types, replace the verb with other suitable synonyms.

6.4 Summary

This chapter introduced an evaluation methodology commonly used for Information

Extraction systems which has been adopted in this research. The selected methodology is

117

based on two main evaluation metrics, namely recall and precision. Other metrics,

undergenerated, ask_user, unattached and wrongly_attached were introduced to measure

the accuracy of results produced by ER-Converter.

This chapter also presented results from applying ER-Converter to the test dataset which

comprises 30 database problems in the form of natural language specifications. ER-

Converter has an average of 90% recall, 85% precision, 3% overgenerated, 6%

undergenerated and 2% ask_user for the test dataset. With regard to attachments, ER-

Converter has an average of 7.9% unattached elements and 7.5% wrongly attached

elements. The new heuristics contribute 55% of the total frequency of correctly applied

heuristics in the test dataset. HA7, a heuristic that deals with ‘has/have’ verb phrases, has

the highest percentage of the individual contribution of the new heuristics. The rejected

heuristics are considered in the test dataset and the results show that they are not making

any significant contribution. This chapter also identified some problems as a result of the

evaluation and suggested some rules to be adhered in processing natural language

requirements’ specifications which will improve the accuracy of output generated by ER-

Converter. The results support the hypothesis that the newly formed heuristics do

contribute in generating ER models in an automated environment.

118

Chapter 7

Conclusion and Future Work

This final chapter begins by summarising the thesis. This is followed by comparison of the

results produced by ER-Converter with other related work. Potential avenues of research

for future work are also explored.

Chapter 1 established that conceptual modelling is one of the most important and difficult

stages in the software lifecycle of an information system (Connolly and Begg, 1999). It was

noted that it is common for designers to use ER models as a representation of the

conceptual design. However, due to its abstract nature, ER modelling can be a daunting

task to designers and students alike (Storey and Goldstein, 1988; Batra and Antony, 1994;

Moody, 1996; Marsden and Staniforth, 1996; Antony and Batra, 2002). Much research has

attempted to apply natural language processing in extracting knowledge from requirements’

specifications with the aim to design databases. However, research on the formation and

use of heuristics to aid the construction of logical databases from natural language has been

scarce. This thesis has developed new heuristics to assist the transformation from natural

language requirements’ specifications to ER models.

In order to accomplish the generation of ER models from natural language requirements’

specifications, the following objectives were achieved:

• review of previous work on heuristics in database design

• review systems that apply natural language in database design

• examine NLP tools and techniques and identify the most suitable ones to be utilised

in this research

119

• define new heuristics to assist the transformation from natural language

requirements’ specifications to ER models

• implement the heuristics proposed in a tool called ER-Converter

• test ER-Converter using datasets that comprise domain independent database

problems

• evaluate the approach against human performance and compare it with similar

previous work in the area

The importance of ER Modelling is addressed in Chapter 1. The difficulties associated with

ER modelling were also presented. The results of a survey regarding the Databases’

subject’s difficulties were also discussed. Previous work that applies NLP to Databases are

reviewed. Various techniques like the use of logical forms and rules were used in the work

reviewed to translate natural language requirements’ specifications to conceptual models.

Other literature studied included ITS and ITS for Databases. Currently published ITSs for

Databases were reviewed. So far, none of the ITSs have a domain model that is capable of

solving ER problems. ITS is one of the contexts where this research work could be applied.

Natural language processing for database design was also investigated. Problems that may

be encountered during processing such as the different types of ambiguities were discussed.

The parser used for this work, i.e. Memory-Based Shallow Parser (MBSP) is also reviewed.

Having examined the literature, the syntactic heuristics are then proposed. Previously

published heuristics are also presented and discussed. The combination of both the new and

pre-existing heuristics forms the basis for the semi-automated transformation from natural

language requirements’ specifications to ER models. A manual test prior to the

implementation shows 87.5% correctness in determining the ER elements using the

heuristics. Following this, suitable heuristics, based on their computability, frequency of

use and percentage of correctness were selected for the implementation. The aim of the

selection is to obtain a manageable set of contributing heuristics. The next stage involved

the implementation of the heuristics. The tool, ER-Converter, is implemented using Perl. A

scenario was used to illustrate how the relevant heuristics are applied in the process of

generating the ER model. The output from ER-Converter was then matched against the

‘answer key’, where the aim is to achieve the closest match possible. Following this, the

120

results produced by ER-Converter are evaluated and discussed. New measures, in addition

to the standard measures recall and precision, were introduced in the evaluation. From the

test dataset used, ER-Converter has 90% recall and 85% precision. It can be concluded that

these results support the hypothesis that the newly formed heuristics do contribute in

generating ER models in a semi-automated environment.

7.1 Comparison with Related Work

A variety of different approaches to automate or more appropriately, semi-automate the

process of ER modelling have been proposed in the past. A summary of the analysis of

existing systems that apply natural language processing in database design has been

presented in Chapter 2. This section compares the different approaches and test results of

the systems reviewed with ER-Converter.

The most relevant work in connection with our research is E-R Generator (Gomez et al.,

1999). However, no direct comparison can be carried out for two reasons. Firstly, no

figures were available in terms of recall and precision on E-R Generator’s overall result. In

addition, both systems do not use the same datasets in the final result though efforts were

made to obtain the actual test sets used by Gomez and his colleagues. Gomez’s test dataset

comprised 30 natural language specifications where 75% of these are mainly gathered from

database textbooks and the rest are entered interactively by users. Gomez et al. (1999)

reported that their E-R Generator was able to identify the relevant ER relationships and

entities with 75% correctness in average. However, the result was based on only 25% of the

total test dataset which were entered interactively by users. The program overgenerated or

undergenerated ER entities and relationships in 50% of the cases. No overall results were

revealed on the complete test dataset. With ER-Converter, the precision or the accuracy of

the system in obtaining the correct result is 85%, which indicates better performance.

The goal of this research is identical to E-R Generator, i.e. to generate ER models from

natural language specifications through natural language processing. A major difference

between ER-Converter and E-R Generator is the high utilization of heuristics and their

weights in ER-Converter to derive ER elements from natural language specifications. E-R

121

Generator relies more on semantic interpretation and final knowledge representation of

sentences. Though it is arguable that syntactic linguistic knowledge alone may be

insufficient to derive an ER model, the results from this work have demonstrated that such

an approach is still viable. The strength in the approach of ER-Converter lies in the

utilization of heuristics that are targeted at specific categories of words or phrases that

reflects the ER modelling elements. Some of the tasks in processing the natural language

specifications like the identification of attributes with certain suffixes and their entities can

be solved by simple syntactic rules, as demonstrated by the application of the new and

previously published heuristics. Tjoa and Berger (1993) also question whether the effort of

determining semantic properties is justified compared to the achieved results.

E-R Generator identifies ER elements through the application of specific and generic rules.

Specific rules use semantic cues that are relevant to database design to construct these

elements. Generic rules identify the ER elements on the basis of the logical form and on the

basis of the ER elements under construction. The generic rules can be classified into three

categories: unary, binary or n-ary rules. In general, unary rules result in the identification of

attributes; binary rules may define attributes, entities and relationships and n-ary rules

result in the definition of relationships. In contrast, ER-Converter identifies ER elements on

the basis of their total weight for evidences found in the input text. This is employed using

heuristics rather than rules, in terms of what was discussed in Section 2.3.

In terms of user intervention, E-R Generator requires user help in resolving ambiguities like

intersentential anaphora. Other user involvement includes interacting with E-R Generator

when some background knowledge about a word to describe the database application is

needed, as the system is based on semantic interpretation. In addition, E-R Generator also

requests user help in the attachment of attributes in some cases. In ER-Converter, the

attachment process is done automatically without any user intervention. To summarise, the

difference between E-R Generator and ER-Converter lies mostly on the utilization of rules

in E-R Generator to identify the ER-elements whilst ER-Converter works on the application

of heuristics to achieve the desired ER models.

CM-Builder (Harmain, 2000; Harmain and Gaizauskas, 2003) concentrates on building

object-oriented conceptual models to be represented in the Unified Modelling Language

122

(UML). Though it is not comparable in terms of the end results as CM-Builder produces

object-oriented models and not an ER model, the techniques used in the natural language

processing and evaluation are similar. CM-Builder has two versions. The first version, CM-

Builder 1 performs surface analysis, i.e. to generate a list of candidates, attributes and

relationships using frequency analysis. In this analysis, CM-Builder generates a list of

candidate classes and attributes by calculating their frequency in the text. The resulting

candidate lists need to be filtered manually by the user and in associating candidate

attributes, classes and relations with each other. In ER-Converter, user intervention is only

needed when a heuristic’s weight is low and lies between two threshold values. This also

means that not all of the specifications processed require user intervention.

CM-Builder 2 performs semantic analysis in an object-oriented analysis module (OOA) and

produces three kinds of output: a list of candidate classes, relationships and a conceptual

model. In this version, there is no user interaction but users are likely to be needed to

further refine and extend the model produced. CM-Builder 2 utilizes WordNet, an external

lexical database, to find appropriate attribute names from adjectives. Simple heuristics are

also employed to find attributes. The overall performance of CM-Builder was 73% recall,

66% precision and 62% of overspecification or overgenerated items. Using the same

measures, ER-Converter’s results are 90% recall, 85% precision and 3% of overgenerated

items. Comparing the result with CM-Builder, ER-Converter’s performance is well beyond

these figures, especially with the significantly low results of overgenerated items.

Other relevant work like FORSEN (Meziane, 1994; Meziane and Vadera, 2004) and

Dialogue Tool (RADD) (Buchholz et al., 1995) have not published formal evaluations or

tests, hence no figures are available for direct comparison on their performance. The aim of

FORSEN is similar to ER-Converter and E-R Generator in which all three aim to produce

ER models from natural language specifications, semi-automatically. FORSEN uses a

representation language called logical forms as a technique to transform the natural

language sentences to ER models. The logical forms of sentences are used as a basis for

identifying the entities and relationships. Heuristics are then used to suggest suitable

degrees for the identified relationships. In contrast, ER-Converter relies heavily on

heuristics to determine the ER elements.

123

Dialgoue Tool (RADD) (Buchholz et al., 1995) uses dialogues with users in order to obtain

the structure of an application in database design. The main aim is to produce an EER

model from the dialogues. The transformation from the designer input to EER model is

completed using world knowledge and heuristics. The heuristics used are defined and

formalised using context-free and context-sensitive rules. Another system that elicits

knowledge through dialogues with users is VCS (Storey, 1988). Though the aim is similar

to ER-Converter, VCS employs procedural and production rules, stored in a knowledge

base, in order to produce the ER models. The task relies heavily on the user to provide

information regarding the requirements of the database system. Though VCS has performed

some system testing, this is not a quantitative evaluation but rather a test on the usability of

the system.

DMG (Tjoa and Berger, 1993) also aims to transform natural language specifications into

EER models. However, it is only a proposed tool where the implementation has not been

published. DMG processes the parsing results of the input language using rules and

heuristics, which set up a relationship between linguistic and design knowledge. DMG gave

detailed accounts of the heuristics applied in their system. The heuristics provided some

basis for this thesis, in which the selected heuristics are implemented in ER-Converter.

User intervention is required in DMG when the requirements are incomplete.

ANNAPURNA (Eick and Lockemann, 1985) aims to provide a computerised environment

for semi-automatic database design. Their approach utilizes S-diagrams, a formalism for

the description of the terminological knowledge acquired from the experts. Tseng et al.

(1992) proposed a methodology to map natural language constructs into relational algebra

through ER representation. Their methodology employs a logical form to represent the

natural language queries. In COLOR-X (Burg and van de Riet, 1996), CEM and CSOM

models are used, as discussed in Chapter 2, to facilitate the process of generating

conceptual modelling. In comparison to ANNAPURNA, Tseng et al.’s (1992) approach and

COLOR-X, ER-Converter processes natural language requirements directly from the input

text without any intermediate representation to produce the intended ER models, through

the utilization of heuristics.

124

Table 7.1 summarizes the evaluation results from the other systems and ER-Converter.

Similarly to E-R Generator, a direct comparison to CM-Builder is not possible due to

different datasets and modelling domains. However, the figures presented show some

indication of the performance of ER-Converter. The Other column refers to the percentage

of overgenerated items for each of the systems.

Evaluation results
System

Recall Precision Other

E-R Generator 75% - 50%

CM-Builder 73% 66% 62%

ER-Converter 90% 85% 3%

Table 7.1. Comparison of results with related work

In comparison with other systems, ER-Converter requires minimal user intervention in

generating the ER-models. This is evident from the evaluation results presented in Chapter

6, i.e. with only 1.6% user intervention. Though complete automation is extremely difficult

due to the nature of ER modelling and ambiguities in natural language, limited human

intervention is still possible, as shown in this thesis.

As noted from the discussion, most of the systems have accepted natural language

semantics as being vitally important to the understanding process and have put time and

effort into acquiring such information. Though the importance of semantics is undeniable in

enhancing the results, it is interesting to investigate whether the effort is justified with the

achieved results. ER-Converter concentrates mainly on the syntactic knowledge and the

results are better than previously published systems. On the basis of the comparison, it can

be concluded that ER-Converter has a potential in the automation of ER modelling and can

be applied to other areas such as ITS for Databases.

7.2 Future Work

This section highlights suggestions which may provide grounds for future work.

125

7.2.1 Semantic analysis

In order to resolve a wider range of problems related to ambiguities in requirements’

specifications such as anaphoric references or nominalization, without pre-processing text

or using restricted language, semantic analysis of the sentences may be necessary to handle

such issues. Semantic analysis involves a process whereby meaning representations are

created and assigned to linguistic inputs (Jurafsky and Martin, 2000). The ‘understanding’

of the results of the parsing, lexical information, context and common sense reasoning is

referred to as the semantic interpretation of the text. More expressive power can be added

when semantic interpretation is used.

Semantic roles in objects like agent, instrument, source and location (Fillmore, 1971) may

be helpful in interpreting possible elements of the ER model. Semantic roles or sometimes

known as thematic roles are conceptual notions which provide a shallow semantic language

for characterizing certain arguments of verbs (Jurafsky and Martin, 2000). Table 7.2 shows

some commonly used semantic roles and their definitions.

The following example illustrates the concept of semantic roles:

“The purchaser sends an order form to the supplier.”

 AGENT THEME GOAL

Semantic role Definition

AGENT The volitional causer of an event

EXPERIENCER The experiencer of an event

FORCE The non-volitional causer of the event

THEME The participant most directly affected by an event

RESULT The end product of an event

CONTENT The proposition or content of a prepositional event

INSTRUMENT An instrument used in an event

BENEFICIARY The beneficiary of an event

SOURCE The origin of the object of a transfer event

GOAL The destination of an object of a transfer event

Table 7.2: Semantic roles and their definitions (Jurafsky and Martin, 2000)

126

From the example, the subject, i.e. ‘the purchaser’ acts as an agent as the causer of the

event. The object, ‘order form’, has the semantic role ‘THEME’ as it is directly affected by

the event. ‘Supplier’ represents the GOAL where it is the destination of the transfer event.

These semantic roles may assist in the pragmatic interpretation of the natural language

input to an ER model. For example, the semantic roles agent, goal and beneficiary may

indicate entity types, depending on the context. The utilization of semantic heuristics may

be useful at this stage. DMG (Tjoa and Berger, 1993) and Martinez and Garcia-Serrano

(2001) may provide a basis for such heuristics. For example, in DMG, one of the semantic

heuristics states that if a sentence includes a comparative, then both the nouns belong to the

semantic roles subject and subject complement. The adjective in the sentence represents an

attribute which describes both nouns and may indicate that it may be related to the

supertype of both nouns (in an enhanced-entity relationship modelling). However, Tjoa and

Berger (1993) questioned whether such an effort for determining semantic properties of a

sentence is justified compared to the results achieved.

In order to resolve intersentential anaphora as mentioned in Chapter 6, the maintenance of a

record of all objects or nouns mentioned in the preceding sentences, known as history list,

may be useful (Allen, 1995). Using the same sentences from the Employee database

specification as given in Chapter 6, the following history list in Table 7.3 is produced.

“An employee is identified by an id. His name, address, telephone number, job title, date of

joining and salary are to be kept.”

Constituent Object name Value

NP1 employee Entity

NP2 id Attribute

Table 7.3: History list of the first sentence in Employee

Given the history list, the antecedent of the pronoun ‘his’ in the second sentence can be

determined, i.e. ‘employee’ which occurs as the first constituent of the preceding sentence

and has a value of an ‘entity’. This enables the attachment problem as mentioned in Section

127

6.3 to be resolved. Selectional restrictions, the restrictions as to which constituent should

be selected, imposed during semantic interpretation, may provide the necessary information

to handle problems like anaphoric references (Allen, 1995). With the provision of

automatic semantic role labelling tools, for example by Gildea and Jurafsky (2002), the

incorporation of semantic analysis may further aid the process of transforming natural

language specifications into ER models and improve the accuracy of the results.

7.2.2 WordNet

As discussed in Chapter 2, WordNet is an external lexical database for English that may be

applied in natural language processing systems to incorporate linguistic knowledge. It

organizes lexical knowledge in terms of word senses, whereby all the words are organized

into an inheritance hierarchy. Due to ambiguities in natural language, words may have

several meanings (homonyms and polysemes) and many concepts can be represented by

two or more words (synonyms) (Burg and van de Riet, 1998). With the help of WordNet,

the right meaning of a word in each specific universe of discourse (UoD) can be

determined.

As for conceptual modelling, WordNet can be viewed as a source of reusable knowledge,

which can be used to ensure that the resulting models are correct (Burg and Van de Riet,

1998). A possible extension in this research work is to integrate WordNet with ER-

Converter to improve the results of the system. Among the possible uses of WordNet are:

• to disambiguate the meaning of verb or noun by examining synonyms. For instance, a

user needs to know the meaning of a word in a specific UoD like ‘book’ to ensure the

correct interpretation of the word in the right context. Consider this example:

“The customer can book a place for the fishing trip.”

In this example, the word ‘book’ is categorised as a verb. WordNet has 10 senses for

the word ‘book’ as a noun and four senses as a verb. The output from WordNet for the

verb category of the word ‘book’ is as follows:

128

1. book -- (record a charge in a police register; "The policeman booked her when she

tried to solicit a man")

2. reserve, hold, book -- (arrange for and reserve (something for someone else) in

advance; "reserve me a seat on a flight"; "The agent booked tickets to the show for

the whole family"; "please hold a table at Maxim's")

3. book -- (engage for a performance; "Her agent had booked her for several concerts

in Tokyo")

4. book -- (register in a hotel booker)

The users can then select the intended meaning from the options given. In this case,

option (2) suits best the meaning of ‘book’ in the given example. The disambiguation

process can help to verify consistency and correctness in the resulting ER model

produced by ER-Converter.

• to discover some hidden relationships through WordNet. For instance, the relationship like

‘employee’ is a ‘person’ may be helpful in the conceptual modelling especially in

aggregation and inheritance concepts. The output from the hypernym search category,

which defines concepts to super-ordinates, has 1 sense on the word ‘employee’. This is

shown in Figure 7.1. The information relating to the hierarchical concepts is useful

especially when the relationships between two ER elements are not explicitly mentioned in

the natural language specifications. This additional feature may enhance the accuracy of the

results produced by ER-Converter.

• to identify hidden attributes like the use of adjectives (Harmain, 2000). This can be sought

by using WordNet through the senses provided. For example, given a sentence, “The large

branch has many departments”, the adjective ‘large’ may indicate size of the branch and

hence it may be an attribute of the entity ‘branch’. This feature may help in reducing the

number of undergenerated attributes in ER-Converter.

129

Figure 7.1: Output from WordNet for the hypernym search category of the word

‘Employee’

7.2.3 Heuristics’ weights

The heuristics’ weights might have not proved optimal and the level of granularity is still

debatable. A larger dataset is needed to ascertain the optimal weights. The weights could

also be investigated with different granularities. The optimisation of the weights can be

investigated in future work.

1 sense of employee

Sense 1

employee -- (a worker who is hired to perform a job)

 => worker -- (a person who works at a specific occupation;

 "he is a good worker")

 => person, individual, someone, somebody, mortal, human, soul --

 (a human being; "there was too much for one person to do")

 => organism, being -- (a living thing that has (or can

 develop) the ability to act or function independently)

 => living thing, animate thing -- (a living (or once

 living) entity)

 => object, physical object -- (a tangible and

 visible entity; an entity that can cast a

 shadow; "it was full of rackets, balls and

 other objects")

 => entity -- (that which is perceived or known

 or inferred to have its own distinct

 existence (living or nonliving))

 => causal agent, cause, causal agency -- (any entity that

 causes events to happen)

 => entity -- (that which is perceived or known or

 inferred to have its own distinct existence (living

 or nonliving))

130

7.2.4 Part of a domain model in an ITS

ER-Converter could be incorporated as part of the domain model in an ITS environment.

To date, no ITS for Databases that incorporates a dynamic domain model is capable of

solving database problems. Most existing ITSs store the solutions prior to tutoring. ER-

Converter could be embedded in the domain model and may provide improvement by

allowing students to enter their own examples.

7.3 Summary

In conclusion, this work has achieved favourable results on the performance of ER-

Converter, a heuristics-based tool to generate ER models automatically from natural

language requirements’ specifications. Though ER-Converter only performs syntactic

analysis, based on the combination of previously published and newly formed heuristics to

produce the ER models, the result is comparable to other systems that utilize semantics

knowledge. In addition, the degree of user intervention is low, with 1.6% in the test dataset.

In addition to developing ER-Converter, this work has defined new measures to be

employed in the quantitative evaluation against human performance. The measures can be

used as a benchmark for other similar systems to be evaluated. The evaluation results

support the hypothesis that the newly formed heuristics do contribute in generating ER

models in a semi-automated environment. Suggestions are made for future work to improve

the accuracy of the results produced by ER-Converter. These include semantic analysis, the

use of WordNet and the optimisation of the weights. The resultant software system, ER-

Converter, could be applied to areas such as ITSs for teaching Databases.

