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Chapter 1 

 

Introduction 
 

 

Entity-relationship (ER) modelling (Chen, 1976) focuses on high level conceptual models 

designed to facilitate database design in the development of information systems and 

relational databases. The success of the design of these models is measured by the level of 

accuracy with which they can reflect the real world environment (Dullea et al., 2003). 

Entity-relationship modelling can be a daunting task (Storey and Goldstein, 1988; Batra 

and Antony, 1994; Moody, 1996; Marsden and Staniforth, 1996; Antony and Batra, 2002) 

to both designers and students alike due to its abstract nature. However, the conceptual 

phase, which involves ER modelling, is considered to be one of the most critical tasks to 

the overall success of the system (Carolyn and Begg, 1999). Any errors, mistakes or 

inconsistencies incurred at this stage can be very costly later especially when a system has 

already been implemented. Boehm (1981) reported that the cost difference to correct an 

error in the early phases of software development as opposed to post-implementation phase 

is on the order of 1:100. In addition to the abstract nature of ER modelling, most of the 

input to this task involves natural language such as English, documented as requirements’ 

specifications, which are also inherently ambiguous.  

 

Much research has attempted to apply natural language processing (NLP) to extract 

knowledge from requirements’ specifications with the aim of designing databases. Recent 

advances in this field suggest promising approaches that may assist database designers or 

novices learning database modelling concepts. Although research on NLP techniques in 

database design has been extensive (e.g. Eick and Lockemann, 1985; Tseng et al., 1992; 

Tjoa and Berger, 1993; Meziane, 1994; Buchholz et al., 1995; Burg et al., 1996; Gomez et 

al., 1999; Harmain and Gaizauskas, 2003; Meziane and Vadera, 2004), research on the 

formation and use of heuristics to aid the construction of logical databases from natural 

language has been scarce. In general, human experts draw on their own heuristics to decide 
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whether an element should be represented as an entity or a relationship, for instance, in a 

conceptual model. It is desirable for a database design tool to be capable of imitating the 

way a human expert carries out the design task (Storey, 1993). The main goal of this thesis 

is to introduce new heuristics to assist the automated production of an ER model from a 

natural language specification. To realize the utilities of these heuristics, a tool called ER-

Converter has been implemented. Results generated by ER-Converter are evaluated against 

human performance and also existing systems. This research can be utilized, for instance, 

as part of a domain model in an intelligent tutoring system (ITS) for Databases.   

 

1.1  Overview of Data Modelling 
 

The first step in designing a database application is to understand what information the 

database must store (Ramakrishnan, 1998). This is known as requirements analysis. The 

information gathered in this step is used to develop a high-level description of the data to be 

stored in the database, along with the data constraints. This step is referred to as conceptual 

design, and it may be completed out using the ER model.  

 

An ER model is built around the basic concepts of entities, attributes, relationships and 

cardinality. An entity is an object that exists in the real world and is distinguishable from 

other objects. Examples of entities include a “student”, an “employee” and a “book”. These 

are typically derived from nouns. A collection of similar entities is called an entity set. An 

entity is described using a set of attributes. Attributes may be derived from adjectives and 

adverbs.  The attributes of an entity reflect the level of detail at which we wish to represent 

information about entities. For example, the student entity set may have “id_number”, 

“name”, “address”, “course” and “year” as its attributes. A relationship is an association 

among two or more entities. Relationship can be derived typically from verbs in the 

requirements’ specifications. For example, we may have a relationship from this sentence: 

“A student may be enrolled in many courses”. The verb phrase “enrolled in” implies a 

relationship between the entity student and course. Cardinality represents the key constraint 

in a relationship. In the previous example, the cardinality is said to be many-to-many, to 

indicate that a student can take many courses and a course can be taken by many students. 

In an ER diagram, an entity is normally represented by a rectangle. An ellipse usually 
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represents an attribute and a diamond shape shows a relationship. Cardinality is represented 

by ‘1’ for one-sided, ‘M’ and ‘N’ for many-sided. For example, in a one to one relationship, 

the cardinality may be presented as 1:1 while in a many to many relationship, it may be 

represented as M:N. Figure 1.1 shows an example of an ER diagram. The double line 

represents the participation of the relationship, i.e. whether it is optional or mandatory. 

 

Figure 1.1. Example of an ER diagram using the Chen notation (Chen, 1976) 

 

Conceptual database design produces a set of relation schemas and integrity constraints that 

can be regarded as a good starting point for the final database design. However, the relation 

schemas may suffer from inconsistencies and redundancies. Thus, given a relation schema, 

a decision has to be made as to whether it is a good design or if further decomposition is 

needed. The decomposition process into several classes of relational schemas that obey 

some set of rules is referred to as normalization. 

 

1.2 Difficulty in ER Modelling 
 

The difficulties in dealing with conceptual and logical design of databases have been well 

documented in past research studies (Storey and Goldstein, 1988; Batra and Antony, 1994; 

Moody, 1996; Marsden and Staniforth, 1996; Antony and Batra, 2002). Some educators 

also expressed their concern on whether they are teaching database design properly to 

students (Carpenter, 1992; Kleen, 1993). As most information systems need a reliable 

database, the correctness of database design is significant in the quality of these systems. 
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However, due to its complexity, database design can be error-prone, especially when 

handled by novice designers (Batra and Antony, 1994).  

 

Batra and Antony (1994) have studied the processes employed by novice designers engaged 

in database design to gain an understanding of error causing factors. These factors are 

important for system developers and researchers in building tools and techniques that could 

prevent database design errors and thereby enhance the quality of information systems. 

Their study, which focussed on conceptual data modelling, showed that there are three 

factors that account for errors in database design: 

 

1) Complexity of the task 

Past experiments (Batra et al., 1990) suggested that novices face much more difficulty in 

modelling relationships rather than entities. One of the reasons stems from the fact that 

given a set of entities, there are potentially a very large number of possible relationships. 

 

2) Use of heuristics that lead to biases 

Heuristics are simple procedures which are often guided by common sense, meant to 

provide good but not optimal solutions to difficult problems, easily and quickly (Zanakis 

and Evans, 1981). In general, heuristics are often useful, but sometimes they may lead to 

severe and systematic errors called biases. An example of a useful heuristic is a 

requirement that specifies that the degree of a relationship should be a minimum (binary). 

Another useful heuristic is that if it has been determined that two entities have a binary 

relationship, they will not be involved in another higher degree relationship. Although these 

are valid most of the time, the designer should be careful to ensure that the heuristics do not 

lead to a bias in modelling the relationships. 

     

3) Inexperience and incomplete knowledge of the novice  

Given the restricted length of training, it is not surprising that a novice has limited 

knowledge and skills. Experts often draw from past experiences, but whether their 

experience can be applied to novices still remains a question. The important issue is how 

can the novices be trained effectively and efficiently?  
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Moody (1996) suggested four reasons why ER models are difficult to understand: 

 

1. ER models “look” technical 

To the average user, the meaning of an ER model is not obvious. In addition, they do not 

look very different from the other technical diagrams used in the system development 

process like network communication diagrams or system architecture diagrams – they 

consist of similar graphical representations such as geometrical shapes connected with 

lines.    

  

2. The ER model does not handle complexity well 

ER models are not able to cope with the large size and complexity of data models 

encountered in real world situations. When the number of entities becomes very large, the 

ER model becomes difficult to understand and manage.     

 

3. Users find ER models abstract and difficult to relate to 

Classification and generalization in ER models are two mechanisms that are used to derive 

entities. Classification is an abstraction used for grouping real world instances into classes 

or concepts. Entities (e.g. student, book) represent classes of things rather than instances. 

However, users often find abstract representations of requirements difficult to relate to and 

need concrete examples to understand what they mean. 

 

Generalization is a mechanism to construct more abstract concepts based on similar 

properties (attributes or relationships) of more specific entities (Elmasri and Navathe, 

2004). This is represented through the use of subtypes and supertypes. In Figure 1.2 

Postgraduate and Undergraduate are subtypes of Student. Student is the supertype of 

Postgraduate and Undergraduate. The symbol ‘o’ means ‘overlapping’ which indicates that 

there may be cases where a postgraduate can also be an undergraduate, possibly in a 

different course. The symbol ‘�’ means that a subtype is part of a supertype. For example, 

Postgraduate is part of Student. However users often find that highly generalised 

representations of data are difficult to understand. The level of abstraction of these models 

is a major barrier to their acceptance and understanding in practice.   
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4. ER models are focused on design rather than analysis 

 

ER models have been used to define the structural aspects of data, for the purpose of 

design. The current modelling representations have been focused on effective design rather 

 

 

Figure 1.2. Representation of subtypes and supertypes 

 

than effective analysis. This raises a question: for whose benefit are data models anyway?  

For the technicians or users? The reason for having ER models is to represent information 

requirements in a way that could be understood by users. It was not meant to describe the 

way in which data would be stored in the computer (Elmasri and Navathe, 2004). 

 
The discussion above gives some evidence of the difficulty designers and students face in 

database design, specifically in Data Modelling. To further support this evidence, a survey 

has been carried out as part of this research to determine the perceived difficulty of the 

subject area. The motivation was to find out whether students still find Data Modelling a 

challenging subject.  

 

1.2.1 Analysis on the difficulty of Database Modelling subject  
 

A survey was carried out to determine how difficult students found the subject of 

Databases, particularly in the areas of Data Modelling. A questionnaire was used and is 

given in Appendix A.  
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The survey was conducted in the School of Computer Science at the Queen’s University of 

Belfast. Thirty nine students participated in this study. They were undertaking the Masters 

course in Computer Science and Applications, a computing course for graduates with 

primary degrees in disciplines other than Computer Science. The questionnaires were 

distributed during the Databases lecture. At that time, the lectures in ER modelling and 

Normalization had been presented and the students had completed practical exercises on 

those subjects.  

 

The majority of the participants (71.8%) had more than 3 weeks of experience in using 

databases. 81.6% of the participants had used INGRES, a database management system 

(DBMS). Most of the participants (92.3%) had used SQL (Structured Query Language),  

one of the query languages in databases.  

 

When asked about the importance of the Database Systems course, 56.4% agreed that it is 

important while 25.6% of them thought that is a very important subject. Thus, it can be 

concluded that the majority of these students believe that the Database course is one of the 

important subjects in computing. Carpenter (1992) also states that formal database courses 

are needed for proper training of database designers to ensure a proper database design as 

this stage is a very critical stage in the development of an information system.  

 

The participants in the survey were asked to rate the difficulty of the selected topics from 

Databases on a scale of very easy (1) to very difficult (4). Table 1.1 shows the results 

obtained: 

Subject Very easy 

(%) 

Easy 

(%) 

Difficult 

(%) 

Very difficult 

(%) 

Introduction to Databases 7.7 76.9 7.7 - 

Entity-Relationship Modelling 2.6 48.7 48.7 - 

Normalization 2.6 12.8 71.8 12.8 

The Relational Model 2.6 25.6 71.8 - 

SQL 5.0 48.7 41.0 2.6 

 

Table 1.1: Difficulty of  Database subject areas 



 

 

8 

 

With regards to the ER Modelling, nearly half of the students find the topic difficult. The 

participants were also asked a few questions on general understanding of both subjects. 

When asked whether they understand the basic concepts about entities, relationships and 

attributes, 74% of them find the concepts clear to them. However, when asked about their 

ability to construct an ER model for a given problem, only 31% reported that they are able 

to do it most of the time, another 59% could do it sometimes while 10% reported that they 

are seldom capable of constructing it. 74% of them scan the sentences for nouns, verbs and 

other part of speech tags when they are determining the entities and relationships in an ER 

model. This is an important source of information as it provides some knowledge on how a 

similar task could be performed by an ER-Converter tool. This analysis also confirms that 

currently, students still perceive Databases to be a difficult subject which has been reported 

in the literature. 

 

1.3 Objectives of research 
 

The main aim of this research is to develop heuristics, algorithms and software to transform 

natural language input text of database problems into ER models. The primary objectives 

are summarized as below: 

 

• Develop new heuristics to transform natural language specifications of database 

problems into Entity-Relationship (ER) models 

• Design and implement, ER-Converter, a tool to assist the transformation 

• Evaluate the approach against human performance and compare to other work in the 

field 

 

The overall aim of this thesis is not to produce a fully automatic tool that will replace 

human analysts but rather to assist them by performing semi-automatic analysis of the 

requirements’ specifications and produce an ER model for the analysts to review and refine.   

In the educational context, ER-Converter could serve as part of a dynamic domain model of 

an ITS.  
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1.4  Thesis Structure 
 

Chapter 2 discusses previous work that applies natural language processing to database 

modelling, Intelligent Tutoring System (ITS) and ITS in Databases. The approaches and 

techniques used in processing natural language requirements’ specifications for conceptual 

modelling are reviewed. As ITS is an area where this research can be applied, related ITSs 

in Databases are also reviewed.  

 

Following on from this, issues relating to Natural Language Processing (NLP) in database 

design are discussed in Chapter 3. Problems encountered whilst processing natural 

language like the presence of ambiguities and solutions to them are presented. This chapter 

also elaborates on the parser used in this research, namely Memory Based Shallow Parser 

(MBSP) (Zavrel and Daelemans, 2003). This parser is used to tag words in natural language 

specifications to determine appropriate parts of speech (POS). The tagged text will act as an 

input to the ER-Converter tool.  

 

The next step involves the development of a major focus in the thesis, i.e. to propose new 

heuristics to be utilized in the transformation from natural language to ER models. This is 

presented in Chapter 4. Existing heuristics in the literature are also discussed. Weights 

associated with each heuristic are also discussed. Before the proposed and existing 

heuristics were selected for implementation, a manual test was carried out to determine the 

contribution of the heuristics. The results on the training dataset are presented. The 

selection of the final set of heuristics is justified, based on a number of criteria.  

 

Once the final set of heuristics is selected, the next step is to implement these heuristics to 

assess their utility in a practical environment in ER-Converter, a tool to transform natural 

language requirements’ specifications to an ER model which is discussed in Chapter 5. 

Heuristics that have been selected as outlined in Chapter 4 are implemented in ER-

Converter. Each of the steps involved in the production of an ER model are elaborated 

through sample sentences.    
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Having implemented ER-Converter, the results produced by the system are discussed in 

Chapter 6. The basic measures used in this research are recall and precision. New measures 

like ask_ user are also introduced in this chapter. ER-Converter produces favourable results 

though it requires limited human intervention.   

 

Chapter 7 summarizes the work carried out in this research with comparison to other related 

work. The performance of ER-Converter is compared against other systems where figures 

are available. However, due to the different datasets used in the evaluation, direct 

comparison cannot be carried out.  Future research directions are also presented in this 

chapter. Among the extensions suggested are the integration of WordNet and semantic 

interpretation.    
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Chapter 2 

 

Literature review  
 

This chapter surveys work on a range of systems that apply natural language processing in 

databases and Intelligent Tutoring Systems (ITS) for Databases. The ITS literature is 

reviewed since it provides one of the contexts where this research work could be applied.  

 

2.1 Application of natural language processing (NLP) to database design 
 

Natural languages are common tools for people to describe and communicate their 

understanding of the world. Because both ER diagrams (ERD) and natural languages 

satisfy similar human needs, their correspondence has been studied (Chen, 1983). Chen 

(1983) proposed some basic rules for translation between English sentences and ER models 

(ERM). A summary of the basic translation rules is shown in Table 2.1. These translation 

rules can be used in the conversion of an English language description of database 

requirements into ER models. Though this mapping can be performed by a human, there 

are certain limitations in machines which prevent them from carrying out this task. One of 

the reasons for this stems from the limitations of current technologies in NLP in matching 

human knowledge, for example in identifying a specific category for a word. For example, 

the words “Pat Clooney” can be easily identified as a possible candidate for an entity but is 

not easily identifiable by a machine. Thus, this mapping can only serve as a basis for a 

manual or semi-automatic process of transforming an English specification into an ER 

model (Chen, 1998).   

 

Much work has tried to apply natural language to extract knowledge from requirements’ 

specifications or dialogue sessions with designers, with the aim to design databases (Eick 

and Lockemann, 1985; Storey, 1988; Tseng et al., 1992; Tjoa and Berger, 1993; Meziane, 

1994; Buchholz et al., 1995; Burg et al., 1996; Gomez et al., 1999; Harmain and 

Gaizauskas, 2003; Meziane and Vadera, 2004). The relevant tools and methodologies, 
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which specifically analyse natural language requirements as input for conceptual design, 

are now discussed in the following sub-sections. 

 

English Grammar Entity Relationship Model (ERM) Structure 

Common noun Entity type (a possible candidate) 

Proper noun Entity (candidate) 

Transitive verb Relationship type (candidate)  

Intransitive verb Attribute type (candidate) 

Adjective Attribute for entity 

Adverb Attribute for relationship 

Gerund (a noun converted from a verb) An entity type converted from a relationship 

type 

Clause A high-level entity type which hides a detailed 

ERM 

 

Table 2.1 Correspondence between English structure and ERM constructs (Chen, 1998) 

 

2.1.1 ANNAPURNA 
 

Eick and Lockemann (1985) proposed concepts, methods and tools to support the 

extraction, integration, transformation and evaluation of terminological knowledge 

(obtained from natural language statements) that is based on database design techniques in 

a project called ANNAPURNA. This project aims to provide a computerized environment 

for semi-automatic database design covering all phases from knowledge acquisition 

obtained from the experts up to generating an optimal database schema for a given database 

management system. ANNAPURNA concentrates on the phases concerned with acquiring 

the terminological rules. The term ‘terminological rules’ here refers to the terminology used 

to describe the universe of discourse (UoD). The need for acquiring the terminological 

knowledge was driven by the fact that different experts and the knowledge designer may 

use different terminologies and will represent rules concerning the same objects in a 

different way.  
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The first step in acquisition of the terminological knowledge involves extracting the 

knowledge from queries and rules that have the form of natural language expressions. The 

queries and rules are usually obtained from a user group who are assumed to share the same 

terminological knowledge.  The knowledge obtained would then be put into the form of S-

diagrams. Figure 2.1 shows an example of an S-diagram. An S-diagram is a graphical data 

model which can be used to specify classes (for example ‘room’, ‘door’ and 

‘physical_object’), subclass connections between classes (for example ‘rooms’ and ‘doors’ 

are ‘physical_objects’) and attributes, which describe the properties of members of the 

classes (for example ‘from_room’, ‘to_room’ and ‘by_door’). An attribute has a domain 

class and a range class. For example, the attribute ‘by_door’ has the domain_class 

‘connect’ and the range_class ‘door’. Cardinalities can be associated with the attributes and 

may be restricted using the labels (represented by arrows) multivalued, unique, optional 

and onto. A double arrow, as shown in Figure 2.1, indicates a label ‘onto’. An arrow with 

the letter ‘S’ shows a subclass connection.  A tool, AISCHYLOS, which is part of the 

ANNAPURNA project, has been developed to generate S-diagrams from the grammatical 

structure of a natural language sentence using heuristic rules.  

 

Figure 2.1. An example of an S-diagram (Eick and Lockemann, 1985) 

 

Once the formalization is completed using S-diagrams, complete collective S-diagrams 

have to be derived for each user group from the individual S-diagrams (integration phase). 

To improve the process of knowledge integration, quality and similarity measures are used. 
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A quality measure will translate the S-diagrams to be integrated into a canonical form (by 

applying S-diagram transformations). This process guarantees that entities with similar 

structural properties will be described in the same way and entities that are structurally 

different will be represented in a different way. Similarity measures are used to detect 

synonyms, homonyms and subclasses. The limitation of this work is that the use of S-

diagrams performs best when the complexity is small.  

2.1.2 VCS (View Creation System) 

VCS (View Creation System) (Storey, 1988) elicits the ER entities, attributes and 

relationships from the user by posing questions formulated in English. VCS formalizes, as a 

set of rules, a methodology for creating user views. These rules are encoded to form the 

knowledge base of VCS. VCS engages the user and poses queries in a dialogue session 

designed to elicit information requirements while simultaneously trying to detect and 

resolve inconsistencies and ambiguities. This task requires a considerable amount of user 

participation while the elicitation process is taking place.  

The system selects primary keys from candidate keys using heuristics. All the entities and 

relationships are transformed into an initial set of relations. Each entity is then converted 

into a separate relation whilst each relationship is represented by a foreign key or separate 

relation (depending upon the cardinalities) (Storey, 1993). Once the relations are 

established, VCS, with the aid of the user, eliminates partial and transitive dependencies. 

The final output is a set of relations in the 4th normal form.   

VCS’s knowledge is represented as a set of procedural and production rules. It employs 

around five hundred rules, stored in the knowledge base. These rules are obtained from 

database design experts in consultation sessions in which they were asked to design a 

database for a hypothetical application. An example of a rule based on database theory is 

shown as follows: 

IF: a relationship is of the form A is_a B 

THEN:  add the key of entity B to the set of candidate keys of entity A  
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VCS has been tested on eight real-world problems with users of varying skills in designing 

databases. The result shows that VCS is useful for users with some prior knowledge of 

database theory, but it did not perform well for those that did not. Another limitation is that 

VCS has a very limited capability in learning about which attributes are commonly used as 

keys in a particular domain. In terms of differing views from different experts in their own 

areas in an organization, VCS could perhaps consider resolving this through view 

integration in order to avoid bias. 

2.1.3 Tseng et al. (1992) 

Tseng et al. (1992) studied the inter-relationship between natural language constructs and 

the Entity-Relationship (ER) conceptual schema. A methodology is presented whereby it 

maps natural language constructs (in terms of queries) into relational algebra through an ER 

representation. The language processing follows three stages. First, the sentence is parsed 

according to a predefined grammar. Semantic roles are then built. These semantic roles are 

then mapped to an ER schema. The mapping is done by referring the corresponding verbs 

and nouns to the data dictionary. Each of the semantic roles is mapped into an entity 

relation and its headnoun and modifiers are mapped into the corresponding attributes of that 

entity based relation. A headnoun is a main noun in a phrase; for example, “The Irish 

supplier” has a headnoun ‘supplier’ and ‘Irish’ is the modifier of the headnoun. Verbs that 

relate to these semantic roles are then mapped into relationship relations that associate the 

entity relations. A logical form is developed by extending the ER representations to capture 

natural language semantics. This logical form can also be represented in a form similar to 

ERM and can be transformed into relational algebra. Figure 2.2 illustrates how a logical 

form can be represented as an ER schema from a natural language query, “List the suppliers 

who supply red parts”. 

The predicate “sname= ?” is defined as a pseudo predicate. It represents the target attribute 

which is to be output to the user. The natural language conjunctives ‘and’ and ‘or’ were 

mathematically analysed in Tseng’s study. The logical form can finally be transformed into 

relational algebra for query execution. 
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Figure 2.2. An example of the logical form (Tseng et al., 1992) 

The methodology presented in this work argues that other intermediate forms suffer from 

bias to natural language constructs and much effort is needed to transform them into 

database query languages like SQL. Using the logical form in this methodology, the 

mapping using a representation similar to the ERD can efficiently transform a logical form 

to relational algebra. However, the data dictionary has to be changed every time a new 

database is used. 

 

2.1.4 DMG (Data Model Generator) 

Tjoa and Berger (1993) proposed a tool called Data Model Generator (DMG) which 

transforms requirements’ specifications in natural language into concepts of an EER model. 

The transformation is based on the assumption that syntactic structures of the language can 

be translated into data modelling concepts. German was chosen as the input language.  

 

DMG is a rule based design tool which maintains rules and heuristics in several knowledge 

bases. A parsing algorithm, which accesses information from a grammar and a lexicon, is 

designed to meet the requirements of the tool. During the parsing phase, the sentence is 

parsed by retrieving necessary information from the grammar, represented by syntactic 

rules and the lexicon. Word categories, word phrases and semantic roles are constituents 

which describe the sentence at different levels of detail. The syntactic structure of the 

sentence is represented graphically as a parse tree or by the flat structure of the linguistic 

concepts in the Linguistic Base. The parsing results are processed by rules and heuristics 

which set up a relationship between linguistic and design knowledge. DMG has to interact 

with the user if the word does not exist yet in the lexicon or the input of the mapping rules 

is ambiguous. In the sentence transformation phase, the parser triggers rules to determine 

 
Suppliers Shipments Parts 

Subject Object 

headnoun modifier 

sname= ? Colour=Red 



 

 

17 

 

linguistic concepts or relationships, which become entries in the Linguistic Base. The 

linguistic structures are then transformed by heuristics and rules into EER concepts.  A 

selection of syntax and semantic-based heuristics to determine entity types, attributes, 

generalization hierarchies, relationships and cardinalities is presented in Tjoa and Berger 

(1993). An example below shows the appropriate heuristics applied to the given sentence: 

 

“Every project has a project number” 

 

H_E1: enttype: {project, project_number}; 

H_A1: project number � is attribute of � project; 

 

H_E1 states that all nouns in the text are converted into entity types. H_A1 is a heuristic to 

determine attribute type. It states that if a sentence includes a main verb which is a modal 

verb with infinitive “have”, then all nouns of the semantic role ACCOBJ (accusative 

object) are attributes of the noun which is part of the semantic role SUBJ (subject). DMG 

needs to interact with the user if there are any ambiguities or the input test does not 

represent the requirements of the user completely. Once the transformation rules and 

heuristics are applied, any occurring conflicts due to synonyms, homonyms or structural 

conflicts like connection traps are resolved by the designer before the final EER data model 

is produced. 

 

Though the work has presented a selection of heuristics and rules for the transformation of 

natural language specifications to EER models, DMG has not been developed into a 

practical tool. The utility of the presented heuristics in DMG is not evaluated. User 

interaction can be extensive especially if the input text does not represent the complete 

requirements of the user.  

2.1.5 FORSEN 

FORSEN (Meziane, 1994; Meziane and Vadera, 2004) is an interactive approach for 

producing formal specifications from natural language requirements’ specifications in 

English. The aims are to identify ambiguities present in natural language specifications and 

to identify the entities and relationships. The system first generates an entity-relationship 
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(ER) model from the input text. The entities and relationships are used as a basis for 

producing Vienna Development Method (VDM) (Jones, 1990) data types.  

The ER entities and relationships are identified based on the view that nouns denote entities 

and verbs may indicate relationships. However, as this does not hold true for all cases, this 

method is inadequate. Arguments and the degrees of the relationships also need to be 

identified. Thus, the approach begins by using natural language techniques to translate 

sentences to a meaning representation called logical form language. The logical forms are 

the basis for identifying the entities and relationships. The quantifiers in the logical forms 

are used to identify suitable degrees for the identified relationships. Figure 2.3 shows the 

approach used by FORSEN in identifying ER models semi-automatically using formal 

specifications. 

The translation process takes English sentences as inputs and produces the logical form in 

the following structure: 

 determiner (Base; Focus)  

Nouns are usually represented as one place predicates. For example, “aircraft” is 

represented by aircraft(X). For verbs, depending on their category, they may be represented 

by predicates having nil, one, two or three arguments. For example, the verb ‘give’ with 

three predicates can be represented as give(X; Y; Z). The translation process is done in two 

phases. Firstly, a syntax analysis is performed to produce all possible parsings in terms of a 

syntax tree, according to the defined grammar. Next, the syntax tree is then transformed 

into a unique logical form. Once the logical forms are produced, the relevant ER elements 

are identified by mapping the suitable terms and predicates of the logical form. 

One of the limitations of FORSEN is that it does not handle conjunctions or pronoun 

references. The requirements’ specifications need to be analysed manually in order to solve 

these problems before FORSEN can be used. As sentences may be ambiguous, this may 

result in alternative logical forms. The analyst has to manually select the intended meaning 

before the task can be resumed. FORSEN also has not been evaluated in a practical 

environment.    
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Figure 2.3. FORSEN approach (Meziane and Vadera, 2004) 

 

2.1.6 RADD (Rapid Application and Database Development) 
 

Buchholz et al. (1995) developed a knowledge-based dialogue tool in German for 

producing a skeleton diagram of an Enhanced Entity-Relationship (EER) model. This tool 

is part of a larger database design system known as Rapid Application and Database 

Development (RADD), which consists of other components that form a complex tool. In 

order to obtain knowledge from the designer, a moderated dialogue is carried out during the 

design process. This moderated dialogue can be regarded as a question and answer session. 

During the session, the designer describes the structure of an application in natural 

language (German) and the dialogue tool reacts appropriately to each input sentence.  The 

result of the syntactic, semantic and pragmatic analysis is used for controlling the dialogue. 

For example, if the designer’s input is incomplete, a question will be initiated by RADD. 
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Once the knowledge is acquired through the dialogue, the input will undergo syntactic and 

semantic analysis. A special phrase structure grammar which uses the ID/LP (Immediate 

Dependence/Linear Precedence) format was developed for the syntactic analysis. The 

grammar formalism describes part of the German language based on analysis of user-input. 

The grammar analyses main and subsidiary clauses, relative clauses, prepositional clauses 

and basic verb phrases. The lexicon contains lexeme and morphological rules. A special 

parser has also been implemented which uses the grammar as well as the lexicon and 

transforms natural language input into syntax trees. The linguistic corpus was obtained by 

carrying out a number of interviews with librarians and library users (‘Library’ has been 

chosen as the domain knowledge base). It consists of more than 12,000 lexical units. 

Semantic analysis will then be performed to identify the meaning of sentences. A model of 

semantic roles based on Jackendoff’s hypothesis (Jackendoff, 1983) is used for this 

purpose. It consists of the following roles which refer to the objects partaking in the action: 

Cause, Theme, Result/Goal, Source, Locative, Temporal, Mode, Voice/Aspect. The roles of 

a sentence are used to clarify linguistic completeness and to support the extraction of the 

design. The following example shows the semantic roles of the sentence; “The user 

borrows a book with a borrowing-slip”: 

 

Verb type: verb of movement (borrow) 
Cause (subject): the user 
Theme (object): a book 
Mode: with a borrowing-slip 

 

The transformation of the structure of natural language sentences into EER model 

structures is a process which is based on heuristic assumptions and pragmatic 

interpretation. The aim of the pragmatic interpretation is to map the natural language input 

onto an EER model structure using the results of  syntactic and semantic analysis. Common 

rules are used for making general assumptions about how information gained from general 

sentences is related to entities, relationships, sets, keys and other EER structures. The 

results of the transformation processes are then transferred into a Data Dictionary which 

has been developed as part of RADD database design system. 

 

One major limitation in RADD is that the accuracy of the EER model produced depends on 

the size and complexity of the grammar used and the scope of the lexicon. An extension of 
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the lexicon is necessary to ensure a high level of accuracy of the result. Another open 

problem is the ‘integrity’ of the designer description of an application. A contradiction in 

the designer’s own views can cause conflict and affect the end result.      

 

2.1.7 COLOR-X  

In Burg and van de Riet (1996), a natural language and scenario-based approach to 

requirements engineering is proposed. In this context, a scenario refers to a sequence of 

events, describing the behaviour of parts of the system and its environment. Starting with 

an informal description of a scenario, formal event models are developed which reflect the 

information of the scenarios in a natural way. This is part of a larger project entitled 

COLOR-X (an acronym for COnceptual Linguistically based Object-Oriented 

Representation for Information and Communication Systems) which is based on strong 

linguistic theories and addresses both the issues of dynamic and static aspects of the 

system. COLOR-X has the main objective of generating object-oriented programming code 

from a natural language based modelling technique. The COLOR-X project is divided into 

several parts. Color-X Static Object Model (CSOM) represents the static models. Models 

define the overall structure of the system to be built by showing the objects, classes of 

objects and the relationships between them. The CSOM model contains the overall 

structure of the Universe of Discourse (UoD) for the programming code generator. 

 

The formal event models are known as CEMs (COLOR-X event models). These mainly 

show the sequence of actions and events that take place in a particular UoD. The following 

example illustrates a trace of events that could and should be performed in the UoD. Figure 

2.3 shows the corresponding CEM model: 

 

Requirements document: “A user can borrow a book from a library. If the user has 

borrowed a book he has to return it within three weeks, before he is allowed to borrow a 

book again.” 
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Figure 2.4. Example of a COLOR-X Event Model (Burg and van de Riet, 1995) 

 

In Figure 2.4, a box represents an event that could or should take place, a straight arrow 

represents the actual occurrence of the event and a ‘lightning’ arrow shows the fact that the 

specific event did not take place. Modality of the sentences can be represented through the 

PERMIT-box and MUST-box. The PERMIT-box is triggered by the words ‘can’ and 

‘allowed to’ in the requirements document. The MUST-box is caused by the word ‘has to’. 

A MUST-event requires two outgoing arrows to succeeding events: the obligatory event 

has taken place or the obligation is violated. Since in the example there is no event 

specified that has to be completed when the book is not returned within three weeks, the 

outgoing ‘lightning’ arrow ends in an end-node (Burg and van de Riet, 1995). Table 2.2 

shows the general form of the CPL (Conceptual Prototyping Language) specification 

language used in the CEM example: 

 

CPL specification language Meaning/ Values 

Mode FACTUAL | MUST | NEC |PERMIT 

Tense ACTION | DONE | PROSP | PERF | PRET 

Predication A relation between n terms T1….Tn    

Ti A term denotes a (set, with cardinality c, of) object(s) 

id Identification of the objects 

sit Situation in which this CPL specification is supposed to 

hold 

 

Table 2.2. General form of CPL specification language 

 

 MUST 

Return(ag=user) 
(go=book) 
(dest=library) 
(tmp=time T2) 

Id: T2 < T1+3*week 

PERMIT 

Borrow (ag=user)(go=book) 
(src=library)(tmp=timeT1) 
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The event models model the dynamics of the system as a whole, and their contents are 

paraphrased back into natural language sentences. Natural Language paraphrasing is used 

as one of the techniques to validate requirements. This similar paraphrasing approach is 

also used by Rolland and Proix (1992). Burg and his colleagues claimed that this technique 

tackles the problem caused by two conflicting concerns in requirements engineering 

namely the concern of the analyst to develop a formal requirements model and the user’s 

need to communicate these requirements in their own terminology. A tool, CPL2nl 

(Conceptual Prototyping Language to natural language) has been developed to carry out the 

natural language paraphrasing task. This tool generates natural language sentences from 

specifications of CPL, a formal conceptual modelling technique. The output forms the 

underlying representation of CEMs. The validated CEM models are used as a basis for 

analysis and design models.  

 

COLOR-X stems on strong linguistic theories and addresses both the dynamic and static 

aspects of systems through the utilization of CEM and CSOM models. One of the 

limitations however, is that though the transformation from informal scenarios into formal 

CEM models is supported with a lexicon, the process itself is not automated. A human 

analyst has to manually complete the creation of CEMs like defining the events and 

dependencies between events, though this task is supported by a CASE (Computer Aided 

Software Engineering) tool.  

2.1.8 E-R Generator 

E-R Generator (Gomez et al., 1999) is a rule-based system that takes natural language 

specifications as inputs and generates ER model elements such as entities, attributes and 

relationships for small domain applications. ER-Generator is part of a larger system which 

also consists of a parser and semantic interpreter known as a Natural Language 

Understander (NLU). Sentences entered by the user are parsed and semantically interpreted 

by the semantic interpreter, which then outputs the final knowledge representation 

structure. These final knowledge representation structures act as input to E-R Generator.   

Figure 2.5 depicts the main components of E-R Generator. The E-R Generator consists of 

two kinds of rules: specific rules and generic rules. These rules are two major sources of 
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knowledge used by the E-R Generator. Specific rules are linked to the semantics of some 

words in sentences. They are defined for a verbal concept, or predicates when its semantics 

indicate that an action specific to the concept must be performed by the E-R Generator. The 

predicates are referred to as NL-relations. NL-relations may have one, two or more 

arguments. The arguments refer to the thematic roles of the NL-relation. They may be 

nouns or NL-relations themselves. All arguments that refer to physical objects like  

 

Figure 2.5: The E-R Generator approach (Gomez et al., 1999) 

‘employee’ are called object structures.  Examples of specific rules are those that construct 

hierachical ER relationships among ER entities like the is-a verbal concept, or those that 

identify key attributes. The following example illustrates how a specific rule for defining 

hierarchical relations is established: 

“Each person keeps a record of documents of interest. Documents may be books, identified 

by author, name and title, journal articles, identified by journal volume, number, author 

name, title and private correspondence, identified by sender and date.” 
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E-R Generator creates the ER entities ‘document’, ‘book’, ‘journal article’ and ‘private 

correspondence’ and establishes the relations: 

• book is-a document-of-interest 

• journal article is-a document-of-interest 

• private correspondence is-a document-of-interest 

These relations are not translated into relationships, but are maintained by E-R Generator to 

keep track of the inheritance of attributes among ER entities. 

Generic rules, on the other hand, identify ER entities and relationships on the basis of the 

logical form of the sentence and on the basis of the ER entities and relationships under 

construction. There are three types of generic rules: unary, binary or n-ary rules. In general, 

unary rules result in the definition of attributes; binary rules may define attributes, entities 

and relationships while n-ary rules result in the definition of relationships. Most sentences 

in a database description introduce binary ER relationships. Table 2.3 shows the binary rule 

cases. For example, in case 2, suppose there exists two entities, ‘company’ and ‘books’ in 

the database and no relation exists between them. If a user enters the sentence “the 

company sells books”, E-R Generator creates the relationship ‘sell’ and relates it to 

‘company’ and ‘books’. Similarly, if both ‘company’ and ‘books’ do not exist in the 

database, E-R Generator then creates ‘company’ as an entity whilst ‘books’ becomes the 

attribute of ‘company’ (case 10).   

E-R Generator identifies the entities, relationships and attributes based on the 

representation structures built by the NLU and on the current state of the database design. 

The task is carried out by accessing the structures that represent NL-relations, a-structures 

and the hierarchical NL-relation forms, object structures. All the structures are examined in 

two passes. In the first pass, some structures may result in the generation of ER elements. 

In the second pass, the saved structure from the first pass that caused no action may be 

considered here by some rules, particularly the unary rules. Specific rules are tried first 

before the generic rules. The generic rules are fired regardless of the verbal concept of an 

NL-relation. Their actions are based on the arguments of the NL-relation and on the entities 

and relationships currently defined in the database model.      
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 Argument 1 Argument 2 Relation 

Case 1 Entity Entity Yes 

Case 2 Entity Entity No 

Case 3 Attribute  Entity No 

Case 4 Does not exist Entity No 

Case 5 Entity Attribute No 

Case 6 Attribute Attribute No 

Case 7 Does not exist Attribute No 

Case 8 Entity Does not exist No 

Case 9 Attribute Does not exist No 

Case 10 Does not exist Does not exist No 

 

Table 2.3: Binary rule cases (Gomez et al., 1999) 

One of the limitations of E-R Generator is that it may need user intervention in order to 

resolve ambiguities. This includes requesting assistance following concepts in the 

hierarchy, attaching attributes and confirming the suggestion of key attributes. The amount 

of user interaction increases depending on the type of the problem such as ambiguity 

caused by intersentential anaphora. Another limitation is the lack of background knowledge 

to describe the database application that E-R Generator needs as the techniques are based 

on semantic interpretation.  

2.1.9 CM-Builder (Class Model- Builder) 

CM-Builder (Harmain and Gaizauskas, 2003) is a natural language based CASE tool which 

aims to support the analysis stage of software development in an object-oriented 

framework. The tool uses natural language processing techniques to analyse software 

requirements documents and produce initial conceptual models represented in Unified 

Modelling Language (Booch et al., 1999).  

There are two versions of CM-Builder, i.e. CM-Builder 1 and CM-Builder 2. In CM-

Builder 1, a significant amount of user interaction is needed to select the correct candidate 

classes, attributes and relationships. This has been improved in CM-Builder 2 where the 

system uses several modules to process the natural language specification text to produce a 
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conceptual model without user interaction. The OOA (Object-Oriented Analysis) Module 

basically converts all nouns into candidate classes and verbs into relationships. For every 

candidate class, its frequency in the text is considered before the item is selected. The most 

frequent candidates are the most likely classes. Attributes are found from simple heuristics 

like possessive relationships and the use of verb phrase like ‘to have’. However, no detailed 

information is given in the literature on the heuristics applied in determining the attributes. 

WordNet (Fellbaum, 1998) is also employed to help determine attribute names from 

adjectives.   

CM-Builder still has some limitations in its linguistic analysis. For example, attachment of 

postmodifiers such as prepositional phrases and relative clauses is limited. Other 

shortcomings include the state of the knowledge bases which are static and not easily 

updateable nor adaptive. 

2.2 Summary of systems that apply NLP to database design 

All the systems and methodologies reviewed utilize various natural language processing 

techniques in designing databases. Table 2.4 presents a summary of the systems reviewed, 

their aims, target users and the techniques used. Approaches like ANNAPURNA (Eick and 

Lockemann, 1985), Tseng et al. (1992) and FORSEN (Meziane, 1994) are based on 

simplification that the input language is formalized. One of the disadvantages is the limited 

expressiveness of formal representations (Tjoa and Berger, 1993). The user is restricted in 

putting forward his views of the UoD as he is unable to convey the knowledge using 

natural language. It may also be time consuming to adhere to the strict rules and 

sophisticated data abstraction considerations (Tjoa and Berger, 1993). However, these 

approaches may help to eliminate problems like ambiguities in natural language. 

Other systems like E-R Generator (Gomez et al., 1999) and CM-Builder (Harmain and 

Gaizauskas, 2003) produce conceptual models directly from natural language requirements’ 

specifications. Although this approach may suffer from ambiguities, fuzziness and 

redundancy of natural language, the advancement in NLP techniques could improve 

performance. VCS (Storey, 1988) and RADD (Buchholz et al., 1995) hold dialogue 

sessions with experts or database designers in eliciting user views. One disadvantage of the 

approach is the amount of the interaction time needed between the user and the system. As  
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System Aim Type of user Techniques used 

ANNAPURNA 
 (Eick and Lockemann, 
1985) 

To provide a computerized 
environment for semi-
automatic database design 

Database 
Designer 
 
Expert of 
Universe of 
Discourse 
(UoD) 

�� S-Diagrams 
�� Heuristics 

View Creation System 
(VCS) (Storey, 1988) 

To provide an interactive 
system for eliciting user 
views  

Database 
designer 
 
End user 

�� Procedural and 
production rules 

�� Heuristics 

Tseng et al. (1992) To map natural language 
contructs into relational 
algebra through ER 
representation 

Database 
Designer 

�� Logical forms 

DMG  
(Tjoa and Berger, 1993) 

To support designer in 
extracting knowledge from 
requirements’ specifications 

Database 
Designer 

�� Rules 
�� Heuristics 
�� Dialogue 

FORSEN  
(Meziane, 1994) 

To obtain ER models from 
language specification 

Database 
designer 

�� Logical forms 

Dialogue Tool (RADD) 
(Buchholz et al., 1995)  

To obtain a skeleton design 
of EER model from 
designer  

Database 
Designer 

�� Dialogue 
�� Syntactic analysis 

– ID/LP format 
�� Semantic analysis 

– using 
Jackendoff’s 
hypothesis 

�� Heuristics 
�� Attribute Grammar 
�� Pragmatic 

interpretation 
COLOR-X 
(Burg and van de Riet, 
1996) 

To facilitate the process of 
generating conceptual 
modelling 

Database 
designer 

�� CEMs 
�� CSOMs 
�� paraphrasing 

E-R Generator  
(Gomez et al., 1999) 

To generate ER models 
from natural language 
specifications  

Database 
Designer 

�� Rules 
�� Semantic 

interpretation 
 

CM-Builder  
(Harmain, 2000; 
Harmain and 
Gaizauskas, 2003) 

To build object-oriented 
conceptual models 

Systems 
Analyst 

�� Frequency analysis 
�� Discourse 

interpretation 

Table 2.4 Systems that apply NLP to database design 

the problem becomes more complex, the user may have to spend quite a considerable time 

answering various questions posed by the system. In comparison, a computerized system 

has ‘patience’ though bombarded with many problems to be solved. However, as noted 
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from all the systems reviewed in Table 2.4, full automation in designing databases is almost 

impossible due to the abstract nature of the problems and ambiguities in natural language.  

Heuristics, based on linguistic rules, are reported to be utilized in many of the systems like 

ANNAPURNA (Eick and Lockemann, 1985), VCS (Storey, 1988), DMG (Tjoa and 

Berger, 1993) and RADD (Buchholz et al., 1995). However, only DMG (Tjoa and Berger, 

1993) presents a precise set of heuristics used in deriving an EER model. What appears to 

be lacking in most of the systems reviewed is formal evaluation or testing to verify their 

usefulness in the context of a real world application. CM-Builder (Harmain and 

Gaizauskas, 2003) performs a formal evaluation in terms of recall and precision, to validate 

the results of the output.      

2.3 Heuristics in database design  
 

The word “heuristic” is derived from the Greek “heuriskein”, meaning to “discover” 

(Zanakis and Evans, 1981; Groner et al., 1983). This suggests that a heuristic may be  

applied to something requiring exploration or investigation or to a chance encounter. To 

practitioners, heuristics are simple procedures, often guided by common sense, that are 

meant to provide good but not necessarily optimal solutions to difficult problems, easily 

and quickly (Zanakis and Evans, 1981). A slight distinction needs to be made between 

heuristics and rules as both are reportedly applied in database design tools (e.g. Eick and 

Lockemann, 1985; Tjoa and Berger, 1993; Buchholz et al., 1995; Gomez et al., 1999). 

Rules represent a definite assumption (Tjoa and Berger, 1993) or can be theoretically 

derived under certain assumptions (Batra and Zanakis, 1994). Heuristics are largely “rules-

of-thumb” based mainly on observations, common sense, intuition and experience (Batra 

and Zanakis, 1994) or serve as an aid to learning, discovery, or problem-solving by 

experimental and especially trial-and-error methods (Merriam-Webster Dictionary, 1997).  

 

Zanakis and Evans (1981) gave several instances where the use of heuristics is 

advantageous. One of these instances is that heuristics are simple and easily understood by 

users and therefore likely to be implemented. Another example is that a heuristic solution is 

“good enough” if it produces results better than those currently realized.  
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In the context of database design, heuristics are applied mostly in conceptual design (Batra 

and Zanakis, 1994), extracting knowledge from requirements’ specifications (Eick and 

Lockemann, 1985; Tjoa and Berger, 1993) or through dialogue sessions with designers 

(Buchholz et al., 1995) to model Entity-Relationships and in the refinement of pre-physical 

database design or schemas (Cerpa, 1995; Rosenthal and Reiner, 1994). More recently, a 

heuristics-based methodology has been proposed for creating and managing ontologies for 

the development of database designs (Sugumaran and Storey, 2002). It is evident that 

heuristics-based approaches are gaining popularity as a means of solving problems in 

database design. 

Research on the formation and use of heuristics to aid the construction of logical databases 

structures from natural language has been scarce. DMG (Tjoa and Berger, 1993) proposes a 

large number of heuristics to be used in the transformation from natural language to ER 

models. However the work has not yet been developed into a practical tool. Tjoa and 

Berger (1993) proposed both syntactic and semantic heuristics to be applied in extracting 

knowledge from requirements’ specifications. Although E-R Generator (Gomez et al., 

1999) and RADD (Buchholz et al., 1995) utilized heuristics in their work, they do not detail 

the precise set of heuristics used in their approach. Chen (1983) suggested that the basic 

constructs of English sentences can be mapped into ER schemas in a natural way and 

presented a set of rules. Though the set are referred as “rules”, Chen mentioned that they 

are better viewed as “guidelines” as it is possible to find counter examples to them. Chen’s 

“rules” are therefore regarded as heuristics as they are largely “rules-of-thumb” based on 

observations rather than theoretically derived. 

When dealing with heuristics, many decisions are based on beliefs concerning the 

likelihood of a certain event happening (Kahneman et al., 1982; Griffin and Tversky, 

2002). These beliefs are commonly expressed in statements such as “I think that…”, 

“Chances are that …” and so forth. Some beliefs are expressed in numerical form as odds 

or subjective probabilities (Kahneman et al., 1982). For example, MYCIN (Buchanan and 

Shortliffe, 1984) uses certainty factors to indicate the strength of a fact. MYCIN uses 

certainty factors as an alternative to probabilistic reasoning. Certainty factors range from –1 

(definitely false) to +1 (completely true). 
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2.4 WordNet  
 

WordNet (Fellbaum, 1998) is an on-line lexical reference system which differs from the 

standard dictionary in which English nouns, verbs, adjectives and adverbs are organized 

into synonym sets, each representing one underlying lexical concept. It groups English 

words into sets of synonyms called synsets, provides brief definitions, and maintains the 

various semantic relations between these synonym sets. WordNet aims to produce a 

combination of a dictionary and a thesaurus that is more intuitively accessible, and to 

support automatic text analysis and artificial intelligence applications. 

 

WordNet is comprised of four parts: the lexicographers’ source files, software known as 

Grinder to convert these files into the WordNet lexical database, the WordNet lexical 

database and a suite of software tools to access the database. All word forms are arranged 

into synsets. These are further organized into a set of lexicographers’ source files by 

syntactic category like noun, verb, adjective and adverb. Each word form is known by its 

orthographic representation, syntactic representation, semantic field and sense number. 

Relational pointers, which can be lexical or semantic are created to represent the relations 

between the word forms. Lexical relations can exist between relational adjectives and the 

nouns they relate to and between adverbs and adjectives from which they are derived. 

Semantic relations that represent a relation between meanings are appended to the list of 

word forms in the synset.      

 

In conceptual modelling, WordNet has been utilized, for example in Color-X (Burg and van 

de Riet, 1998) and CM-Builder (Harmain and Gaizauskas, 2003) to assist the user in 

determining the meaning and context of a word. In Color-X, for instance, WordNet can be 

used to disambiguate the meaning of a verb by examining synonyms. For example, the verb 

‘sell’ would result in a few senses and the user needs to select the suitable meaning in its 

context. In CM-Builder, WordNet is used to identify hidden attributes that may arise from 

adjectives. 
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2.5 Intelligent tutoring systems (ITSs) 
 

One context where ER-Converter can be applied is in the area of Intelligent Tutoring 

System (ITS) (Sleeman and Brown, 1982), as part of the domain model. This section 

provides a brief overview of ITSs and its components namely the domain model, the tutor 

model, the student model and the user interface. 

 

Computer-based instruction systems that display some degree of “intelligence” have been 

used in education for over 20 years. Computer-Based training (CBT) (Dean and Whitlock, 

1992) and Computer-Aided Instruction (CAI) (Self, 1988) were among the first such 

systems that were introduced to teach students using computers. While both CBT and CAI 

may seem to be effective in helping learners, they are incapable of providing individualized 

attention and feedback as a human tutor could have given to the students. Thus, a new field 

of research has emerged known as intelligent tutoring systems (ITSs).  

 

An intelligent tutoring system (ITS) is a software system that uses artificial intelligence 

(AI) techniques to tutor people in a given domain. The goal of intelligent tutoring systems 

is to provide a learning experience for each student that approaches the standard of learning 

that he/she would receive from a human tutor. To achieve its goal, intelligent tutoring 

system software monitors each student’s interactions and builds a ‘student model’ for each 

individual. This model comprises the student’s performance on training/problem-solving 

and remediation exercises; knowledge of all information and remediation received; the 

knowledge mastered, failed and misunderstood by the students; and the student’s learning 

style. Apart from the student model, two other important models in an ITS include the 

domain model and the tutor model. The domain model represents the knowledge of the 

subject area while the tutoring model contains methods on how to select, sequence and 

present materials to the students. A more detailed discussion of these three models is 

presented in the following section. 

 

ITS systems are also intended to facilitate learning-by-doing: transforming factual 

knowledge into experiential knowledge. They attempt to combine the problem-solving 

experience and motivation of ‘discovery’ learning with the effective guidance of tutorial 
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interactions. To enable this, the system must have its own problem-solving expertise, its 

own diagnostic or student modelling capabilities and its own explanatory capabilities. In 

order to orchestrate these reasoning capabilities, it must also have explicit control or tutorial 

strategies specifying when to interrupt a student’s problem-solving activity, what to say and 

how best to say it; all in order to provide the student with instructionally effective advice 

(Sleeman and Brown, 1982).     

 

2.5.1 Components of an ITS 

 

An intelligent tutoring system should comprise the following four components: the domain 

model, the tutor model, the student model and the user interface (Burns and Capps, 1988). 

Figure 2.6 shows the relationships between the main components of an ITS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: The Components of an ITS 

 

 

The domain model  

 

The domain model (sometimes referred as the expert model) contains knowledge of the 

specific domain to be taught. It forms the backbone of any intelligent tutoring system 
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(Anderson, 1988) as it provides the domain intelligence. The intelligent tutoring system 

uses its domain knowledge to reason about and solve a problem posed by a student or set 

by the system. The knowledge or expertise has to be encoded and represented in such a way 

that it supports reasoning that resembles the human problem-solving process within the 

teaching domain (Siemer and Angelides, 1998). 

 

Three approaches have been used to encode knowledge in the domain model. These are 

known as black box models, glass-box models and cognitive models.  

 

Black-box models  

 

A black box model is a way of reasoning about the domain without requiring any 

codification of the knowledge that underlies human intelligence. It can be used as a judge 

of correctness as it generates correct input-output behaviour over a range of tasks in the 

domain. The classical example of a black box model is the unique work on SOPHIE 

(Brown et al., 1982). The underlying circuit simulator, SPICE, a black box expert, was used 

to determine the reasonableness of various measurements that a student would make in 

troubleshooting faulty electronic circuits. This expert is used only to check the consistency 

of a student’s hypotheses and answer some of his questions. However, its mechanisms are 

concealed from the student since they are not the mechanisms the student is expected to 

learn (Burton and Brown, 1982). 

 

Glass-box models 

 

The second approach to encoding knowledge in the domain model is using the glass-box 

model. This approach uses knowledge-engineering techniques to control the tutorial 

mechanisms of the system. A rule-based formalism is usually used to represent the 

knowledge. The implementation does not necessarily correspond to the way a human expert 

reasons. It allows only for explanations of the information process inherent in the rules of 

its knowledge base. An example of this glass-box model is GUIDON (Clancey, 1982), an 

ITS which teaches physician consultancy. GUIDON uses MYCIN, an expert system for 

diagnosing bacterial infections as the domain model within an ITS. Some difficulties arose 

from this project. For example, the actual reasoning process used by MYCIN to deploy its 
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knowledge, an in-depth backward search, is not the way the knowledge is deployed by 

humans. In addition, the highly compiled rules of MYCIN were difficult for GUIDON to 

understand and too complex to be directly taught to novices.  

 

Cognitive models  

 

A lesson learned from the GUIDON project is that for tutoring systems to be effective, the 

way the knowledge is deployed is equally important.  The domain model must deploy its 

knowledge according to the way a human does. This principle leads to the cognitive 

modelling approach. The goal of the cognitive modelling approach is to develop a 

simulation of problem solving in a domain in which the knowledge is composed into 

meaningful, human-like components and deployed in a human-like manner. In this way, the 

system can communicate the domain knowledge clearly to the student. Cognitive domain 

models distinguish between three types of domain knowledge: procedural, declarative and 

qualitative. Procedural knowledge is concerned about how to perform a task such as 

mathematical problem solving. Meanwhile, declarative knowledge conveys knowledge in 

the form of a set of organized facts to enable human reasoning. For example, there are 

domains like geography where the tutorial goal is to convey declarative knowledge in the 

form of a set of facts appropriately ordered so that one can reason with them. Qualitative 

models allow one to reason about behaviour using mental models of systems such as when 

troubleshooting an electronic device. 

 

Procedural knowledge in a cognitive domain model usually takes the form of a rule-based 

production system. BUGGY (Burton, 1982) and the LEEDS modelling system (Sleeman, 

1982) are among the systems that use this rule-based approach. These systems involve a set 

of if-then rules matched to a working memory of facts. This working memory resembles 

the short-term memory of a human. Declarative knowledge representations are useful when 

there is a need for the student to understand the principles and facts of a domain and 

applying them. However, this does not mean that the aims of procedural and declarative 

tutoring are mutually incompatible. Sometimes the nature of the subject matter requires the 

student to be facile about the rules of a problem domain but clear about the justifications for 

the rules. This can be the case in the domain of medical diagnosis (Clancey, 1982). 
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The student model 

 

An intelligent tutoring system is a computer program that instructs the student in an 

intelligent way. It infers a model of the student’s current understanding of the subject 

matter and uses this model to adapt the instruction to the student’s needs (VanLehn, 1988). 

This model is referred to as the student model. Student modelling is the most important part 

of an ITS since the student has the central role in the teaching process (Stankov, 1996). The 

behaviour of an ITS depends largely on the student model, which in turn depends on the 

domain model for the diagnosis of the student’s knowledge. An ideal student model should 

contain the aspects of the student’s knowledge, feeling and behaviour that might affect the 

student’s learning (Tong, 1997).  

 

The tutoring model 

 

An intelligent tutoring system should display various tutoring characteristics. These are 

contained in the tutoring model. The characteristics of the tutoring model include (Halff, 

1988):  

a) controls over the tutorial discourse, i.e. the representation of the instructional 

knowledge for sequencing and selecting the appropriate materials of the subject 

matter, 

b) the ability to respond to the student’s queries about instructional goals and content, 

c) strategies to offer help when needed and ways of delivering it. 

 

The goal of this model is to circumscribe the nature of tutoring and to implement it as a 

solution to the educational problem. The central issues in the tutoring model are the 

problems of developing methods for selecting and sequencing material and methods for 

presenting it. 

 

The user interface 

 

The user interface acts as a front-end to an ITS and it provides a means of interaction 

between the student and the system. The aim of the user interface is to enhance 

‘conversation’ between the system and the student to facilitate the communication of 
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knowledge between both parties (Tong, 1997). Miller (1988) emphasizes the need to make 

appropriate tradeoffs in the design of ITSs due to several issues. First, the learner working 

with an ITS must learn some subject matter that he or she may not understand. An ITS 

should not complicate the matter by having a complex interface to deal with. If the user 

interface is poorly designed, the tutoring session will probably be ineffective. The goal of 

interface design is therefore to make the interface transparent.   

 

2.6 ITSs for database design  

 

There are several existing intelligent tutoring systems for the database domain. However, 

not many of them focus specifically on the topic of Data Modelling. The following sub-

sections review each of the ITS systems. 

 

2.6.1 DB-Tutor 
 

DB-Tutor (Raguphati and Schkade, 1992), an intelligent tutoring system for database 

design, was developed using hypertext. It is designed to assist users in database design by 

providing examples and graphics to illustrate database design techniques. Here ‘database 

design’ refers to the ability of the database designer to apply a number of guidelines and 

rules-of-thumb in designing a database. This sometimes involves creativity and use of 

heuristics in arriving at a good design. The domain was restricted to conceptual database 

design using the relational model.  The information on databases was sorted into related 

topics and presented in a nonlinear manner using hypertext in the form of nodes and links. 

The idea of hypertext is to link related information together, irrespective of its location. A 

node is a continuous flow of text. All terms within a topic that referenced another topic 

were represented as links. For example the two topics ‘Normalization’ and ‘Relational 

Models’ were represented as a link from one topic to the other.   

 

DB-Tutor was implemented using a hypertext software tool. Only three of the primary 

components of ITS were present in the system; the domain model, which contains the 

information on database design, the user interface and the tutoring model, which provides 

facilities for the presentation of the information. With the absence of the student model, an 
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important component of an ITS, this system is incapable of monitoring the student’s 

progress and current understanding of the subject matter. As noted previously, student 

modelling is the most important part of an intelligent tutoring system since the student has 

the central role in the teaching process (Stankov, 1996). 

 

2.6.2 Canavan (1996) 

Canavan (1996) developed a prototype for an intelligent tutoring system in database design, 

in the topic of Normalization for advanced UK GNVQ (General National Vocational 

Qualification) level students. The prototype was partially built as part of her investigation 

into how far intelligent computer aided instruction (ICAI) and intelligent tutoring system 

(ITS) can be brought to bear on the problems of education. The prototype was limited to the 

test and tutorial element of the ITS due to time constraints and limited resources. 

 

Figure 2.7 shows the outline of the initial prototype. It is a menu-based system where users 

are presented with the appropriate screens during the tutoring session. To start with, the 

user is presented with an options menu from which he may choose any of the nine tutorials 

or exercises. For the tutorial option, the user will be presented with some background 

information on the topic. He is then given the option of choosing an example or a question. 

If the question is answered incorrectly, the user is given the option to proceed to a tutorial 

before moving to a next topic. Ideally, the system should be able to give some feedback or 

hint during the exercise, depending on the attempt the student makes. In addition, the 

system should direct the user to the appropriate material depending on his capability, rather 

than allowing the user to make the decision. 

 

2.6.3 SQL-Tutor 

Another intelligent tutoring system in the database domain, SQL-Tutor (Mitrovic, 1998; 

Mitrovic and Ohlsson, 1999), tutors students in the dominant database language, SQL 

(Structured Query Language). It is designed as a guided discovery-learning environment 

and supports problem solving, conceptual and meta-learning. It is based on Constraint-

Based Modelling, a student modelling approach proposed by Ohlsson (1992). A constraint-

based model represents knowledge about a domain as a set of constraints on correct 

solutions. The constraints partition the universe of all possible solutions into correct and 
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incorrect ones. This approach concentrates on the violations of the basic principles in the 

domain of instruction. Constraint violations are identified by inspecting the student’s 

solution and comparing it to the stored ideal solution. If a constraint is violated, this 

outcome will be recorded in the student model and appropriate action is taken by the 

system. For example, when a student makes a mistake in an SQL statement, the system will 

generate the correct solution alongside the student’s solution to point out the error. 

Feedback is generated from SQL-Tutor to explain each of the mistakes in the student’s 

solution.  

 

 
 

Figure 2.7: Outline of the initial prototype structure (adapted from Canavan, 1996) 

 

The components of the system include the interface, a pedagogical module and a student 

modeller. Figure 2.8 shows the architecture of SQL-Tutor. The pedagogical module 

generates feedback messages and selects practice problems. The instruction is 

individualized in the sense that both types of actions are based on the student model. The 

student modeller records the history of each constraint. This record contains information 

about how often the constraint was relevant for the ideal solution to the practice problems 

the student attempted, how often it was relevant for the student’s solution and how often it 
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was satisfied or violated. This record is used by the pedagogical module. There is no 

domain model for SQL-Tutor. The domain knowledge is instead represented in the form of 

constraints in the student modeller. Currently, the published system only deals with the 

SELECT statement in SQL.  

 

Figure 2.8: The architecture of SQL-Tutor (Mitrovic and Ohlsson, 1999) 

 

2.6.4 COLER 

COLER (Constantino-Gonzalez and Suthers, 2000) is a World Wide Web (WWW)-based 

computer-mediated collaborative learning environment for entity-relationship modelling. 

An agent is designed for coaching the students in a collaborative learning environment. 

Students begin by constructing individual entity-relationship diagrams and then work in 

small groups to agree upon a group solution.  

 

COLER’s implementation is based on architecture for intelligent collaborative learning 

systems from other software, Belvedere. The system was implemented in Java. The 

implementation concentrated on the coach module, which was built to monitor participation 

and to identify and evaluate differences between diagrams to encourage students to 

collaborate. COLER provides four different modes of operation according to the type of 
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user (student/professor) and the selected type of session (individual/group). The interface 

consists of a problem description window, a private workspace, a shared workspace and a 

chat window. The problem description window presents an ER modelling problem. 

Students construct their individual solutions in the private workspace. The shared 

workspace is used to construct a collaborative ER diagram. The chat window is used by the 

students to communicate among themselves.  Each student’s clients contain a private coach, 

which monitors the private workspace of its students called CMS (currently monitored 

student). The coach also monitors the shared workspace and records the students’ opinions 

in the workspace and in chat discussions. However, no natural language interpretation is 

attempted.  

 

There are no apparent domain or tutoring modules present in the system. A form of student 

monitoring is conducted in the coach module which consists of four sub-modules. Table 2.5 

describes the function of each of sub-module. 

Sub-module Function 
Differences Recognizer This module either finds differences 

specifically related to the currently 
added object or finds all “extra work” 
that the student can contribute to the 
group. 

Diagram Analyzer This module detects ER diagram 
anomalies. Currently, it is only syntax-
based. 

Participation Monitor This monitor attends to the activity in 
the group diagram. If a session is left 
idle for a period of time, it will report 
the event. It also monitors whether 
each student is participating (too much 
/ too little). It also tracks each 
student’s contribution.    

Personal Coach This module receives feedback from 
other modules and generates 
potentially applicable advice and 
selects the advice to give, if any. 

   

Table 2.5: Function of COLER’s coach sub-modules 

 

The current published version of COLER only has access to the student’s private 

workspace and the shared workspace.  A student is only able to compare his solution with 
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the group’s solution, not with a particular colleague. Constantino-Gonzalez and Suthers 

(2000) reported that a future version would incorporate this feature to create opportunities 

for proper collaborative learning.     

 

2.6.5 Kermit 

Kermit (Suraweera and Mitrovic, 2002), an ITS for ER modelling was developed as a 

practice environment for students to model databases for a given problem, with the aim of 

individualised instructions. Kermit is based on constraint modelling, a student modelling 

approach that focuses on errors.  

 

The system consists of a user interface, a student modeller, a pedagogical module and a 

knowledge base.  It evaluates the student’s answers by comparing them with the correct 

answers in the knowledge base. The knowledge base is represented in descriptive form and 

consists of constraints used for testing the student’s solution against the system’s ideal 

solution. The constraints deal with both syntactic and semantic errors. The syntactic 

constraints concentrate mainly on syntactic errors and these are independent of the system’s 

ideal solution. An example of a syntactic error would be a simple constraint like “an entity 

name should be in upper case”. Semantic constraints operate on the relations between the 

student solution and the system’s solution. “The student’s solution should consist of all the 

entities present in the ideal solution” is an example of a semantic constraint.   

 

An animated pedagogical agent, implemented using Microsoft Agent, is used in the 

learning environment to facilitate learning. The agent offers instructional messages and 

displays a strong visual presence. However, once the agent presents feedback messages like 

pointing out an error, the student does not have the opportunity to refer to the feedback 

once the agent has completed his speech. The student needs to correct all of his errors 

before referring back to the feedback. 

 

In contrast to a typical ITS, Kermit does not contain a domain module that is capable of 

solving the problems given to students. The authors of Kermit mentioned that developing a 

problem solver for database modelling would be extremely difficult, if not entirely 
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impossible. However, the research work presented in this thesis shows that this challenge is 

possible in a semi-automated environment.  

 

2.7 Summary 
 

This chapter has reviewed a range of systems, from those that apply natural language 

processing to databases to intelligent tutoring systems (ITSs) for Databases. The different 

techniques adopted in the NLP systems that attempt to transform natural language to 

conceptual models were reviewed. A number of the systems reviewed reported on the 

utilization of heuristics to aid database design. However, only DMG (Tjoa and Berger, 

1993) presented a set of detailed heuristics for the transformation from natural language to 

EER models. A summary table of the review of the systems that apply NLP in Database 

design was presented and discussed. A few of the systems like E-R Generator (Gomez et 

al., 1999) and CM-Builder (Harmain and Gaizauskas, 2003) reported the results on their 

systems’s evaluation. Other relevant issues such as heuristics in database design and 

WordNet were also reviewed. ITSs and their components were also discussed. ITS is one 

context where ER-Converter can be applied. The next chapter discusses the issues of NLP 

in database design in more detail.  
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Chapter 3 
 

Natural language processing in database design 

 

 

This chapter discusses natural language processing and its application in database design. 

The use of natural language requirements’ specifications in eliciting the knowledge to be 

modelled and the potential presence of ambiguities in the document are also discussed. This 

chapter also elaborates on Memory-Based Shallow Parser (MBSP), the parser used to 

process natural language requirements’ specifications. The techniques used in each of the 

modules of the parser and their applications in natural language processing are discussed. 

 

3.1 Brief overview of database systems analysis 
 

Database problems can be expressed with natural language descriptions of the application 

which are known as requirements’ specifications. It is a formal document in natural 

language that describes the universe of discourse (UoD) or the world to be modelled. Users 

or so-called domain experts usually provide the description in the specification. Figure 3.1 

shows the stages of database systems analysis involved from producing the requirements’ 

specifications up to the physical database design.  

 

The process of obtaining an initial specification is known as elicitation. Systems analysts 

who are responsible for this analysis in the early stage of the information system 

development usually carry out this task. During this stage, the primary task of the systems 

analyst is to map the initial specification on to concepts of a particular conceptual 

modelling technique.     
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Figure 3.1: The stages in database systems analysis 

 

An example of a requirements’ specification based on a university environment, taken from 

Willits (1992) is as follows: 

 

The university wishes to maintain a student database. The student will be identified by a 

student registration number. Other details include the student’s programme, the name of 

the study advisor, together with the code of each module which a student studies, its title, 

its lecturer and room number. For each module completed, the student obtains a grade and 

a number of credits. 
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The next stage involves natural language processing of the specification before the natural 

language/conceptual mapping is completed. In the natural language processing (NLP) 

stage, the syntactic and semantic knowledge captured (extracted/deduced) during the 

natural language specification analysis is processed. Natural language processing is 

performed based on the application of heuristics to the specification. The result would be 

processed further to determine the salient elements of Entity-Relationship models in the 

conceptual phase.      

 

Once the conceptual model or view is completed, the next stage involves the 

conceptual/internal mapping. In this stage, the physical structure of the database is 

determined. This usually involves the data design and determination of the storage 

structures which result in the creation of the necessary physical tables and their 

implementation. 

 

3.2 Natural language processing in database design 
 

Natural language processing enables the computer to ‘understand’ human language through 

analysis, manipulation and generation. This can refer to anything from morphological 

analysis to higher-level Artificial Intelligence-like tasks such as processing user queries in 

natural language. Morphological analysis is concerned with the study of the construction of 

words from more basic components or meaning units called morphemes (Allen, 1995). 

Manipulation may involve tasks like stemming. Stemming determines the morphological 

root of a given word form. For example, the stemmer, a program which accomplishes the 

task of stemming, should identify the word “swimming” based on the word “swim”. In 

terms of generation, the natural language processing tasks may involve applications such as 

a text-to-speech system that synthesizes natural sounding speech from ordinary text and a 

report generator which produces a report from texts.  

 

Generally, natural language processing follows three stages: parsing, semantic 

interpretation and contextual/world knowledge interpretation (Luger and Stubblefield, 

1997; Allen, 1995). The first stage, parsing, analyses the syntactic structure of sentences. 

Parsing not only verifies that sentences are syntactically well formed, but also determines 
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their linguistic structure. This ensures that the sentence is a legitimate sequence of words in 

a language.  This phase identifies major linguistic relations such as subject-verb, verb-

object and modifier. This is often represented as a parse tree. Most parsers employ 

knowledge of language syntax, morphology and some semantics. An example of a parse 

tree for the sentence, “The man likes the car” is shown in Figure 3.2. 

 
Figure 3.2: Parse tree for the sentence “The man likes the car” 

 

Research at the syntactic level of analysis is primarily concerned with the construction of 

wide-coverage grammars, efficient parsing strategies and grammar formalisms (Neri and 

Saitta, 1997). These have led to the development of grammars like structure grammars, 

context-free grammars and context-sensitive grammars.  

 

The second stage is semantic interpretation, which produces a representation of the 

meaning of the text.  This stage focuses on issues such as what type of knowledge 

representation formalism is used for determining meaning and how to interpret utterances 

like: 

 

“I saw her painting. ” 

 

which could mean any of the following: 
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a) “I saw her painting the wall.” 

b) “I saw her painting (artwork) at the gallery.” 

 

This type of ambiguity may be resolved by determining the context of the word. Further 

evidence may come from the immediate textual context, or from a general understanding of 

the real world. In the context of the given sentence, for example, there may be some 

evidence from a preceding sentence which denotes that the subject is in a museum. This 

additional world knowledge can be used to filter the inappropriate parses in order to resolve 

the ambiguity.     

 

The final stage involves adding structures from a knowledge base to the internal 

representation of the sentence to produce an expanded representation of the sentence’s 

meaning. This adds further world knowledge required for complete understanding. Some 

examples of world knowledge are facts in a given context such as “the man likes the 

Jaguar”, “Jaguar is not an animal” and “Jaguar is a car”. These facts may be represented 

using type hierarchies, a method of expressing knowledge about the structure of the world. 

As Jaguar may represent both a living object, i.e. an animal or a non-living object, for 

instance, a vehicle, these facts need to be ascertained before the meaning is deduced.  The 

resulting structure represents the meaning of the natural language text and is used by the 

system for enhanced understanding.    

 

In database design, natural language processing usually involves analyzing the 

requirements’ specifications and looking for linguistic structures that can be mapped to the 

conceptual schema. The emphasis is on the extraction of relevant information and correct 

interpretation of the knowledge extracted in order to produce a sound conceptual model. 

Most of the efforts require studying the relationship between sentence structure and the 

model to be mapped. However, due to limitations in natural language specifications such as 

ambiguities in natural language, this presents numerous challenges in processing the 

documents. These issues will be discussed further in the following section. 
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3.2.1 Ambiguities in natural language specifications 
 

The main disadvantage of using natural language requirements’ specifications is the 

potential presence of ambiguities. This leads to two issues. The first is the detection of 

ambiguities and the second is the resolution of the ambiguities. In natural language 

processing, it is essential to remove any ambiguities before proceeding to further analysis to 

minimize any errors during the modelling. According to Somers (2000), ambiguities can be 

categorized as: 

 

• Lexical ambiguity 

• Structural ambiguity 

 

In database design, these ambiguities are sometimes present in the requirements’ 

specifications.  

 

Lexical Ambiguity 

 

Ambiguity may arise at a lexical level where a word may have more than one interpretation 

(sometimes referred to as word senses) (Allen, 1995). This type of ambiguity may happen 

as a word can represent different parts of speech and have different meanings. Parts of 

speech refers to the classification of words depending on how they are used. For example 

the word ‘store’ may mean a business establishment or it may indicate something that is 

kept for future use. It may represent a noun, an adjective or a transitive verb depending on 

the context.  

 

This type of ambiguity may be resolved when the syntactic category of the word is 

identified. This is possible through natural language processing techniques such as parsing 

as this can often identify the part of speech of the ambiguous word. This understanding may 

come from the more or less immediate textual context, or from a general understanding of 

the real world (Somers, 2000). For example, consider sentences (1) and (2): 

 

“The store is located in Ballymena.”     (1) 
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“The system must store information about the patient.”  (2) 

 

In sentence (1), the word ‘store’ is a noun that acts as a subject. Due to the juxtaposition of 

the word, it is easier to deduce that the word ‘store’ is a noun.  In (2), the word ‘store’ is a 

verb which requires a subject prior to its use. Due to the different parts of speech in 

different contexts, the correct interpretation of the sentence is easier to obtain automatically 

when the context is determined. 

 

Structural Ambiguity 

 

Ambiguities may also arise from how a sentence is structured. Structural ambiguity results 

when the combined lexical ambiguity of the words making up a sentence means that it has 

several interpretations. Two common forms of structural ambiguity are attachment 

ambiguity and coordination ambiguity. Attachment ambiguity as illustrated in sentence (3), 

can pose a problem as some knowledge is needed as there may be several interpretations 

leading to different meanings. 

 

 “The boy saw his dad with a pair of glasses.”  (3) 

               

Structural ambiguity leads to the following two interpretations: 

 

a) “The boy saw (his dad with a pair of glasses).” 

 The boy saw his dad and his dad was wearing glasses at that point of time. 

 

b) “The boy saw (his dad) with a pair of glasses.” 

The boy saw his dad whilst wearing a pair of glasses. 

 

In general, a natural language understanding system may not be able to decide which 

interpretation is intended. However, the ambiguity can be highlighted and user intervention 

requested to choose the correct interpretation. 
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Coordination ambiguity occurs when there are different sets of phrases that can be 

conjoined by a conjunction like and (Jurafsky and Martin, 2000). For example, the phrase 

“young kids and adults” can be bracketed as [young [kids and adults]] meaning [young kids 

and young adults] or [[young kids] and [adults]] which refers to young, juvenile kids but 

not necessarily young adults. Due to the fact that there are many unreasonable parses for a 

sentence affected by this type of ambiguity, disambiguation or choosing the correct parse 

may be necessary (Jurafsky and Martin, 2000). Disambiguation algorithms generally 

require both statistical and semantic knowledge (Jurafsky and Martin, 2000).     

 

Structural ambiguities can be further classified according to the ‘range’ or scope of the 

ambiguity they represent. These ambiguities can be categorised as: 

 

• local ambiguities 

• global ambiguities 

• anaphora resolution 

 

Local ambiguities can occur when some part of the sentence is ambiguous, having more 

than one parse, even if the whole sentence is not ambiguous (Jurafsky and Martin, 2000). 

Sentence (4) is an example of such ambiguity: 

 

“The students taught by the direct method failed.”            (4) 

 

In the process of parsing the sentence, the word “taught” would be processed as a transitive 

verb, with the reading that the student taught someone or something. But further analysis 

may reveal that the students are the ones being taught i.e. “taught” is not a main verb but 

instead a participle. 

   

Global ambiguities, on the other hand, are caused by combinations of ambiguities: different 

analysis involves different category choices (Somers, 2000). An example is shown in 

sentence (5): 

 

“John saw her playing cards.”               (5) 
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This sentence either means John saw someone playing with cards or John actually spotted 

the cards. The word “playing” can either be an adjective or a verb in the sentence resulting 

in different interpretations.  

 

Anaphora resolution is the identification of antecedents of pronouns. Anaphora refers to an 

entity that has been mentioned previously in the discourse or text. Sentence (6) shows an 

example of anaphora resolution: 

 

“Each module is attached to one course where it has a name and a code.”  (6) 

 

In sentence (5), the word ‘it’ may be referring to either the module or the course. This is 

ambiguous and may need some background knowledge to determine the correct 

interpretation. In a natural language specification which will be analysed automatically, it is 

important to resolve this sort of ambiguity and replace the anaphoric terms with their actual 

reference or antecedent.  

 

Another particular case of substitution apart from anaphoric resolution that may be 

ambiguous is ellipsis. It occurs when certain words or phrases, which have been mentioned 

earlier in the text, are omitted. For example, the noun phrase ‘a team of employees’ may be 

replaced with just ‘employees’ in subsequent sentences. This occurs quite frequently in 

natural language requirements’ specifications and should be resolved either prior to the 

automated processing or in the program itself.  

 

3.2.2 Solutions to ambiguity  

Presented with many types of ambiguities, natural language requirements’ specifications 

need to be pre-processed, either manually or automatically, to minimize any errors in the 

interpretation of the text. In terms of manual processing, among the solutions adopted are: 

 

• Controlled language 

• Pre-editing 
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Controlled language or sometimes referred as restricted input is a controlled language 

developed to limit the vocabulary, syntax and semantics of the input language (Harmain 

and Gaizauskas, 2003). It is sometimes used to write software specifications and used by 

tools to analyse these specifications to produce useful results. An example of such a system 

is Attempto Controlled English (ACE) (Fuchs and Schwitter, 1996; Fuchs and Schwertel, 

2003). Pre-editing usually involves some checking done of the specifications to adhere to 

certain restrictions of the system. Meziane (1994) reported on pre-editing the specification 

text to resolve the problems of conjunctions and pronoun references, which are not handled 

by the implemented system, before proceeding to the automatic analysis of the text. 

 

A potential solution to these problems is the incorporation of more sophisticated techniques 

of analyzing the text to be processed. This usually involves the use of a parser, tagger and a 

semantic interpreter. In this research, a parser known as Memory-based Shallow Parser 

(MBSP) has been selected for the purpose mentioned above, that is, to analyse the natural 

language requirements with the utilization of the natural language techniques that the parser 

has to offer. MBSP was selected due to the accuracy of its tagger, as will be discussed in 

Section 3.3.2, and its availability on the Internet. Other parsers like Snow-Based Shallow 

Parser (Munoz et al., 1999) and Connexor (Tapanainen, 1996) were also considered. MBSP 

and its approach used in the processing of the natural language input are discussed in the 

next section.   

 

3.3 Memory-based Shallow Parser (MBSP) 
 

Shallow parsing is an essential component in text analysis systems in text mining 

applications such as information extraction and question answering (Zavrel and Daelemans, 

2003). Shallow parsing performs only partial analysis of the syntactic structure of sentences 

as opposed to full-sentence parsing. The parsing includes detecting the main constituents of 

sentences (for example noun phrases (NPs) and verb phrases (VPs)) and their head nouns, 

and determining syntactic relationships like subject, object and adjunct relations between 

verbs. This early step uncovers basic information like who, what and where in sentences.  
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In the MBSP approach, the syntactic analysis process is split up into a number of 

classification tasks. These classification tasks can be segmentation tasks (for example in 

deciding whether a focus word or tag is the start or end of  NP) or disambiguation tasks (for 

example whether a chunk is a subject NP or object NP). Output of some memory-based 

modules is used as input to other memory-based modules.  

 

The MBSP for English consists of the following modules: 

• A tokenizer   

• A tagger   

• A chunker  

• A subject/object detector  

 

Each of these modules yields results in separate output files. The first three modules will be 

explained in more detail in the following sections. 

 

3.3.1 Tokenizer 
 

A tokenizer basically breaks up the sequence of characters in a text by locating the word 

boundaries, the point where one ends and another begins (Daelemans et al., 2000). The goal 

is to break up the text into smaller units called tokens. Each token corresponds to a word 

form, a number, a punctuation mark or other kind of unit to be passed on to subsequent 

processing. In MBSP, the tokenizer splits punctuation marks like period, comma, question 

mark and colon from words. For example the genitive clause ‘the client’s name’ will result 

in 4 tokens. These tokens are ‘the’, ‘client’, ‘’s’ and ‘name’. These elements are later 

tagged separately according to their part-of-speech (POS).  

 

3.3.2 Memory-Based tagger 
 

A POS tagger assigns the words in a text to their morphosyntactic categories based on the 

characteristics of the words and the context in which they occur. POS tagging is the first 

level of abstraction in text analysis and plays an important role in many language 

technology applications such as information retrieval, speech recognition and text mining 
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(Jurafsky and Martin, 2000). Memory-based tagging is based on the idea that words 

occurring in similar contexts will have the same POS tag. The tagging technique used in 

Memory-Based tagger (MBT) is based on Memory-Based Learning (MBL). MBL is a 

supervised classification-based learning method. It consists of storing the instances seen 

during learning in memory along with the corresponding categories. A new instance can be 

classified in a category by computing the distance between the new instance and the stored 

instances in memory. The distance is computed using similarity metric, a feature of  IB1-IG 

(Daelemans and Van de Bosch, 1992), a memory-based learning algorithm that builds a 

database of instances during learning. 

 

MBT is a tagger generator (Daelemans et al., 1996). This means that it can be applied to 

any annotated training corpus, and yields a working tagger that can accurately annotate 

previously unseen text in the same manner as in the training corpus. For this purpose, a 

lexicon and a disambiguator for known and unknown words are derived fully automatically 

from the tagged example corpus.  

 

The construction of a POS tagger is described in Daelemans et al. (1998). Given an 

annotated corpus, three data structures are automatically extracted: a lexicon, a case base 

for known words (words occurring in the lexicon), and a case base for unknown words. For 

known words, cases comprise of information about a focus word to be tagged, and an 

associated category (tag) valid for the focus word in that context. For unknown words, this 

tag can only be guessed on the basis of the form or context of the word.  During tagging, 

each word in the text that is to be tagged is looked up in the lexicon. If the word is found, 

its lexical representation is retrieved and the word’s context is determined. The resulting 

pattern is disambiguated using extrapolation from the most similar words in the known 

words base case. If a word is not found in the lexicon, its lexical representation is computed 

on the basis of its form, its context determined and the resulting pattern is disambiguated 

using extrapolation from the most similar cases from the unknown words case base. In each 

case, the output is based on the best guess of the category for the word in its current 

context.  

 

Table 3.1 compares the accuracy of MBT with a number of alternative tagging methods. 

These alternatives are Rule-Based (Brill, 1994), Trigram (Steeskamp, 1995) and 
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Maximum-Entropy (Ratnaparkhi, 1996). Based on the same corpus, each of these taggers 

uses different features of the text to be tagged. Each of them has a completely different 

representation of the language model.  

 

Tagger Accuracy 

(%) 

Trigram 96.1 

Rule Based 96.5 

MBT 97.0 

Maximum Entropy 97.4 

 

Table 3.1: Accuracy of different taggers (Zavrel and Daelemans, 1999) 

 

The results, shown in Table 3.1, show that MBT scores marginally better generalization 

accuracy than two widely used methods, i.e. trigram tagging and rule-based tagging (Zavrel 

and Daelemans, 1999). This may be due to the fact that in MBT, all information is stored in 

memory, compared to probabilistic and other machine learning approaches adopted by the 

other two taggers. The Maximum Entropy tagger performs better, which is due to the fact 

that the tagger’s weighting is better able to deal with the dependencies in the rich feature-

set (Zavrel and Daelemans, 1999). Due to its comparable accuracy in tagging and ease of 

access, MBT was selected for this research work for the tagging of natural language 

requirements’ specifications. An example output from sentence (7) using the MBT tagger is 

shown as follows: 

 

Example sentence: 

“A payment may settle the invoice in full or by instalments i.e. an invoice may be 

associated with many payments.”       (7) 

 

Output: 

A/DT payment/NN may/MD settle/VB the/DT invoice/NN in/IN full/JJ or/CC 

by/IN instalments/NNS i.e./FW an/FW invoice/NNP may/MD be/VB 

associated/VBN with/IN many/JJ payments/NNS./.   
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The output shows the generic format of the tagger. The full list of abbreviations of the Penn 

Treebank II part of speech tags can be found in Appendix B. 

 

3.3.3 Chunker 
 

Phrase chunking involves the process of detecting the boundaries between phrases (for 

example noun phrases) in sentences (Daelemans et al., 1998). Chunking can be regarded as 

light parsing. In MBSP, NP chunking and bracket prediction is applied for the chunking 

purposes.  

 

In NP chunking, sentences are divided into chunks and labels are assigned to these chunks. 

The process of chunking and labelling is carried out from left-to-right in a sentence and a 

tag is assigned to each word. The types of chunks determined in this chunker include NP 

(noun phrase), VP (verb phrase), ADJP (adjective phrase) and ADVP (adverb phrase). For 

a noun chunk, the chunking starts from the beginning of a noun phrase up to the head noun, 

thus excluding any complements or adjuncts following the head. Using the previous 

example, the chunking process would provide the following output: 

 

[NP A/DT payment/NN NP] [VP may/MD settle/VB VP] [NP the/DT invoice/NN 

NP] {PNP [PP in/IN PP] [NP full/JJ NP] PNP} or/CC {PNP [PP by/IN PP] [NP 

instalments/NNS NP] PNP} i.e./FW [NP an/FW invoice/NN NP] [VP may/MD 

be/VB associated/VBN VP] {PNP [PP with/IN PP] [NP many/JJ payments/NNS 

NP] PNP}./. 

 

[NP…NP] brackets denote the noun phrases. An example of an NP chunk from the sample 

for the phrase “A payment” is [NP A/DT payment/NN NP]. The structure {PNP…PNP} 

represents a preposition and one or more NPs that together form a prepositional chunk. 

Prepositional chunks that do not contain any NPs are not marked as PNPs but simply as 

[PP...PP] to represent a preposition. Adjectival chunks [ADJP…ADJP] start from the 

beginning of an adjectival phrase up to the head adjective, excluding any complements or 

adjuncts following the head. Similar rules apply to the adverbial chunk, [ADVP…ADVP]. 

The verbal chunk [VP…VP] comprises a main verb, its entire modal and auxiliary verbs, 

any intervening verbs and any directly following verbal complements of the main verb.        
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For adverbial functions, the classes for the adverbial function labels used are LOC 

(locative), TMP (temporal), DIR (directional), PRP (purpose and reason), MNR (manner) 

and “-” for none of the former. This task is performed by Subject Object Detector, a tool 

which involves grammatical relation assignment. This tool attempts to resolve the 

attachment between labelled phrases. 

 

In bracket prediction, the task is to predict the sequence of closing and opening brackets 

preceding a word. Closing all pending open brackets at the end of the sentence suffices to 

construct an unlabeled parse tree of the sentence out of sentence predictions (Daelemans et 

al., 1998). The input of the bracket predictor is a tagged sentence. For example, given a 

tagged sentence “The/DT cat/NN liked/VBD it/PRP ./.”, the output is an unlabeled, 

bracketed sentence as follows: 

 [[[The] [cat]] [[liked][[it]]]]. 

 

3.4 Summary 
 

This chapter has discussed the area of natural language processing in database design. The 

main emphasis was on the use of natural language specifications in extracting knowledge of 

conceptual modelling and potential ambiguities during the processing. This chapter has also 

discussed the parser to be used in the implementation stage, Memory-based Shallow Parser 

(MBSP). Each of the modules of MBSP and the techniques used were described. Memory-

based Tagger (MBT), the tagger used in MBSP has an accuracy of 97.0%. MBSP has been 

selected due to its comparable accuracy and ease of access. The next chapter discusses the 

heuristics-based approach to support the transformation of natural language requirements’ 

specifications to Entity-Relationship (ER) models.  
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Chapter 4 
 

Heuristics in Database Design 

 

 

This chapter introduces heuristics in general and their application to database design. 

Heuristics for database design from existing literature are presented and discussed. A set of 

proposed new heuristics that may improve the generation of ER models from natural 

language specifications is presented in Section 4.2. Heuristics’ weights and their 

application are discussed. Results on the training dataset, the heuristics’ selections and the 

justification for these selections are presented and discussed.    

 

4.1 Existing heuristics  
 

Previously published heuristics to aid the construction of ER models from natural language 

requirements’ specifications will now be presented. The scope of the language of the 

specifications and heuristics used in this research is English. The list in Figure 4.1 shows 

the abbreviations used in identifying the categories of each of the heuristics. 

 

Abbreviation Category of heuristic 

HE Entity type 

HA Attribute type 

HR Relationship type 

HC Cardinality type 

  

Figure 4.1: Abbreviations used for categories of heuristics 
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4.1.1 Heuristics to determine entity types 

 

The following presents a set of previously published heuristics to determine entity types. 

They are largely based on those given in Chen (1983) and DMG (Tjoa and Berger, 1993).  

 

Heuristic HE1: All nouns are converted to entity types (Tjoa and Berger, 1993) 

 

This heuristic assumes that all nouns can be directly mapped to entity types. This includes 

all type of nouns such as collective nouns, common nouns, count nouns, mass nouns and 

proper nouns. Examples of these nouns are ‘people’, ‘Washington’ and ‘peace’. 

 

Heuristic HE2: A common noun may indicate an entity type (Chen, 1983; Tjoa and Berger, 

1993) 

 

A common noun is a type of noun that names any person, place, thing, or idea. An example 

to illustrate the use of  common nouns is as follows: 

 

“The school has a principal and many teachers”. 

 

Note that “school”, “principal” and “teachers” are common nouns and therefore this 

heuristic implies that they correspond to entity types.  

 

Heuristic HE3: A proper noun may indicate an entity (Chen, 1983; Tjoa and Berger, 1993) 

 

A proper noun is a noun that names a specific person, place, thing or idea. An example is 

shown below: 

 

“Mr. Arnold Johnson works in the Human Resource department”. 

 

In this example, “Mr. Arnold Johnson” and “Human Resource department” refer to a 

specific person and place and therefore HE3 indicates that they indicate entities. 
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Heuristic HE4: A gerund may indicate an entity type which is converted from a 

relationship type (Chen, 1983)  

 

A gerund is a type of noun converted from a verb, also known as a verbal noun, usually 

ending in –ing (for English). An example is as follows: 

 

“Customers may hire many cars and the hiring is processed by a clerk”. 

 

From the example given, the verb “hire” is converted to a gerund “hiring” as the subject of 

the second clause. The verb “hire” can be said to correspond to a relationship type and this 

has been converted into the entity type “hiring”. When a relationship type is converted into 

an entity type, it usually inherits some form of attributes. In this example, “hiring” may 

have attributes like “hiring number”, “clerk id” and “hiring date”.   

   

Heuristic HE5: A clause may indicate a high-level entity type which hides a detailed Entity 

Relationship Diagram (ERD) (Chen, 1983) 

 

The clause is the main building block in English which includes a subject and predicate. A 

clause or sub clause can be built upon another clause. The following example illustrates this 

heuristic: 

 

“The lecturer decides which project to assign to each student”. 

 

In the example, the clause “which project to assign to each student” is sub-clause of the 

verb “decides”. In this particular clause, “project” and “student” are entity types while 

“assign to” denotes a relationship type. The entire clause could be viewed as an equivalent 

to a high-level entity called assignment.  

 

4.1.2 Heuristics to determine attribute types 

 

This section presents a set of previously published heuristics to determine attribute types.  
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Heuristic HA1: A noun which takes the general form of TERM_SUFFIX such as  noun_id, 

noun_no, noun_type or noun_number may indicate an attribute type (Storey, 1988) 

 

A noun such as “person_id”, “group_no”, “room_type” and “vehicle_number” may indicate 

an attribute type. The TERM_SUFFIX representation is often used in database problems’ 

specifications. An example is shown as follows: 

 

“Each textbook has a book_id and a title”. 

 

The noun “book_id” in the above example may indicate that it is an attribute type.    

 

Heuristic HA2: A noun phrase which follows the phrase “identified by” may indicate the 

presence of attribute types (Gomez et al., 1999) 

 

Examples are:  

a) “A person, identified by person_id and a surname, can own any number of 

vehicles”. 

b) “Suppliers are identified by supplier_id”. 

 

Heuristic HA3: A noun phrase succeeding the “has/have” verb phrase may indicate the 

presence of attribute types (Storey, 1988) 

   

“Have/has” verb phrases may indicate a relationship between an entity and its attributes. 

Four types of interpretations of “has/have” are possible (Storey, 1988): 

 

1. A possesses B 

 An example that shows possession is: 

  

“The car hire company has many branches”. 

 

In this type of  “has/have” phrase, the noun that occurs after the phrase does not usually 

denote an attribute. The “possession” would normally show a relationship between two 
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entities. From the above example,  “car hire company” and “branches” indicate that both 

are entities. Therefore, the heuristic HA3 may not apply in these cases.  

 

2. B component-of A 

 

An example of this component-of interpretation is:   

 

“The machine has a thermostat”.  

 

In the example, “thermostat” can be interpreted as a component of “machine”. Therefore, it 

represents an attribute of “machine”.  

 

3. B instance-of A/ example-of A 

 

An example of instance-of interpretation of have/has could be: 

 

“The books have many volumes ”. 

 

In this example, “volumes” is an instance of “books”. Both can be regarded as entity types 

in the example.  

 

4. B associated-with A in some other way 

 

This type of interpretation commonly shows an association between two entity types or an 

entity with its attributes. The following shows examples of this association: 

 

“The library has many book suppliers”.  

 

In this relationship, “book suppliers” may be regarded as an entity associated to “library”.  

 

“The book has a publisher”. 
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In this case, “publisher” may become an attribute of “book” or another entity type linked to 

it. This depends on whether the existence of “publisher” is highly significant in the business 

environment where other attributes of “publisher” like publisher’s address, id and telephone 

number are kept. It may also exist simply as an attribute to “book” when only the 

publisher’s name, for example, is recorded in the particular environment. The heuristic may 

apply in the latter case. 

 

Heuristic HA4: An intransitive verb may indicate an attribute type (Chen, 1983) 

 

If a main verb does not require another element to complete it, the verb is intransitive. Chen 

(1983) has proposed that an intransitive verb may indicate an attribute type. The following 

shows such an example: 

 

“The train arrives every morning at approximately 8:15 am”. 

 

In this example, the verb “arrives” does not require a direct object to complete the sentence 

and thus is referred to as an intransitive verb. A hidden attribute type, “arrival time” may be 

deduced from the verb “arrives” to denote the arrival time of the train. This is deduced from 

the sentence where the arrival time is mentioned.   

  

Heuristic HA5: An adjective can be an attribute type (Chen, 1983; Tjoa and Berger, 1993) 

 

An adjective is a word or phrase naming an attribute, added to or grammatically related to a 

noun to modify it or to describe it. An adjective is said to correspond to an attribute of an 

entity. For example: 

 

“The large photo album has extra charges on delivery”.  

 

The adjective “large” may indicate an attribute of type “size” for the entity “photo album”.  

 

Heuristic HA6: Genitive case in the noun phrase may indicate an attributive function (Tjoa 

and Berger, 1993) 
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Case genitive indicates possession, or a relationship to another noun similar to that 

expressed by “of” in English. As stated under Heuristic HE6, a case genitive may suggest 

an attributive function. This can be shown in the following: 

 

“The employee’s name is stored”. 

 

 The noun “name” may suggest an attribute type to the entity type “employee”. 

 

4.1.3 Heuristics to determine relationship types 

This section presents previously published heuristics to determine relationship types. These 

are as follows:  

 

Heuristic HR1: An adverb can indicate an attribute for relationship (Chen, 1983) 

 

An adverb is a word or phrase that modifies or qualifies another word, expressing a relation 

of place, time, circumstance, manner, cause or degree. The following shows an example of 

an adverbial phrase: 

 

“The employee visits the site a maximum of twice a week”. 

  

In this example, both “employee” and “site” are nouns and can be considered as entity 

types. The verb “visits” corresponds to the relationship type. The adverbial phrase “twice a 

week” describes the frequency of “visits”. Therefore, an attribute called “frequency of 

visit” can be linked to the relationship “visit”.     

 

Heuristic HR2: A transitive verb can be a candidate for relationship type (Chen, 1983) 

 

A transitive verb is where a main verb requires a direct object to complete the sentence. It 

may be a candidate for a relationship type. An example is shown below: 

 

“A borrower may borrow many books”. 
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Note from the above example that “borrower” and “books” are both entity types. 

“Borrower” is the subject followed by “books” as the direct object. The verb “borrow” is a 

transitive verb and therefore corresponds to a relationship type.  

 

4.1.4 Heuristics to determine cardinality types 

Tjoa and Berger (1993) presented only one of the many heuristics they claimed to 

determine cardinality types: 

 

Heuristic HC1: A noun or a prepositional phrase whose noun is singular gets a minimal 

and maximum cardinality of 1 (Tjoa and Berger, 1993) 

 

Consider this example: 

“The single room is meant for only one guest”. 

 

In this example, “room” and “guest” are both singular nouns and these may suggest that the 

cardinality is of type one-to-one. 

 

4.2 Proposed new heuristics 

Due to the desire to improve the accuracy of results, an additional set of new heuristics is 

proposed here. These may be viewed as additional syntactic heuristics which may help to 

improve the results in the determination of ER elements from English natural language 

requirements’ specifications. Only heuristics based on syntax are considered and proposed. 

These heuristics are presented in the following subsections. 

 

4.2.1 Heuristics to determine entity types 

The following are a set of proposed heuristics to determine entity types: 

 

Heuristic HE6: If a noun occurs before a genitive, it may indicate an entity type 
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A genitive case indicates that the noun is dependent on the noun that follows it. The 

genitive case always describes a property situation (possession) or has an attributive 

function.  For example: 

 

“The student’s address is recorded”. 

 

In this example “student” may indicate an entity type.  

 

Heuristic HE7: If compound nouns are present, check the last noun. If it is not one of the 

words in set S where S={number, no, code, date, type, volume, birth, id, address, name}, 

most likely it is an entity type. Else it may indicate an attribute type. 

 

This heuristic places emphasis on the last word of a compound noun to determine whether a 

word is either an entity or attribute. An example is shown below: 

 

“The registration office also keeps a record of the registration number and registration 

date”. 

 

“Registration office”, “registration number” and “registration date” are all compound 

nouns. In this example, “registration office” suggests that the noun is an entity type as its 

last noun does not belongs to set S. Both “registration number” and “registration date” 

suggest that they are attribute types. 

 

Heuristic HE8: If a noun occurs before the verb ‘has’/ ‘have’, it may indicate an entity type 

 

For relationships of the form A have/has B where A and B are both nouns, the occurrence 

of A may indicate that it is an entity. This is true in cases where the relationship between A 

and B implies B instance-of A or B component-of A. This is illustrated in the following 

example: 

 

“Each piece of equipment has an equipment number and a description”. 
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In this example, “equipment” may suggest that it is an entity type due to its occurrence 

prior to the “has” verb phrase. 

   

Heuristic HE9: If a noun occurs before the verb ‘identified by’, it may indicate an entity 

type 

 

The verb phrase “identified by” is commonly used in database problem specifications to 

indicate the instances of an entity type. Therefore, the noun that occurs before the verb 

phrase may imply that it is an entity. For example: 

 

“Suppliers are identified by supplier id”. 

 

“Supplier”, in this case, may indicate an entity type. 

 

4.2.2 Heuristic to determine non-entity types 

A proposed heuristic to determine non-entity types is presented below: 

 

Heuristic HEX: If a noun belongs to any of the set X where X= {record, database, 

company, system, information, organization, detail, interest, number, track} exclude it as a 

potential entity type candidate 

  

A noun such as record, database, company, system, information and organization may not 

be a suitable candidate for an entity type. For example, company may indicate the business 

environment and should not be included as part of the entity types. For example: 

 

a) “An insurance company wishes to create a database to keep track of its operations”. 

b) “An organization purchases items from a number of suppliers”. 

c) “A database on diets is to be maintained that can store any number of diets”. 

d) “A record is kept of customer payments and each customer is allocated a status 

depending on their history”. 

e) “A hospital wishes to computerize its information about staff, wards, patients and 

operations”. 
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4.2.3 Heuristics to determine attribute types 
 

Proposed heuristics to determine attribute types are: 

 

Heuristic HA7: A noun phrase which precedes the verb phrase “is/are stored”, “is/are 

recorded” or “is/are kept” or the phrase “is/are of interest” may indicate the presence of 

attribute types 

 

All the verb phrases indicated above usually indicate storage of data. This commonly refers 

to storage of attributes. The noun phrase “is/are kept” is mainly used in American English. 

Examples are as follows:  

 

a) “The time and source of each document are stored”. 

 

The attribute types that can be derived from this sentence are “time” and “source”. 

 

b) “Each patient has a unique number and information such as his or her date of birth, 

address and occupation is stored”. 

 

In this sentence, the nouns that may indicate attribute types are “number”, “date of birth”, 

“address” and “occupation”. 

 

c) “The hour and length_of_use are recorded”. 

 

In this example, the nouns “hour” and “length_of_use” may indicate attribute types. 

 

d)  “The booking number and room number are kept”.   

 

 “Booking number” and “room number” may indicate attribute types in the given example. 
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Heuristic HA8: If a noun is followed directly by another noun and the latter belongs to set 

S where S={number, no, code, date, type, volume, birth, id, address, name}, this may 

indicate that both words are an attribute. Otherwise,  it is most likely an entity (HE7). 

   

In this case, the last word of a compound noun is checked to determine whether the noun 

belongs to set S as described above. If it does, there may be a possibility that the compound 

noun is an attribute type. An example is as follows: 

 

“Every project has a project number and completion date”. 

 

“Project number” and “completion date” both may indicate attribute types of “project”.  

 

4.2.4 Heuristics to determine relationship types 

A set of proposed heuristics to determine relationship types are presented here.  

 

Heuristic HR3: The preposition “for” can indicate a relationship type 

 

A preposition relates nouns, pronouns and phrases to other words in a sentence. The 

preposition ‘for’ may indicate a relationship type where the subject and the object are entity 

types. This is shown in the following example: 

 

“Rooms are available for hire”.  

 

In this case, both  “rooms” and  “hire” are entity types related through the preposition “for”.  

 

Heuristic HR4: A verb followed by a preposition such as “on”, “in”, “by” and “to” may 

indicate a relationship type 

 

A verb may typically indicate a relationship type. However, this may not be true in all 

cases. Consider this example: 

 

“All employees work six days a week”. 
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In this example, the verb “work” may not represent a direct relationship type. On the other 

hand, a verb followed by a preposition may indicate a relationship type. For example: 

 

“People work on projects”.  

 

In this example, “work on” represents a relationship type between the entity types “people” 

and “projects”. Other examples may include “assigned to” and “managed by”.  

 

Heuristic HR5: A verb that appears before an adjective “many” or “any” may indicate a 

relationship 

  

The adjective “many” or “any” may show the cardinality of an entity in connection with 

another entity. A verb that appears prior to these adjectives may indicate a relationship 

type. This can be shown in the following examples: 

 

“A surgeon may perform many operations”. 

 

In these examples, the verb “perform” that appears prior to the adjective “many” may 

indicate a relationship type. 

 

4.2.5 Heuristics to determine cardinality types 
 

The cardinality or degree of a relationship is concerned with the maximum participation of 

entity types. Adjectives, cardinal numbers and nouns may determine the cardinality of 

relationship types. Proposed heuristics to determine cardinalities are presented below: 

 

Heuristic HC2: The adjective “many” or “any” may suggest a maximum cardinality 

 

A maximum cardinality usually signifies more than one occurrence of an entity type. Thus, 

the adjectives “many” or “any” are often used in requirements’ specifications to describe 

this. The following examples illustrate the use of “many” to suggest maximum cardinality: 
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a) “A surgeon can perform many operations”. 

b) “A department may manage many projects”. 

c) “Each diet may be made of any number of servings”. 

d) “Each serving is made up of any number of food elements.” 

 

Heuristic HC3: A comparative adjective “more” followed by the preposition “than” and a 

cardinal number may indicate the degree of the cardinality between two entities 

 

The phrase “more than” is a synonym for the adjective “many” to indicate a maximum 

cardinality. An example is as follows:  

 

“Each patient could have more than one operation”. 

 

However, the phrase may also indicate an occurrence of multivalued attributes within an 

entity such as the example below: 

 

“There may be more than one such address for each supplier”.  

 

In these cases, heuristic HC3 may not apply as cardinalities are only drawn between two 

entity types and not between an entity type and its attributes. 

 

Heuristic HC4: Cardinal number “one” or the adjective “single” may indicate cardinality 

of one 

 

The cardinality of one usually shows that for any single occurrence of an entity type, there 

can possibly be at most one occurrence. Therefore, the cardinal number “one” may indicate 

this type of cardinality. An example is as follows: 

 

“Each project is managed by a single department.” 

 

Heuristic HC5: The noun “none” or the cardinal number “zero” may indicate the lower 

bound of a cardinality  
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The lower bound of a cardinality may indicate that the relationship is optional. The noun 

“none” may be used in this type of cardinality. An example is as below:  

 

“A person may work on none of the projects in his department”. 

 

Heuristic HC6: The phrase “one or more” or the adjective “multiple” may indicate a 

maximum cardinality.  

 

The phrase “one or more” is another synonym to indicate maximum cardinality of a 

relationship type. An example is as shown:  

 

“Each area has one or more representatives”. 

 

4.3 Development of the heuristics 

In order to produce a set of functional heuristics, a number of stages, as shown in Figure 

4.2, were involved. Early in the research work, a collection of existing heuristics from the 

literature were gathered and analysed. The focus of the study at this stage was on 

previously published heuristics, based on natural language syntax, to determine ER models 

from natural language specifications.    

 

The second stage involved the formation of new heuristics, which it was anticipated would 

improve the accuracy of the results of the desired ER models. This involved analysing 

natural language requirements’ specifications of database problems to determine the 

potential new heuristics.    

 

Once both the existing and new heuristics were compiled, a training dataset consisting of 

10 database problems in English were used to test these heuristics. The training dataset can 

be found in Appendix C. At this stage, a manual test was conducted to investigate the 

practicality of each of the heuristics.  
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Figure 4.2 Processes involved in the development of heuristics 

 

The next stage involved the selection of the heuristics to be implemented. The selection of 

each of the heuristics was based on a number of criteria as presented in section 4.6. The 

selected heuristics were then implemented in the transformation tool, ER-Converter. The 

test dataset, which consists of 30 database problems, was used in the final evaluation of 

ER-Converter. The test dataset can be found in Appendix D. 

 

4.4 Heuristic weights 
 

In this research work, similar concepts to certainty factors as used in MYCIN, as given in 

Section 2.3, are adopted to represent uncertainty when dealing with the heuristics. The 

difference in comparison to MYCIN though, is that the negative weights do not mean that 

the confidence level of the evidence is low. Each of the heuristics is given a positive or 

negative weight depending on the level of confidence. Positive weights are assigned to 

entity type, relationship type and cardinality type heuristics. Negative weights are assigned 

to attribute type heuristics. This is due to the fact that a noun may indicate an entity type or 



 

 

75 

 

an attribute type. As relationships and cardinalities deal with different parts-of-speech 

(POS), problems of multiple evidence occurring between the two categories is impossible. 

Relationships are commonly denoted by verbs whereas cardinalities can be identified 

through adjectives or cardinal numbers. Therefore, their weights are assigned with positive 

values only.  

 

The negative weights are assigned such that if more than one heuristic from either the entity 

or attribute type categories are applied to a word, this would reduce the sum of the total 

weights. The sum of weights can be outside of –1 and +1 range. Values approaching zero 

are treated as “low confidence”. Two or more “weak” pieces of evidence are combined to 

give the weight an acceptable level of confidence. When these “low confidence” values fall 

within the threshold of –0.2 and 0.4, the user will be prompted to intervene in deciding the 

word’s ER category. These threshold values resulted from the observations of the training 

dataset, where the occurrences of some multiple contradicting heuristics to a word may 

identify the wrong ER elements if their total weight lies within certain thresholds values. 

Therefore, the aim of the threshold values is to minimize these errors and instead, request 

human intervention in deciding to determine a word’s ER element category. In doing so, 

this task also aims to achieve optimal threshold values where the incorrect results and user 

interventions can be minimised. Early in the investigation, initial threshold values of –0.4 

and 0.4 were used based on intuition. However, as more database problems were processed, 

it was observed that, from the occurrence of two multiple contradicting heuristics on a 

word, HE7 and HA3, where the total weight is –0.3, the word is always an attribute. This is 

due to the fact that the list of suffixes in the set S, as described in heuristic HE7 in section 

4.2.1, is not exhaustive and may be extended to suit any application domains in future 

work. In order to optimise the results, the negative value of the thresholds, -0.4 has been 

changed to –0.2. Table 4.1 shows each heuristic selected for use in the tool, ER-Converter, 

with their assigned weights. The method and justification for their selection is explained in 

Section 4.6.  

 

The heuristics’ weight values are assigned according to the confidence level that the event 

is true. For example, HE1 (one of the heuristics to determine entity types) states that a 

common noun may indicate an entity type. It has been given a weight of 0.5. 
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Though the assignment of the weights is based on intuition, these weights were also 

compared and reflected against the results obtained from the training set. For each of the 

heuristics, the average correctness of the heuristics applied were produced and compared 

against the intuition-based values. As the sample of the training set is small with a total of 

10 examples, it is difficult to place weights simply by judging the results on this basis. In 

addition, the granularity of the weights is not critical at this point. For example, a choice of 

weight with the value of either 0.7 or 0.68 is not likely to make much difference to the 

predicted result. However, when the weight is placed with a 0.1 difference between each 

heuristic (for example 0.8 and 0.9), the total weight would provide a marked indication of 

the ER category for a word, depending on the threshold values. 

 

Heuristic Weight Status 
HEX 100 New 
HE1 0.5 Old 
HE7 0.6 New 
HE8 0.7 New 
HE9 0.7 New 
HA1 -0.9 Old 
HA2 -0.7 Old 
HA3 -0.9 Old 
HA7 -0.5 New 
HA8 -0.8 New 
HR4 0.8 New 
HR5 0.8 New 
HC2 0.9 New 
HC3 0.6 New 
HC4 0.5 New 
HC5 0.5 New 
HC6 0.5 New 

 

Table 4.1: Heuristics’ weights 

 

Most of the values assigned lie between –1 and 1 with the exception of HEX which is 

assigned a value of 100. This value acts as a safe border that differentiates between an 

entity type and a non-entity type. For example, there may be much evidence occurring for a 

word indicating it is an entity type. This is reflected in the total sum of the weights of all 

evidence found. As both entity types and non-entity types have positive values, a value of 

100 and over indicates that a word is a non-entity type. 
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Consider this example: 

 

“A company undertakes projects for clients. The client’s name and address are stored”. 

  

In the first sentence, the noun “company” is identified as a non-entity through the 

application of HEX. It has been assigned a weight value of 100. There is evidence that 

suggests “client” is an entity type from the application of heuristic HE1. HE1 states that a  

noun may indicate an entity type. However, in the second sentence, “client” may be an 

attribute type due to the occurrence of the phrase “are stored” as described in heuristic 

HA7. The total weight of the two heuristics is the summation of both weights ((-0.5) +0.5) 

which results in 0. This value lies between thresholds –0.2 and 0.4 inclusive which triggers 

prompting for user assistance in determining the category of the word “client” (either an 

entity type or attribute type).  

  

4.5 Results on training dataset 
 

In order to test the newly developed heuristics, a manual test was completed prior to the 

implementation of an automated tool, ER-Converter. This stage is seen as an important 

phase as the heuristics’ contributions need to be ascertained before proceeding to the 

implementation phase. Ten examples, as given in Appendix C, were selected as the training 

dataset. These examples, which are natural language requirements’ specifications, were 

gathered mainly from database text books.    

 

Table 4.2 presents the training dataset results. The evaluation measures considered at this 

stage are Correct, Incorrect and Ask User. Correct refers to an entity relationship (ER) 

element in the solution that matches an element in the ‘answer key’ which were solutions 

produced by a human analyst. An ER element is regarded incorrect if there is a 

contradicting match with the answer key. An ER element is categorised under Ask_User 

when the total weight lies between the threshold of –0.2 and 0.4 and user assistance is 

requested in obtaining its ER category.  
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 Example Correct Incorrect 

Ask 

user % correct 

Dept. Proj 25 0 1 96.2

Instr_Course 29 1 0 96.7

Supplier 22 1 0 95.7

Hospital 44 7 2 83.0

Vehicle 

Registration 14 3 1 77.8

Articles 29 4 2 82.9

Buildings 25 4 2 80.7

Documents 19 1 0 95.0

Vehicle Driver 17 2 0 89.5

Training Course 34 10 0 77.3

Average 87.5

 

Table 4.2 Training dataset results 
 

In Table 4.2, both Vehicle Registration and Training Course have a low percentage 

correctness. Most of these errors resulted from the use of the conjunction ‘and’ in the 

sentences, whereby the nouns occurring after this conjunction are treated as entity types. As 

this does not hold true for all cases as the nouns may also imply attribute types, this 

contributes most of the errors in both examples. The overall percentage of correctness of 

the training dataset is 87.5%. This indicates that the heuristics-based approach is viable. 

However, the contribution of the new heuristics needs to be ascertained in order to 

determine their utility. 

 

Table 4.3 shows contribution of the new heuristics for each example in the training dataset.  

The following formulas (1) and (2) are used to calculate the contribution of the heuristics: 

 

                  

(1)

( 2 )

Frequency _ correct _ new
Contribution _ new

Frequency _ correct _ new Frequency _ correct _ old
=

+

Frequency _ correct _ old
Contribution _ old

Frequency _ correct _ new Frequency _ correct _ old
=

+
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The previously published heuristics contribute most in the training dataset results with an 

average of 62.3%. However, based on these training dataset results, it can be concluded that 

the new heuristics show adequate contribution that merits further steps to be taken in terms 

of implementation to confirm this on a larger dataset. 

 

 

Example 

Frequency  

correct (new) 

Frequency 

correct (old) 

 

% contribution 

(new) 

 

% contribution 

(old) 

Dept. Proj 6 19 24.0 76.0 

Instr_Course 6 23 20.7 79.3 

Supplier 9 13 40.9 59.1 

Hospital 17 27 38.6 61.4 

Vehicle Registration 7 7 50.0 50.0 

Articles 10 19 34.5 65.5 

Buildings 8 17 32.0 68.0 

Documents 4 15 21.1 78.9 

Vehicle Driver 6 11 35.3 64.7 

Training Course 27 7 79.4 20.6 

Average 37.7 62.3 

 
Table 4.3 Contribution of new and old heuristics 

 

4.6 Justification on heuristics’ selection 
 

Presented with a collection of existing and newly proposed heuristics, a decision needs to 

be made on selecting a set of heuristics for the implementation. In the context of this 

research, ideally the three defining criteria that can be used for heuristic’s selection 

includes: 

a) application can be automated 

b) frequency of use and percentage of correctness 

 

For the manual investigation using the training dataset, criterion (b) has been chosen to 

select the heuristics. An analysis on the frequency of count,  percentage of use and 

percentage of correctness for each of the heuristics (both existing and new) is carried out 

and the result is presented in Table 4.4.  
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Heuristic Weight ER-element Old/ 

New 

 

Frequency 

count of 

heuristics 

applied 

%  use % 

correct 

Selection 

(Yes/No) 

Difficulty 

of 

automation 

(High/Low) 

HEX 100 Non entity New 31 9.9 93.5 � Low 

HE1 0.5 Entity Old 135 43.3 82.2 � Low 

HE3 0.5 “ Old 0 0.0 - � Low 

HE4 0.5 “ Old 0 0.0 - � Low 

HE5 0.5 “ Old 0 0.0 - � High 

HE6 0.5 “ New 1 0.3 100.0 � Low 

HE7 0.6 “ New 18 5.8 77.8 � Low 

HA1 -0.9 Attribute Old 32 10.3 93.8 � Low 

HA2 -0.7 “ Old 16 5.1 100.0 � Low 

HA3 -0.9 “ Old 12 3.8 100.0 � Low 

HA4 -0.4 “ Old 0 0.0 - � High 

HA5 -0.3 “ Old 0 0.0 - � Low 

HA6 -0.3 “ Old 1 0.3 0.0 � Low 

HA7 -0.5 “ New 24 7.7 79.2 � Low 

HA8 -0.8 “ New 13 4.2 100.0 � Low 

HR1 0.5 Relationship Old 0 0.0 - � Low 

HR2 0.5 “ Old 0 0.0 - � High 

HR3 0.3 “ New 1 0.3 0.0 � Low 

HR4 0.8 “ New 19 6.1 89.5 � Low 

HC1 0.5 Cardinality Old 0 0.0 - � Low 

HC2 0.9 “ New 4 1.3 100.0 � Low 

HC3 0.6 “ New 4 1.3 100.0 � Low 

HC4 0.5 “ New 2 0.6 50.0 � Low 

Total    313 100    

 

Table 4.4: Frequency count of heuristics applied in the training sets 
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Frequency _ of _ heuristics _ applied
Use 100

Total _ frequency _ of _ heuristics _ applied
= ×

The selection of the final heuristics is based on the percentage of use and correctness of 

each of the heuristics when applied to the training set. The following formula is used to 

calculate each of the heuristics’ use in the training set: 

 

 

 

 

A heuristic was selected if it was applied in more than one case. In addition to the selected 

heuristics in Table 4.4, five new heuristics were added to the final list. These are HE8, HE9 

HC5, HC6 and HR5. These additional heuristics resulted from the refinement of existing 

heuristics and new evidence found prior to the selection of the test dataset. The refinement 

of the existing heuristics resulted after the manual test was carried out. For example, 

heuristic HE8 states that if a noun occurs before the verb ‘has’/ ‘have’, it may indicate an 

entity type. Previously, only nouns that occur after the verb phrase were considered to 

denote attribute types, as defined by heuristic HA3. 

 

One of the existing heuristics, HE2, is omitted from the selection. The main reason for the 

omission is due to the fact that HE2 is a subset of HE1. Since common nouns occur 

regularly in the specifications, the application of both heuristics at the same time would 

lead to biases. This is due to the fact that the chances that a noun is an entity are always 

higher due to the total weight of both heuristics. Thus, a decision was made to omit HE2 

from the selection. 

 

4.7 Summary 

 

This chapter has discussed heuristics in general and their application to database design. 

The main focus of this chapter is on the previously published heuristics found in the 

literature and the proposal of a set of new heuristics to improve the results from the semi-

automatic generation of ER models based on natural language requirements’ specifications. 

A manual test shows 87.5% correctness in determining the ER elements using the 

combination of both the new and existing heuristics. The new heuristics contribute 37.7% 

towards the correctness of the results. This provides a solid ground for the proposed 
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heuristics to be implemented. A total of 12 previously published and newly proposed 

heuristics out of 21 in total were selected for the implementation, as listed in Appendix E. 

The next chapter discusses the implementation of the previous and newly proposed 

heuristics in an automated tool, ER-Converter.  
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Chapter 5  

 

ER-Converter 

 
 

In the previous chapter, a heuristics-based methodology was proposed to transform a 

natural language requirements’ specification in English into an Entity-Relationship (ER) 

model. This chapter discusses how this approach has been implemented. The tool is called 

ER-Converter and is implemented in Perl. Section 5.1 discusses how the input text is 

syntactically analysed by ER-Converter and how the output of this analysis is used to 

derive the elements of the ER model based on the application of heuristics. A worked 

example is used to illustrate the application of the heuristics. 

 

5.1. The Entity-Relationship Converter tool 

Figure 5.1 shows the architecture of the ER-Converter tool. Natural language requirements’ 

specifications are to be parsed by the Memory Based Shallow Parser (MBSP) before any 

further processing is performed. The parsed and tagged file is then analysed by ER-

Converter to produce the ER elements from the specification.  

 

The size of the ER-Converter program is approximately 1200 lines of code. On average, 

ER-Converter takes 1 second to completely process a specification and generate the ER 

elements, but this excludes the parsing. The parsing takes approximately 1.5 seconds to 

parse a sentence and produce the part of speech tags for each word in the sentence. The size 

of the specifications range from 24 to 100 words each. For the testing, a Pentium II 

computer system, which runs Windows ME, was used. The hard disk was 20GB with 

248MB RAM.  

 

 

 



 

 

84 

 

 

Figure 5.1: Architecture of ER-Converter tool  

 

The processing task requires several steps to be carried out in order to achieve the desired 

ER model from the natural language input, each of which is listed below:  

 

• Step 1: Part of speech tagging using Memory-Based Shallow Parser (MBSP) 

• Step 2: Identification of attributes and entities from tagged text file 

• Step 3: Human intervention 

• Step 4: Attachment of attributes to their corresponding entity 

• Step 5: Attachment of entities to their corresponding relationship 
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• Step 6: Attachment of entities to their corresponding cardinality 

• Step 7: Output of final result 

 

The following sections detail each of the steps involved. An example scenario called 

‘Company’ is used throughout these steps to illustrate the tasks carried out: 

    

The company is organized into departments. Each department has a unique department 

name and a unique number. A department may manage many employees but an employee 

can only be managed by one department. The employee name and employee id are 

recorded.  A department may have several locations. 

 

Figure 5.2 shows the completed ER model, a diagrammatic form or the ‘answer key’ for the 

given scenario. 

 

 

Figure 5.2: An Entity-Relationship model of the ‘Company’ scenario 

 

5.1.1 Part of speech tagging using Memory-Based Shallow Parser (MBSP) 
 

The process begins by reading a plain text file containing a requirements’ specification of a 

database problem written in English. Examples of such specifications can be found in 

Appendix C. In order to obtain the corresponding syntactic category for each word, the 

sentences must be parsed. For this purpose, a parser is required to obtain each word’s part-

of-speech (POS) tag. Part of speech tagging means assigning each word in an input 

 
Department manages Employee 

name 

number 

location 

1 M 

Name Id 
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sentence its proper part of speech such as noun, verb and determiner to reflect the word’s 

syntactic category (Brill, 1992). The parser used here is Memory-Based Shallow Parser 

(MBSP) (Zavrel and Daelemans, 1999), which includes a Memory-Based Tagger (MBT) 

(Daelemans et al., 1996) to produce part-of-speech tags for each word in a sentence. MBT 

takes an annotated corpus as input, and produces a lexicon and memory-based POS tags as 

output. The POS tags provide a useful abstraction of words whereby words can be 

classified according to their POS classes. For example, a noun may indicate a potential 

entity or attribute depending on its context. The result obtained from the last sentence from 

the ‘Company’ scenario using MBSP is shown in Table 5.1: 

 

Words tagged Result Meaning 

 (Penn Treebank POS) 

A DT Determiner 

department NN Noun, singular mass 

may MD Modal 

have VB Verb, base form 

several JJ Adjective 

locations NNS Noun, plural 

. . . 

 

Table 5.1: Example using MBSP 

 

5.1.2 Identification of attributes and entities from tagged text file 
 

The parsed and tagged text is then fed into ER-Converter to identify suitable data modelling 

elements from the specification. The aim at this stage is to extract the nouns, verbs and 

adjectives which are the indicators of the entities, attributes, relationships and cardinalities 

of an ER model from the tagged input. Normally, a noun may indicate an entity or an 

attribute. A verb may indicate a relationship. A cardinal number or an adjective may 

indicate cardinality. The input text is read and processed sentence by sentence by ER-

Converter.  

 



 

 

87 

 

The set of heuristics identified in Chapter 4 are applied to further determine which ER 

element (entity, attribute, relationship or cardinality) a word belongs to. This is the core 

part of text analysis in ER-Converter. Heuristics are applied to any relevant words within 

certain word categories that meet the heuristics’ criteria. As there are exceptions and 

ambiguities when dealing with the ER constructs, a human instructor may overrule these 

heuristics at a later stage. 

 

Part of the algorithm to apply a selection of heuristics to determine entities and attributes is 

presented in Figure 5.3. In this context, ‘apply’ refers firstly to the identification of a match,  

which meets the heuristic’s condition. When a match is found, the applied heuristic’s name, 

weight value, sentence number and the ER element it indicates are stored in a record. The 

ordering of the heuristics under the same category (for example, heuristics to determine 

entities) is not significant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Extract from the algorithm for heuristics to determine entities and attributes 
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In ER-Converter, the heuristics for determining entities and attributes are applied first 

followed by the heuristics for determining relationships and cardinalities. This is performed 

in such a way that entities and attributes are already determined once the relationships and 

cardinalities are identified to enable the necessary attachments of the corresponding entities 

to these ER elements. Figure 5.4 shows an extract from the algorithm to identify 

relationships. 

 

 

Figure 5.4 Extract from algorithm for heuristics to determine relationships 

 

Before an attachment is completed, the roles of the nouns to be attached to the relationships 

are checked to ensure that they have been identified as ‘entities’. A similar procedure is 

used to determine cardinalities from the parsed and tagged text file. Figure 5.5 shows an 

extract from the algorithm to determine cardinalities: 

 

To illustrate the processes used, consider the following sentence from the ‘Company’ 

scenario:  

 

“A department may have several locations.” 
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Figure 5.5 Extract from algorithm to determine cardinalities 

 

From this sentence, the noun ‘department’ appears before the ‘have’ phrase. ER-Converter 

will deal with this by applying heuristic HE8 (as described in Section 4.2.1) that states that 

a noun that occurs before the verb ‘has/have’ may indicate an entity type. The 

corresponding information regarding the application of the heuristic is stored and updated if 

there is further evidence that suggests ‘department’ is an entity type or otherwise. Figure 

5.6 shows the structure of the record where information on each relevant word is stored. 

WORD stores the relevant word to which a heuristic is applied. WORD_SENTENCE_NO 

stores the position of the sentence where the word is found. This information may also be 

needed for attachment purposes, like the attachment of an attribute to its entity. 

HEURISTIC_APPLIED keeps an array of heuristics applied to the particular word being 

stored. TOTAL_WEIGHT is the total weight of all the heuristics applied to the word. 

VALUE assigns the ER element of the word, i.e. whether it is an entity, attribute, a 

relationship or a cardinality. All this information is needed for the analysis and the 

determination of the ER element value a word indicates. 

 

Weights are assigned to each heuristic to determine the confidence of the ER element a 

word is assigned to. Each heuristic carries different weights (as discussed in Section 4.4). 

All weights for entity types, relationship types and cardinality types carry positive values. 

For attribute types, all of the weights are assigned negative values, i.e. if a situation occurs 
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$myrec = { 
         WORD              => $string, 
         WORD_SENTENCE_NO  => [@word_sentence_no], 
         HEURISTIC_APPLIED => [@applied], 
         TOTAL_WEIGHT      => $weight_value, 
         VALUE             => $er_element, 
};  

 

Figure 5.6: Record structure to store words’ information 

 

where a noun may represent an attribute type and at the same time it may also indicate as an 

entity type, the negative weight will reduce the strength of the noun as a strong entity type. 

These are the only two categories that may have conflicting evidence as a noun may 

represent an entity type or an attribute type. Other heuristics for the relationship types and 

cardinality types will not contradict each other as they deal with different POS tags. 

Relationship types are mostly based on verbs and therefore their weights are assigned with 

positive values. 

 

Each word may have single, multiple or contradicting heuristics applied to it. The 

construction of the sentences often influences this decision. An example where multiple 

heuristics are applied is as follows: 

 

“Each department has a unique department name and a unique department number.” 

  

The compound noun “department name” consists of two compound nouns. As its second 

noun “name” belongs to the set S (as described in Section 4.2.3), “department name” may 

indicate an attribute type and therefore HA8 is applied. As it also appears after the verb 

‘has’, HA3 is also applied. Therefore, the extracted output from ER-Converter regarding 

this sentence is as below: 

 

department/NN name/NN has been applied with HA8, HA3 

at sentence 2,2.1  

                                                 
1 The number 2,2 refers to the sentence where each of the heuristic, i.e. HA8 and HA3 are applied. In this 
example both heuristics are applied at sentence 2. 
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In this case, the multiple evidence falls under the same category and would therefore 

strengthen a word’s certainty factor in being correctly categorized as an attribute. On the 

other hand, if there was contradicting evidence occurring for the word, this may suggest 

otherwise. This conflicting evidence needs to be resolved. Therefore, each heuristic is 

assigned a weight depending on the confidence level. An example shows the output of ER-

Converter on a word from the sample sentence and its corresponding total weight: 

 

department/NN name/NN has been applied with HA8, HA3. 

at sentence  2, 2. 

It has the total weight of -1.7 

The value is Attribute 

  

In the output, details regarding the heuristics applied, the sentence number where they are 

applied and the total weight is shown. In the example given, two heuristics, HA8 and HA3 

are applied, both at sentence number 2 through the indication ‘at sentence 2, 2’. The 

combined weight of all heuristics applied is used to determine the if a word is an attribute 

or an entity, with negative values implying an attribute and positive values implying an 

entity. 

 

5.1.3 Human intervention 
 

At this stage, a human instructor may have been requested to intervene if a conflict arises in 

determining the ER category of a word. In cases where multiple heuristics are applied to a 

word that may indicate it being an entity and an attribute and the total weight lies between 

the threshold of –0.2 and 0.4 as explained in section 4.4, human intervention is requested. 

Once a response is received from the user, the value will be updated to reflect the changes. 

User intervention is mostly requested to solve contradicting evidence resulting from entity 

types and attribute types.  
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5.1.4 Attachment of attributes to their corresponding entities 
 

The next step requires each attribute type identified to be attached to its parent entity type. 

There are two situations in which ER-Converter considers the attachment. This is 

elaborated as follows: 

 

a) When the association is clear 

 

The attachment of attributes to their corresponding entities are possible when the 

relationship is visibly mentioned in the specification text. For example, consider the 

sentence below from the ‘Company’ scenario: 

 

“Each department has a unique department name and a unique number.” 

 

From the example, the verb ‘has’ indicates an association between the entity ‘department’ 

and attributes ‘department name’ and ‘number’. In order to attach the attributes to their 

parent entity, heuristics applied to the words are used to establish these relationships. The 

link between the applied heuristics to the words in the same sentence may help to establish 

the attachment. Table 5.2 shows the relation between heuristics in the attachment process: 

 

Entity type 

heuristic 

Attribute type 

heuristic 

HE8 HA3 

HE9 HA2 

 

Table 5.2: Relationship between heuristics for determining attribute attachment 

 

HE8 states that if a noun occurs before the verb ‘has/ have’, it may indicate an entity type. 

HA3 states that if a noun occurs after the verb ‘has/have’, it may indicate an attribute type. 

These two heuristics are directly related to each other and can be used to attach the 

attributes with their corresponding entity. HE9 and HA2 both concern the identification of 
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entity type and attribute type from the verb ‘identified by’. A sample output from the 

example given shows the attachment of attributes to the entity ‘department ’: 

 

The entity is department/NN 

The attributes are  

department/NN number/NN,locations/NNS   

 

b) When no direct relation is mentioned in the text 

 

In some cases, the direct relationship between the attributes and their parent entity is not 

explicitly given in the text. Consider this example: 

 

“The employee name and employee id are recorded.”  

 

‘Employee name’ and ‘employee id’ are both attribute types. As there is no indication in 

this particular sentence to show that ‘employee’ and these attributes are related, the 

attachment between these ER elements may be overlooked due to lack of world knowledge. 

However, the entity ‘employee’ and the attribute ‘employee address’, for instance, may 

indicate that there is a relationship of entity-attribute between these two items based on the 

similarity of their names.  Assuming that ‘employee’ is mentioned somewhere else in the 

text which indicates that it is an entity type, ER-Converter attempts to attach all the 

attributes with the suffix from set S where S ={number, no, code, date, type, volume, birth, 

id, address, name} to that entity. The output from this given example is shown as follows: 

 

The entity is employee/NN 

The attributes are  

employee/NN name/NN,employee/NN id/NN 

 

c) When no relation is stated 

 

In cases where there is no relation mentioned between entities and their attributes explicitly 

in the text and the attributes fall outside the set S, both the entities and attributes remain 

unattached. 
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5.1.5 Attachment of entities to their corresponding relationships 
 

The relationship types are identified through the application of heuristics HR4 and HR5, as 

discussed in Section 4.2.4. Both deal with a verb that is followed either by a preposition or 

an adjective to determine the relationship type. Entity types to be attached to the 

relationship type are determined prior to the attachment of the relationship to them. Nouns 

that occur prior and post to the verb, which have been identified as entity types, are the 

candidates for the entities to be attached. Consider the following example from the 

‘Company’ scenario: 

 

 “A department may be managed by an employee.” 

 

In the given example, HR4 is applied to the verb and preposition ‘managed by’ indicating it 

as a relationship type. The entities attached to this relationship are ‘department’ and 

‘employee’ as both nouns occur on the same sentence and were identified previously as 

entity types. The output is shown as follows:   

 

From the relationship record: 

The relationship is managed/VBN by/IN 

1st entity is department/NN 

2nd entity is employee/NN 

at sentence  3 

 

5.1.6 Attachment of entities to their corresponding cardinality 
  

The cardinality, sometimes referred to as a degree of a relationship, concerns the maximum 

number in the participation of entity types. Basically, the cardinality can be represented as 

follows: 

 

a) one-to-one (1:1) 

b) one-to-many (1:M) 

c) many-to-many (M:N) 
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Cardinality types are identified through the use of adjectives like ‘many’ or cardinal 

number ‘one’ in the input text. The process of attaching the corresponding entities to its 

cardinality is similar to the attachment in relationship types. Nouns that occur prior and 

post to the cardinalities, which have been identified as entity types, are the candidates for 

the entities to be attached. There is a constraint in the ‘Company’ scenario where a 

department may manage many employees but an employee can only be managed by one 

department. In this case, ER-Converter will apply the appropriate heuristics, i.e. HC2 for 

the adjective “many” to indicate a many-sided cardinality and HC4 for the cardinal number 

“one” to show a one-sided cardinality. ER-Converter will represent this as two separate 

cardinalities.     

 

From the cardinality record: 

The cardinality is many (department/NN, employee/NN) 

at sentence  5 

The cardinality is one (employee/NN, department/NN) 

at sentence  5 

 

The first cardinality represents the many-sided from department to employees whereas the 

second cardinality represents the one-sided from employee to department.  

 

5.1.7 Output of final result 
 

ER-Converter produces five types of output (in text format): 

• A list of candidate entity types and their corresponding attributes  

• A list of relationship types and their corresponding entities 

• A list of cardinality types and their corresponding entities 

• A list of individual ER elements (entities, attributes, relationships or cardinalities) 

with the heuristics applied, the sentence number where these are applied, the total 

weight and the ER element assigned to the word. 
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An extract of the overall output from the ‘Company’ scenario is presented in Figure 5.7. 

 

The entity is employee/NN 
The attributes are  
employee/NN name/NN,employee/NN id/NN, 
 
The entity is department/NN 
The attributes are  
locations/NNS,department/NN name/NN,department/NN number/NN, 
 
From the relationship record: 
The relationship is managed/VBN by/IN 
1st entity is employee/NN 
2nd entity is department/NN 
at sentence  2 
 
From the cardinality record: 
The cardinality is  many (department/NN,employees/NNS) 
at sentence  2 
The cardinality is  one (employee/NN,department/NN) 
at sentence  2 

 

Figure 5.7: Extract of output from ‘Company’ scenario 

 

5.2 Summary 
 

This chapter has presented the implementation of ER-Converter, which transforms natural 

language input database specifications text into ER-models using a heuristics-based 

methodology. The architecture of ER-Converter was presented and explained. The seven 

steps involved in the processing of ER-Converter were described. A sample scenario, 

‘Company’ was used throughout the Chapter to illustrate the various steps involved in 

translating natural language specifications into ER models. The final output from ER-

Converter is presented in the final section. The aim is to achieve the closest match as 

possible to the ER model in the ‘answer key’. The following chapter will discuss a more 

detailed quantitative evaluation of ER-Converter’s results. 
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Chapter 6 
 
 
Experimental results 
 
 
 

One of the main objectives of this research is to develop heuristics as a technique to 

transform natural language requirements’ specifications to Entity-Relationship (ER) 

models.  This chapter will present and discuss the results of experiments carried out using 

the heuristics discussed in Chapter 4 and the ER-Converter tool discussed in Chapter 5. An 

overview of evaluation types and approaches adopted are presented whilst the evaluation 

metrics are introduced and the evaluation results are discussed.  

 

6.1     Evaluation types 

Evaluation plays an essential role in natural language processing for both system 

developers and users. It also plays a crucial role in guiding and focussing research.  

Hirschman and Thompson (1995) broadly distinguish three kinds of evaluation, appropriate 

to three different goals: 

 

6.1.1 Adequacy evaluation 

This type of evaluation determines the fitness of a system for a given task. Basically it 

evaluates whether the system does what is required and how satisfactorily the task is carried 

out. 

 

6.1.2 Diagnostic evaluation 

This refers to the production of a system performance profile with respect to some 

classification of the possible inputs or test suites. It usually involves a large amount of data 

as this is needed to determine the coverage of the system and fix any faults if found. 
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6.1.3 Performance evaluation  

This type of evaluation measures the performance of a system in one or more specific areas. 

It is useful in cases where a comparison is made between two different implementations of 

a technology or successive generations of the same system. Performance evaluation has 

long been used in information retrieval and many of its concepts have now been suitably 

adopted to the area of natural language processing.  Generally, there are three levels of 

specificity that are considered when performance evaluation is carried. The concepts that 

must be taken into account are:  

 

• Criterion: what are the main interests of the evaluation? (e.g. precision, error rate 

and speed) 

• Measure: the relevant property of system performance which attempts to determine 

the chosen criterion (for example ratio of hits plus misses, seconds to process and 

percentage incorrect) 

• Method: how the appropriate value for a given measure and a given system is 

determined: some form of concurrent or post-analytic measurement of system 

behaviour over some benchmark task. 

 

The most relevant evaluation in this research is performance evaluation. The main interest 

is the measurement of correctness the system produced in comparison with the correct 

solutions produced manually by human analysts. This will be described in more detail in 

the next section.  

 

6.2    Evaluation metrics 

The following metrics have been applied in accordance with the performance evaluation’s 

level of specificity. Harmain (2000) and Harmain and Gaizauskas (2003) have also adopted 

these metrics in their work. In addition to the existing metrics, new ones are defined to suit 

the need of the quantitative evaluation of this research. 
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6.2.1 Criterion 

The criterion applied is how closely the models produced by the system compare to those 

produced by human analysts (system responses versus answer key) (Harmain, 2000). In ER 

modelling, there is no single solution to a problem as different human analysts can usually 

derive different solutions due to the abstract nature of the problem. Thus, these models 

cannot be categorised strictly as correct or incorrect but rather good or bad (Harmain and 

Gaizauskas, 2003). In the evaluation of this research, the solutions produced by human 

analysts and those provided in database textbooks are considered as good models and 

treated as the standard models or answer key.   

 

6.2.2 Measure 

The approach in this research uses methods for evaluating Information Extraction systems, 

primarily Message Understanding Conferences (MUC) evaluations (Grishman and 

Sundheim, 1996), i.e. recall and precision. These are the basic measures used in evaluating 

search strategies. In any system, both precision and recall should be as close to 100% as 

possible. However, in general, an increase in precision tends to decrease recall and vice 

versa. 

 

In the context of this research, the definition of recall and precision below are adopted as 

used by Harmain and Gaizauskas (2003) and Grishman and Sundheim (1996) and new 

measures are defined. The new measures are undergenerated, ask_user, unattached and 

wrongly_attached. In contrast to both precision and recall, all the new measures introduced 

below should be as close to 0% as possible. The measures employed are as follows:  

 

Recall 

Recall is the percentage of information available that is actually found. In this research 

context, it refers to the percentage of the correct information returned by the system. The 

correct information is then compared with those produced by human analysts or answer 

key. The following formula is used to calculate recall: 
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[1] 

The number of the correct ER elements generated by ER-Converter is represented by 

Ncorrect . The number of the ER elements as present in the answer key or Nkey   is actually the 

number of correct ER elements (Ncorrect) plus the number of ER elements that are part of the 

answer key but wrongly identified in their ER element’s category (Npart_correct), the number 

of missing elements (Nundergenerated) and the number of solutions provided by ER-Converter 

through user intervention (Nask). Thus, the formula is refined as follows: 

 

 

[2] 

Similarly, for the following measures, Nkey = Ncorrect + Npart_correct + Nundergenerated + Nask  

 

Overgenerated 

Overgenerated measures how much extra information is found in ER-Converter output that 

is not found in the answer key. Harmain and Gaizauskas (2003) term this overspecification. 

This may arise from the use of synonyms in the requirements’ specifications. The following 

formula is used to measure overgenerated: 

 

 

[3] 

where Novergenerated  refers to the number of overgenerated items given by ER-Converter 

which are not specified in the answer key.  

 

Undergenerated 

Undergenerated is a measure to represent missing ER elements that are found in the answer 

key but not in the ER-Converter’s output. Nundergenerated represents the number of missing 

items. The following formula [4] is used to measure undergenerated:  

= correct

key

N
Recall

N

correct

correct part _ correct undergenerated ask

N
Re call

N N N N
=

+ + +

overgenerated

correct part _ correct undergenerated ask

N
Overgenerated

N N N N
=

+ + +
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[4] 

Ask_user 

Ask_user measures the degree of user assistance requested of ER-Converter. This user 

intervention is requested when an ER-element has a low absolute value in its weight and 

falls between two thresholds. Nask is the number of the requests for user assistance and the 

formula is as follows: 

Unattached 

Unattached is a measure of ER elements correctly identified by ER-Converter that are not 

attached to their corresponding items. This may refer to attributes that are not attached to 

their corresponding entities and also entities that are not attached to their corresponding 

relationships or cardinalities. This inaccuracy needs to be taken into account as the error 

will be reflected in the output of the system. However, unattached is measured at a second 

level of the evaluation. This is due to the fact that the ER elements that are unattached are 

in fact correct ER elements (Ncorrect), i.e. they are part of the answer key and correctly 

indentified in their corresponding ER element’s category. Nunattach represents the number of 

unattached ER elements. The following formula [6] is used to measure unattached:  

 

 

[6] 

Wrongly_attached 

Wrongly_attached measures the degree of the correctly identified ER elements that are 

wrongly attached to other items. Similar to unattached, wrongly_attached is measured on 

the second level of the evaluation. The number of the wrongly attached items is represented 

by Nwrongattach. The following formula [7] is used to calculate this measure: 

  

[5] 

 

 

[7] 

undergenerated

correct part _correct undergenerated ask

N
Undergenerated

N N N N
=

+ + +

ask

correct part _ correct undergenerated ask

N
Ask _ user

N N N N
=

+ + +

unattach

correct part _ correct undergenerated ask

N
Unattached

N N N N
=

+ + +

wrongattach

correct part _correct undergenerated ask

N
Wrongly attached

N N N N
=

+ + +
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Precision 

Precision is a measure of percentage of correctness of the information produced. It reflects 

the accuracy of the system in obtaining the correct result. The standard precision formula is 

as follows:  

 

 

[8] 

In this research, a more detailed formula is used to evaluate the accuracy of the results 

produced. Apart from Nincorrect, other additional figures such as Nask and Novergenerated need to 

be taken into account. The following formula is thus defined to calculate precision:  

 

 

[9] 

Figure 6.1 shows a Venn diagram to illustrate the concept of evaluation measures used in 

the evaluation of this research. Each set and their meaning is explained in Table 6.1. The 

letters referred to the coloured regions. 

 

 

Figure 6.1: Venn Diagram to illustrate evaluation measures 

 

correct

correct incorrect

N
Pr ecision

N N
=

+

correct

correct part _correct ask incorrect overgenerated

N
Pr ecision

N N N N N
=

+ + + +

 

 

A 

B 
C F 
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Set Meaning 

A∪B∪C∪E The set of correct elements produced by human 

analysts or known as answer key.  

A∪C∪D∪E∪F The set of elements retrieved by ER-Converter. 

A The set of correct elements retrieved by ER-Converter. 

B The set of correct elements not retrieved by ER-

Converter or undergenerated.  

C The set of partially correct elements retrieved by ER-

Converter whereby the elements are part of the answer 

key but wrongly identified in their ER element 

categories. 

D The set of incorrect elements retrieved by ER-

Converter.  

E The set of elements whereby ER-Converter requests 

assistance from the user.  

F The set of overgenerated elements retrieved by ER-

Converter.  

 

Table 6.1. Definition of each of the sets in Venn Diagram (Figure 6.1) 

 

6.2.3 Method 

A manual method has been employed where the results produced by the system are 

compared with the answer key. The ER elements evaluated under this study include 

entities, attributes, relationships and cardinalities. Each of the correct answers that matches 

the answer key is given one point. For every error or mismatch that occurs, each of these is 

also given a point, each depending on its category. These errors can either be classified as 

incorrect, overgenerated, undergenerated, ask_ user, unattached and wrongly_attached. 
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The evaluation is split into two levels. The first level evaluates the results using the 

measures recall, precision, overgenerated, undergenerated and ask_ user. These measures 

are calculated using the formulas defined in Section 6.2.2.  

 

The second level evaluates the attachment errors that occur in the results. The categories 

involved under this evaluation are Unattached and Wrongly_attached. For these categories, 

each of the ER elements below is given a point where they are either unattached or wrongly 

attached: 

 

a) entity 

b) attributes attached to corresponding entity 

c) relationship  

d) entities attached to their corresponding relationship 

e) cardinality  

f) entities attached to their corresponding cardinality 

 

6.3   Evaluation of results 
 

The evaluation results from applying the ER-Converter to the test dataset are presented 

here. The output from ER-Converter is compared against the answer key produced by a 

human analyst. The evaluation methodology as defined in Sections 6.1 and 6.2 is applied 

and the previously existing and new measures are utilized for evaluation purposes. The test 

dataset can be found in Appendix D.  

 

6.3.1 Overall result 

Table 6.2 shows the summary of the results for each sample in the test dataset.  
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Dataset Ncorrect Npart_correct Nincorrect Novergenerated Nundergenerated Nask 

Airplane 9 0 1 0 2 0 
Bank 14 1 2 1 0 1 
Boat hire 8 0 2 0 0 0 
Bus 7 0 2 0 2 0 
Cars 13 0 6 1 0 0 
Clientnew 9 0 0 0 0 1 
Company 16 1 0 0 0 1 
Computernew 11 0 1 1 1 0 
Doctor 8 0 1 0 1 0 
Dreamhome 11 0 3 0 0 0 
Elect_supp 14 0 3 0 0 0 
Employee 12 0 0 0 1 0 
Fault 16 3 2 1 2 1 
Hospitalnew 10 0 3 0 1 0 
Invoice 14 0 0 0 2 0 
Library 14 0 3 0 1 0 
Librarybook 20 0 1 0 2 0 
Machine 11 0 0 1 0 0 
Musician 18 0 0 0 1 0 
Order 18 0 2 2 0 0 
Painter 6 0 0 1 1 0 
Photograph 10 1 1 0 1 0 
Professor 21 0 0 0 1 0 
Project 14 3 0 1 0 0 
Reliablerentals 6 0 1 0 1 1 
Salesrep 9 0 1 0 0 0 
Stud_hall 13 0 0 1 1 0 
Student 12 1 0 0 0 0 
Travel 10 2 1 0 0 1 
Univ_d'base 9 0 3 0 0 0 

 
Table 6.2: Results from ER-Converter applied to test dataset 

 

The raw data from Table 6.2 is then mapped to the formulas defined in Section 6.2. The 

results are given in Table 6.3.  
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Dataset 

Recall 

 (%) 

Precision 

 (%) 

Over 

Generated 

(%) 

Under 

Generated 

(%) 

Ask_ user 

(%) 

Airplane 81.8 90.0 0.0 18.2 0.0
Bank 87.5 73.7 6.3 0.0 6.3
Boat hire 100.0 80.0 0.0 0.0 0.0
Bus 77.8 77.8 0.0 22.2 0.0
Cars 100.0 65.0 7.7 0.0 0.0
Clientnew 90.0 90.0 0.0 0.0 10.0
Company 88.9 88.9 0.0 0.0 5.6
Computernew 91.7 84.6 8.3 8.3 0.0
Doctor 88.9 88.9 0.0 11.1 0.0
Dreamhome 100.0 78.6 0.0 0.0 0.0
Elect_supp 100.0 82.4 0.0 0.0 0.0
Employee 92.3 100.0 0.0 7.7 0.0
Fault 72.7 69.6 4.5 9.1 4.5
Hospitalnew 90.9 76.9 0.0 9.1 0.0
Invoice 87.5 100.0 0.0 12.5 0.0
Library 93.3 82.4 0.0 6.7 0.0
Librarybook 90.9 95.2 4.5 9.1 0.0
Machine 100.0 91.7 9.1 0.0 0.0
Musician 94.7 100.0 0.0 5.3 0.0
Order 100.0 81.8 11.1 0.0 0.0
Painter 85.7 85.7 14.3 14.3 0.0
Photograph 83.3 83.3 0.0 8.3 0.0
Professor 95.5 100.0 0.0 4.5 0.0
Project 82.4 77.8 5.9 0.0 0.0
Reliablerentals 75.0 75.0 0.0 12.5 12.5
Salesrep 100.0 90.0 0.0 0.0 0.0
Stud_hall 92.9 92.9 7.1 7.1 0.0
Student 92.3 92.3 0.0 0.0 0.0
Travel 76.9 71.4 0.0 0.0 7.7
Univ_d'base 100.0 75.0 0.0 0.0 0.0
Average 90.4 84.7 2.5 5.5 1.6

 

Table 6.3 Evaluation results 
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From the results in Table 6.3, it is observed that ER-Converter achieved a high average 

recall of 90.4%. ER-Converter has successfully produced relevant Entity-Relationship (ER) 

elements, i.e. elements that matched 100% of the answer key, in 23% of the problems. With 

a high degree of recall, the heuristics-based ER-Converter is capable of applying the 

corresponding heuristics to the relevant items. An investigation revealed that all of the 

missing or undergenerated items are either relationships or cardinalities. The 

undergenerated relationships may be due to the fact that verbs are not translated directly as 

relationships. However, it may not be appropriate to translate all verbs into relationships, as 

this does not hold true for all cases. With respect to the cardinalities, these are mainly due 

to synonyms and implicit phrases that imply cardinalities. For example, from the phrase 

“each bus is allocated a particular route”, the adjective ‘particular’ may imply a one-sided 

cardinality. To overcome this, additional adjectives may be incorporated within the existing 

heuristics.    

 

In terms of precision of the result produced, ER-Converter scored an average of 85% on the 

test dataset. The results support the hypotheses that a syntax-only heuristics-based approach 

to transform a natural language requirements’ specification to an ER model can be utilized 

to aid conceptual modelling in the early stages of database systems development.    

 

An investigation on the test dataset that have the highest and lowest results for precision 

was undertaken. The dataset Employee, Invoice, Musician and Professor have the highest 

percentage of precision, i.e. 100%. This means that the all the ER elements produced by 

ER-Converter are correct.  However, the second level evaluation reveals that Employee, 

Invoice and Professor have unattached elements in the results produced whilst in Invoice, 

two of the ER elements are wrongly attached.  The unattached ER elements in Employee 

are due to the fact that the sentence contains anaphoric references. This problem is explored 

further towards the end of this section. The unattached elements in Invoice and Professor 

are due to unattached entities to their corresponding relationships. Musician has no 

unattached or wrongly attached elements in its output. The 100% precision in Musician is 

highly influenced by the frequent use of the have/has verb phrases. For example, the fourth 

sentence is structured as follows “Each song has a title and an author”. Four out of five 

sentences of the dataset have this structure and they were all correctly identified in terms of 

possession (A possess B). The respective heuristic applied in these instances is HA3.     
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The dataset Cars has the lowest precision of 65%. This is partly due to the incorrect 

identification of ‘manufacture’ as an entity in a noun phrase. The respective sentence is as 

follows: “Each model is made up from many parts and each part may be used in the 

manufacture of more than one model”. An analysis of the output produced by ER-

Converter revealed that the error resulted from the interpretation of manufacture as an 

entity as it is tagged as a noun by MBSP. Heuristic HE1 has been applied.   As no evidence 

suggests otherwise throughout the problem, manufacture remains as an entity due to 

application of HE1. This sort of error also explains why HE1 contributes most in the 

incorrectly applied heuristics in the applications as shown in Table 6.3. In the actual 

solution of the problem manufacture is not an ER element. This incorrect entity is then 

attached to a relationship and a cardinality, which adds further errors.  

   

An interesting result to note is on the degree of the user assistance, referred to as the 

Ask_User  measure in the evaluation. A user’s response is sought when ER-Converter is 

unsure as to whether an ER element is an attribute or an entity, depending on their weights. 

From the evaluation results, it is evident that human intervention in the ER-Converter is 

minimal with only 1.6% of Ask_User on average. Despite the low amount of interaction 

with the user, the overall results from ER-Converter are good. Although full automation is 

seen as impossible due to incomplete presentation of knowledge, ambiguities and 

redundancies (Eick and Lockemann, 1985), this research has shown that it is still possible 

to provide an almost complete automation with limited user assistance on the solutions 

produced. The strength lies in the use of present and newly formed heuristics.  

 

Table 6.4 presents the results of the unattached and wrongly attached ER elements. These 

ER elements are correctly identified but either unattached or wrongly attached to their 

corresponding items. These attachment problems may result from structural ambiguities of 

the sentences in the specification text, lack of world knowledge and some limitations of 

ER-Converter. These limitations are elaborated further in Section 6.3.5. 

 

From Table 6.4, the average percentage of unattached elements for the test dataset is 7.9%.  
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Dataset Nunattached  Nwronglyattached  

 Unattached 

(%)  

Wrongly_

attached 

(%) 

Airplane 3 1 27.3 9.1 
Bank 0 0 0.0 0.0 
Boat hire 0 1 0.0 12.5 
Bus 0 0 0.0 0.0 
Cars 0 1 0.0 7.7 
Clientnew 4 0 40.0 0.0 
Company 2 0 11.1 0.0 
Computernew 0 0 0.0 0.0 
Doctor 0 1 0.0 11.1 
Dreamhome 0 2 0.0 18.2 
Elect_supp 4 2 28.6 14.3 
Employee 6 0 46.2 0.0 
Fault 1 3 4.5 13.6 
Hospitalnew 0 0 0.0 0.0 
Invoice 2 0 12.5 0.0 
Library 2 3 13.3 20.0 
Librarybook 1 0 4.5 0.0 
Machine 0 0 0.0 0.0 
Musician 0 0 0.0 0.0 
Order 0 1 0.0 5.6 
Painter 0 0 0.0 0.0 
Photograph 0 0 0.0 0.0 
Professor 2 0 9.1 0.0 
Project 2 0 11.8 0.0 
Reliablerentals 1 0 12.5 0.0 
Salesrep 0 6 0.0 66.7 
Stud_hall 0 1 0.0 7.1 
Student 0 4 0.0 30.8 
Travel 2 1 15.4 7.7 
Univ_d'base 0 0 0.0 0.0 
Average 7.9 7.5 

 

Table 6.4: Unattached and wrongly_attached results 
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Employee has the highest unattached elements with 46.2%. An investigation showed that 

the sentence below from Employee contributes a significant proportion of the error: 

 

“His name, address, telephone number, job title, date of joining and salary are to be kept.” 
 

From this sentence, ER-Converter is unable to determine whom ‘his’ is referring to. This 

type of ambiguity is referred to as ‘anaphoric reference’. Due to this lack of knowledge and 

limitations of the tool, this results in the unattached attributes of the entity ‘employee’. 

Semantic interpretation of the sentences may help in resolving the problem of anaphoric 

references. A suggestion on how the sentences could be structured to minimize this type of 

error is described in Section 6.3.5.   

 

The wrongly attached ER elements have an average of 7.5% in the final results. The dataset 

Salesrep generates the most wrongly attached ER elements, 66.7%. The errors resulted 

mostly from the wrongly attached nouns that appear in the same sentence as the actual ER 

elements to be attached. This is one of the limitations of the ER-Converter in handling the 

juxtaposition of the nouns identified as entity types, where the leftmost noun is always 

selected to be the parent entity, though this may not be true in all cases. However, the result 

can be improved if the sentence wording is re-structured accordingly. In the test dataset, 

most of the database problems, which were taken from database textbooks, were not 

modified or pre-edited before they were parsed and processed by ER-Converter.     

 

6.3.2 Contribution of individual heuristics 

 

Table 6.5 shows the percentage of correctness of each selected heuristic in the test dataset. 

Each heuristic’s individual contribution is also presented. HA1 and HC5 do not contribute 

at all due to nil application in the test dataset. The new heuristics contribute 55% of the 

total frequency of correctly applied heuristics in the test dataset. In terms of individual 

contribution of the new heuristics, HA7 has the highest contribution of 8.3%. HA7 deals 

with specific verb phrases, as described in Section 4.2.3, which may indicate attribute 

types. As these phrases occur quite frequently in requirements’ specifications, this is the 

main factor in the contribution of HA7.   
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Heuristic Status 

Frequency 

correct 

Frequency 

incorrect 

%  

correct 

% 

contribution 

HEX New 34 1 97 6.0

HE1 Old 114 32 78 20.0

HE7 New 26 6 81 4.6

HE8 New 44 3 94 7.7

HE9 New 15 3 83 2.6

HA1 Old 0 0 0 0

HA2 Old 30 1 97 5.3

HA3 Old 113 12 90 19.9

HA7 New 47 5 90 8.3

HA8 New 45 1 98 7.9

HR4 New 33 6 85 5.8

HR5 New 32 9 78 5.6

HC2 New 14 2 88 2.5

HC3 New 3 0 100 0.5

HC4 New 17 3 85 3.0

HC5 New 0 0 0 0

HC6 New 2 1 67 0.4

Totals 569 85 100

Average (new)  55

 

Table 6.5: Frequency of heuristics applied correctly and incorrectly 

 

In Table 6.5, HA3 and HE1 are the two most frequently applied heuristics in the test 

dataset. HA3 deals with ‘have/has’ verb phrases. This verb phrase occurs very frequently in 

almost every requirements’ specification to show possession or attributes of entities. Hence, 

the high frequency of its application is expected. HE1 deals with nouns. As the number of 

nouns far outweighs other parts of speech (POS), HE1 is frequently applied.  

 

6.3.3 Weight applications 
 

Weights are assigned to each of the heuristics to determine their reliability in determining 

an ER category. This approach has been realised in the implementation and proves useful in 
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determining an ER element. The following categorization describes how an ER element can 

be determined by utilizing the weights applied to it: 

 

a) Single heuristic 

 

The application of single heuristics accounts for 53% of the cases in the test dataset. In 

these cases, the weight of each of the individual heuristics decided which category an 

element fell into. An example from the dataset Airplane is given as follows: 

 

airplane/NN has been applied with HE8. 

at sentence  1. 

It has the total weight of 0.7 

The value is Entity 

 

b) Multiple concurring heuristics 

 

The example below shows one of the many cases where multiple heuristics are applied in 

the test dataset. This accounts for 39% of the cases in the test datasets. When each of the 

heuristics belongs to the same category (for example HA2 and HA3 both indicate  

attributes), this adds to the total value of the element’s weight. Hence, the more evidence or 

heuristics are applied, the stronger or higher the level of confidence in an item. 

 

capacity/NN has been applied with HA2, HA3. 

at sentence  3, 3. 

It has the total weight of -1.6 

The value is Attribute 

 

c) Multiple contradicting heuristics 

 

Another category of multiple heuristics is contradicting heuristics. These heuristics account 

for around 8% of the cases in the test datasets. User intervention will be requested when the 

weights of these heuristics lie between identified threshold values. There are cases where 

two contradicting heuristics may not need user intervention where one of the heuristics has 
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a significantly stronger weight than the other. An example below shows an example of 

multiple contradicting heuristics. 

 

vehicle/NN has been applied with HE2, HA7. 

at sentence  2, 2. 

It has the total weight of 0 

The value is Ask User 

 

6.3.4 Rejected heuristics’ results 
 

In chapter 4 (Section 4.5), a manual investigation using a training dataset was carried out to 

select the heuristics to be implemented based on certain criteria. This section looks again at 

those heuristics that were rejected in the process. The main reason why these heuristics 

were rejected was due to nil contribution or poor frequencies of their application in the 

training set. However, it remains possible that they could contribute to a different dataset 

and hence must be considered at this point.  

 

As shown in Table 6.6, there is evidence that the rejected heuristics are not making any 

significant contributions in the test dataset. Two measures were taken into consideration: 

i) frequency of use  

ii) percentage of correctness of the applied heuristics.  

 

Though HE6 and HA6 shows an encouraging percentage on correctness, their low 

application across the 30 samples in the test dataset is not convincing enough to warrant 

them in terms of implementation. In addition, the overall aim of the heuristics’ selection is 

to find a small set of manageable heuristics to be implemented.  
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Heuristics 

Frequency 

applied 

Frequency 

correct 

 

% correct 

HE3 0 0 - 

HE4 3 1 33.3 

HE5 - - - 

HE6 3 2 66.7 

HA4 2 0  0.0 

HA5 24 0  0.0 

HA6 3 2 66.7 

HR1 10 0 0 

HR2 69 26 37.7 

HR3 0 0 - 

HC1 0 0 - 

 

Table 6.6: Rejected heuristics’ frequencies in test dataset 

 

6.3.5 Problems identified as result of evaluation 

 

Ambiguities that may be present in requirements’ specifications may lead to inaccuracy or 

errors in ER-Converter’s output. The different types of ambiguities that may arise have 

been discussed in Chapter 3. In this section, sentence constructs are analysed and discussed. 

Most of the problems are due to comma splices and coordinating conjunctions like and, but 

and or. Pre-processing rules to be adhered to when preparing natural language 

requirements’ specifications, which will improve further the accuracy of the output are 

presented below. 

 

Attachment problem 

In entity-attribute attachment, ER-Converter utilizes some of the applied heuristics in 

determining which elements are to be attached. As ER-Converter attaches the attributes of 

an entity to its parent entity based on the leftmost identified entity in the sentence, some 
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sentence structures may result in wrongly attached ER attributes to their entity. For 

example: 

 

“An employee belongs to one or more libraries, each with a name and location”. 

 

In the example, name and location are attached to employee instead of the actual entity i.e. 

library. The sentence may be broken down further to eliminate this problem. In such 

circumstances, an ideal solution is to break the sentence into simpler sentences. Pre-editing 

may be necessary to reduce the ambiguities and hence improve the results. The sentence 

from can be simplified further for clarity as shown below: 

 

“An employee belongs to one or more libraries. Each library has a name and location.” 

 

This gives rise to rule 1 as follows: 

 

Rule 1: Break down the sentence if there are comma splices or a coordinating conjunction 

that may result in wrongly attached ER elements   

 

Active/passive voice 

Sentences are said to be in active voice if the subject does or "acts upon" the verb in them. 

The order of the active sentences can be changed in such a way that the subject is no longer 

active, but is, instead, being acted upon by the verb - or passive. As passive voice sentences 

sometimes add words and change the normal ‘doer-action-receiver of action’ direction, this 

may result in some inaccuracy in the result of the ER-Converter. This is due to the fact that 

some words’ POS tags are different when the sentence is in active or passive form. An 

example is: 

“A patient is treated by many doctors.” 

 

This passive voice sentence can be changed to an active one as follows: 

 

“Many doctors treat a patient.” 
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The active voice sentence is more direct and hence helps ER-Converter in establishing a 

relationship between ‘doctors’ and ‘patients’. This rule can be stated as below: 

 

Rule 2: Convert all passive voice sentences to active voice form. 

 

The limitation of the verb ‘has’ 

 

The verb ‘has’ is the basis of one of the heuristics to determine attribute types, i.e. HA3 and 

it is commonly used in requirements’ specifications mainly to indicate a relationship 

between an entity and its attributes. However, in certain circumstances, the use of ‘has’ 

may mean otherwise. Consider the following example: 

 

“Each department has a set of employees, a set of projects and a set of offices.” 

 

In this example, all the nouns after the verb ‘has’ do not indicate attributes of the entity 

‘department’. ‘Employees’, ‘projects’ and ‘offices’ are also entity types that exist in the 

business environment. However, from the application of the heuristic HA3, ER-Converter 

may suggest that they are all attribute types based on this sentence alone. Therefore, for 

such a sentence, this may be better replaced with other synonyms like ‘consists of’, 

‘comprises’ or ‘contains’. The sentence can be rewritten such as follows: 

 

“Each department consists of a set of employees, a set of projects and a set of offices.” 

 

A rule on this limitation can be defined as follows: 

 

Rule 3: For every sentence that contains the verb ‘has’ and where the nouns following this 

verb may not indicate attribute types, replace the verb with other suitable synonyms. 

 

6.4 Summary 
 

This chapter introduced an evaluation methodology commonly used for Information 

Extraction systems which has been adopted in this research. The selected methodology is 
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based on two main evaluation metrics, namely recall and precision. Other metrics,  

undergenerated, ask_user, unattached and wrongly_attached were introduced to measure 

the accuracy of results produced by ER-Converter.  

 

This chapter also presented results from applying ER-Converter to the test dataset which 

comprises 30 database problems in the form of natural language specifications. ER-

Converter has an average of 90% recall, 85% precision, 3% overgenerated, 6% 

undergenerated and 2% ask_user for the test dataset. With regard to attachments, ER-

Converter has an average of 7.9% unattached elements and 7.5% wrongly attached 

elements. The new heuristics contribute 55% of the total frequency of correctly applied 

heuristics in the test dataset. HA7, a heuristic that deals with ‘has/have’ verb phrases, has 

the highest percentage of the individual contribution of the new heuristics. The rejected 

heuristics are considered in the test dataset and the results show that they are not making 

any significant contribution.  This chapter also identified some problems as a result of the 

evaluation and suggested some rules to be adhered in processing natural language 

requirements’ specifications which will improve the accuracy of output generated by ER-

Converter. The results support the hypothesis that the newly formed heuristics do 

contribute in generating ER models in an automated environment.  
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Chapter 7 

 

Conclusion and Future Work 

 

 
This final chapter begins by summarising the thesis. This is followed by comparison of the 

results produced by ER-Converter with other related work. Potential avenues of research 

for future work are also explored. 
 
Chapter 1 established that conceptual modelling is one of the most important and difficult 

stages in the software lifecycle of an information system (Connolly and Begg, 1999). It was 

noted that it is common for designers to use ER models as a representation of the 

conceptual design. However, due to its abstract nature, ER modelling can be a daunting 

task to designers and students alike (Storey and Goldstein, 1988; Batra and Antony, 1994; 

Moody, 1996; Marsden and Staniforth, 1996; Antony and Batra, 2002). Much research has 

attempted to apply natural language processing in extracting knowledge from requirements’ 

specifications with the aim to design databases. However, research on the formation and 

use of heuristics to aid the construction of logical databases from natural language has been 

scarce. This thesis has developed new heuristics to assist the transformation from natural 

language requirements’ specifications to ER models.   

 
In order to accomplish the generation of ER models from natural language requirements’ 

specifications, the following objectives were achieved: 

 

• review of  previous work on heuristics in database design  

• review systems that apply natural language in database design 

• examine NLP tools and techniques and identify the most suitable ones to be utilised 

in this research 
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• define new heuristics to assist the transformation from natural language 

requirements’ specifications to ER models 

• implement the heuristics proposed in a tool called ER-Converter  

• test ER-Converter using datasets that comprise domain independent database 

problems 

• evaluate the approach against human performance and compare it with similar 

previous work in the area 

 

The importance of ER Modelling is addressed in Chapter 1. The difficulties associated with 

ER modelling were also presented. The results of a survey regarding the Databases’ 

subject’s difficulties were also discussed. Previous work that applies NLP to Databases are 

reviewed. Various techniques like the use of logical forms and rules were used in the work 

reviewed to translate natural language requirements’ specifications to conceptual models. 

Other literature studied included ITS and ITS for Databases. Currently published ITSs for 

Databases were reviewed. So far, none of the ITSs have a domain model that is capable of 

solving ER problems. ITS is one of the contexts where this research work could be applied. 

Natural language processing for database design was also investigated. Problems that may 

be encountered during processing such as the different types of ambiguities were discussed. 

The parser used for this work, i.e. Memory-Based Shallow Parser (MBSP) is also reviewed.  

 

Having examined the literature, the syntactic heuristics are then proposed. Previously 

published heuristics are also presented and discussed. The combination of both the new and 

pre-existing heuristics forms the basis for the semi-automated transformation from natural 

language requirements’ specifications to ER models. A manual test prior to the 

implementation shows 87.5% correctness in determining the ER elements using the 

heuristics. Following this, suitable heuristics, based on their computability, frequency of 

use and percentage of correctness were selected for the implementation. The aim of the 

selection is to obtain a manageable set of contributing heuristics. The next stage involved 

the implementation of the heuristics. The tool, ER-Converter, is implemented using Perl. A 

scenario was used to illustrate how the relevant heuristics are applied in the process of 

generating the ER model. The output from ER-Converter was then matched against the 

‘answer key’, where the aim is to achieve the closest match possible. Following this, the 
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results produced by ER-Converter are evaluated and discussed. New measures, in addition 

to the standard measures recall and precision, were introduced in the evaluation. From the 

test dataset used, ER-Converter has 90% recall and 85% precision. It can be concluded that 

these results support the hypothesis that the newly formed heuristics do contribute in 

generating ER models in a semi-automated environment.  

 

7.1 Comparison with Related Work 
 

A variety of different approaches to automate or more appropriately, semi-automate the 

process of ER modelling have been proposed in the past. A summary of the analysis of 

existing systems that apply natural language processing in database design has been 

presented in Chapter 2. This section compares the different approaches and test results of 

the systems reviewed with ER-Converter.  

 
The most relevant work in connection with our research is E-R Generator (Gomez et al., 

1999). However, no direct comparison can be carried out for two reasons. Firstly, no 

figures were available in terms of recall and precision on E-R Generator’s overall result. In 

addition, both systems do not use the same datasets in the final result though efforts were 

made to obtain the actual test sets used by Gomez and his colleagues. Gomez’s test dataset 

comprised 30 natural language specifications where 75% of these are mainly gathered from 

database textbooks and the rest are entered interactively by users. Gomez et al. (1999) 

reported that their E-R Generator was able to identify the relevant ER relationships and 

entities with 75% correctness in average. However, the result was based on only 25% of the 

total test dataset which were entered interactively by users. The program overgenerated or 

undergenerated ER entities and relationships in 50% of the cases. No overall results were 

revealed on the complete test dataset. With ER-Converter, the precision or the accuracy of 

the system in obtaining the correct result is 85%, which indicates better performance.     

 

The goal of this research is identical to E-R Generator, i.e. to generate ER models from 

natural language specifications through natural language processing. A major difference 

between ER-Converter and E-R Generator is the high utilization of heuristics and their 

weights in ER-Converter to derive ER elements from natural language specifications. E-R 



 

 

121 

 

Generator relies more on semantic interpretation and final knowledge representation of 

sentences. Though it is arguable that syntactic linguistic knowledge alone may be 

insufficient to derive an ER model, the results from this work have demonstrated that such 

an approach is still viable. The strength in the approach of ER-Converter lies in the 

utilization of heuristics that are targeted at specific categories of words or phrases that 

reflects the ER modelling elements. Some of the tasks in processing the natural language 

specifications like the identification of attributes with certain suffixes and their entities can 

be solved by simple syntactic rules, as demonstrated by the application of the new and 

previously published heuristics. Tjoa and Berger (1993) also question whether the effort of 

determining semantic properties is justified compared to the achieved results.  

 

E-R Generator identifies ER elements through the application of specific and generic rules. 

Specific rules use semantic cues that are relevant to database design to construct these 

elements. Generic rules identify the ER elements on the basis of the logical form and on the 

basis of the ER elements under construction. The generic rules can be classified into three 

categories: unary, binary or n-ary rules. In general, unary rules result in the identification of 

attributes; binary rules may define attributes, entities and relationships and n-ary rules 

result in the definition of relationships. In contrast, ER-Converter identifies ER elements on 

the basis of their total weight for evidences found in the input text. This is employed using 

heuristics rather than rules, in terms of what was discussed in Section 2.3.   

 

In terms of user intervention, E-R Generator requires user help in resolving ambiguities like 

intersentential anaphora. Other user involvement includes interacting with E-R Generator 

when some background knowledge about a word to describe the database application is 

needed, as the system is based on semantic interpretation. In addition, E-R Generator also 

requests user help in the attachment of attributes in some cases. In ER-Converter, the 

attachment process is done automatically without any user intervention. To summarise, the 

difference between E-R Generator and ER-Converter lies mostly on the utilization of rules 

in E-R Generator to identify the ER-elements whilst ER-Converter works on the application 

of heuristics to achieve the desired ER models.  

 

CM-Builder (Harmain, 2000; Harmain and Gaizauskas, 2003) concentrates on building 

object-oriented conceptual models to be represented in the Unified Modelling Language 
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(UML). Though it is not comparable in terms of the end results as CM-Builder produces 

object-oriented models and not an ER model, the techniques used in the natural language 

processing and evaluation are similar. CM-Builder has two versions. The first version, CM-

Builder 1 performs surface analysis, i.e. to generate a list of candidates, attributes and 

relationships using frequency analysis. In this analysis, CM-Builder generates a list of 

candidate classes and attributes by calculating their frequency in the text. The resulting 

candidate lists need to be filtered manually by the user and in associating candidate 

attributes, classes and relations with each other. In ER-Converter, user intervention is only 

needed when a heuristic’s weight is low and lies between two threshold values. This also 

means that not all of the specifications processed require user intervention.  

 

CM-Builder 2 performs semantic analysis in an object-oriented analysis module (OOA) and 

produces three kinds of output: a list of candidate classes, relationships and a conceptual 

model. In this version, there is no user interaction but users are likely to be needed to 

further refine and extend the model produced. CM-Builder 2 utilizes WordNet, an external 

lexical database, to find appropriate attribute names from adjectives. Simple heuristics are 

also employed to find attributes. The overall performance of CM-Builder was 73% recall, 

66% precision and 62% of overspecification or overgenerated items. Using the same 

measures, ER-Converter’s results are 90% recall, 85% precision and 3% of overgenerated 

items. Comparing the result with CM-Builder, ER-Converter’s performance is well beyond 

these figures, especially with the significantly low results of overgenerated items.  

 

Other relevant work like FORSEN (Meziane, 1994; Meziane and Vadera, 2004) and 

Dialogue Tool (RADD) (Buchholz et al., 1995) have not published formal evaluations or 

tests, hence no figures are available for direct comparison on their performance. The aim of 

FORSEN is similar to ER-Converter and E-R Generator in which all three aim to produce 

ER models from natural language specifications, semi-automatically. FORSEN uses a 

representation language called logical forms as a technique to transform the natural 

language sentences to ER models. The logical forms of sentences are used as a basis for 

identifying the entities and relationships. Heuristics are then used to suggest suitable 

degrees for the identified relationships. In contrast, ER-Converter relies heavily on 

heuristics to determine the ER elements.   
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Dialgoue Tool (RADD) (Buchholz et al., 1995) uses dialogues with users in order to obtain 

the structure of an application in database design. The main aim is to produce an EER 

model from the dialogues. The transformation from the designer input to EER model is 

completed using world knowledge and heuristics. The heuristics used are defined and 

formalised using context-free and context-sensitive rules. Another system that elicits 

knowledge through dialogues with users is VCS (Storey, 1988). Though the aim is similar 

to ER-Converter, VCS employs procedural and production rules, stored in a knowledge 

base, in order to produce the ER models. The task relies heavily on the user to provide 

information regarding the requirements of the database system. Though VCS has performed 

some system testing, this is not a quantitative evaluation but rather a test on the usability of 

the system.     

 

DMG (Tjoa and Berger, 1993) also aims to transform natural language specifications into 

EER models. However, it is only a proposed tool where the implementation has not been 

published. DMG processes the parsing results of the input language using rules and 

heuristics, which set up a relationship between linguistic and design knowledge. DMG gave 

detailed accounts of the heuristics applied in their system. The heuristics provided some 

basis for this thesis, in which the selected heuristics are implemented in ER-Converter. 

User intervention is required in DMG when the requirements are incomplete.   

 

ANNAPURNA (Eick and Lockemann, 1985) aims to provide a computerised environment 

for semi-automatic database design. Their approach utilizes S-diagrams, a formalism for 

the description of the terminological knowledge acquired from the experts. Tseng et al. 

(1992) proposed a methodology to map natural language constructs into relational algebra 

through ER representation. Their methodology employs a logical form to represent the 

natural language queries. In COLOR-X (Burg and van de Riet, 1996), CEM and CSOM 

models are used, as discussed in Chapter 2, to facilitate the process of generating 

conceptual modelling. In comparison to ANNAPURNA, Tseng et al.’s (1992) approach and 

COLOR-X, ER-Converter processes natural language requirements directly from the input 

text without any intermediate representation to produce the intended ER models, through 

the utilization of heuristics. 

 



 

 

124 

 

Table 7.1 summarizes the evaluation results from the other systems and ER-Converter. 

Similarly to E-R Generator, a direct comparison to CM-Builder is not possible due to 

different datasets and modelling domains. However, the figures presented show some 

indication of the performance of ER-Converter. The Other column refers to the percentage 

of overgenerated items for each of  the systems. 

 

Evaluation results 
System 

Recall Precision Other 

E-R Generator 75% - 50% 

CM-Builder 73% 66% 62% 

ER-Converter 90% 85%  3% 

 

Table 7.1. Comparison of results with related work 

 
In comparison with other systems, ER-Converter requires minimal user intervention in 

generating the ER-models. This is evident from the evaluation results presented in Chapter 

6, i.e. with only 1.6% user intervention. Though complete automation is extremely difficult 

due to the nature of ER modelling and ambiguities in natural language, limited human 

intervention is still possible, as shown in this thesis.    

 
As noted from the discussion, most of the systems have accepted natural language 

semantics as being vitally important to the understanding process and have put time and 

effort into acquiring such information. Though the importance of semantics is undeniable in 

enhancing the results, it is interesting to investigate whether the effort is justified with the 

achieved results. ER-Converter concentrates mainly on the syntactic knowledge and the 

results are better than previously published systems. On the basis of the comparison, it can 

be concluded that ER-Converter has a potential in the automation of ER modelling and can 

be applied to other areas such as ITS for Databases. 

 

7.2 Future Work 
 

This section highlights suggestions which may provide grounds for future work. 
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7.2.1 Semantic analysis 

In order to resolve a wider range of problems related to ambiguities in requirements’ 

specifications such as anaphoric references or nominalization, without pre-processing text 

or using restricted language, semantic analysis of the sentences may be necessary to handle 

such issues. Semantic analysis involves a process whereby meaning representations are 

created and assigned to linguistic inputs (Jurafsky and Martin, 2000). The ‘understanding’ 

of the results of the parsing, lexical information, context and common sense reasoning is 

referred to as the semantic interpretation of the text. More expressive power can be added 

when semantic interpretation is used.  

 

Semantic roles in objects like agent, instrument, source and location (Fillmore, 1971) may 

be helpful in interpreting possible elements of the ER model. Semantic roles or sometimes 

known as thematic roles are conceptual notions which provide a shallow semantic language 

for characterizing certain arguments of verbs (Jurafsky and Martin, 2000). Table 7.2 shows 

some commonly used semantic roles and their definitions. 

 

The following example illustrates the concept of semantic roles:  

“The purchaser sends an order form to the supplier.” 

          AGENT  THEME GOAL 

Semantic role Definition 

AGENT The volitional causer of an event 

EXPERIENCER The experiencer of an event 

FORCE The non-volitional causer of the event  

THEME The participant most directly affected by an event 

RESULT The end product of an event 

CONTENT The proposition or content of a prepositional event 

INSTRUMENT An instrument used in an event 

BENEFICIARY The beneficiary of an event 

SOURCE The origin of the object of a transfer event 

GOAL The destination of an object of a transfer event 

 

Table 7.2: Semantic roles and their definitions (Jurafsky and Martin, 2000) 
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From the example, the subject, i.e. ‘the purchaser’ acts as an agent as the causer of the 

event. The object, ‘order form’, has the semantic role ‘THEME’ as it is directly affected by 

the event. ‘Supplier’ represents the GOAL where it is the destination of the transfer event. 

These semantic roles may assist in the pragmatic interpretation of the natural language 

input to an ER model. For example, the semantic roles agent, goal and beneficiary may 

indicate entity types, depending on the context. The utilization of semantic heuristics may 

be useful at this stage. DMG (Tjoa and Berger, 1993) and Martinez and Garcia-Serrano 

(2001) may provide a basis for such heuristics. For example, in DMG, one of the semantic 

heuristics states that if a sentence includes a comparative, then both the nouns belong to the 

semantic roles subject and subject complement. The adjective in the sentence represents an 

attribute which describes both nouns and may indicate that it may be related to the 

supertype of both nouns (in an enhanced-entity relationship modelling). However, Tjoa and 

Berger (1993) questioned whether such an effort for determining semantic properties of a 

sentence is justified compared to the results achieved.  

 

In order to resolve intersentential anaphora as mentioned in Chapter 6, the maintenance of a 

record of all objects or nouns mentioned in the preceding sentences, known as history list, 

may be useful (Allen, 1995). Using the same sentences from the Employee database 

specification as given in Chapter 6, the following history list in Table 7.3 is produced. 

 

“An employee is identified by an id. His name, address, telephone number, job title, date of 

joining and salary are to be kept.” 

 

Constituent Object name Value 

NP1 employee Entity 

NP2 id Attribute 

 

Table 7.3: History list of the first sentence in Employee  

 

Given the history list, the antecedent of the pronoun ‘his’ in  the second sentence can be 

determined, i.e. ‘employee’ which occurs as the first constituent of the preceding sentence 

and has a value of an ‘entity’. This enables the attachment problem as mentioned in Section 
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6.3 to be resolved. Selectional restrictions, the restrictions as to which constituent should 

be selected, imposed during semantic interpretation, may provide the necessary information 

to handle problems like anaphoric references (Allen, 1995). With the provision of 

automatic semantic role labelling tools, for example by Gildea and Jurafsky (2002), the 

incorporation of semantic analysis may further aid the process of transforming natural 

language specifications into ER models and improve the accuracy of the results.  

 

7.2.2 WordNet 
 

As discussed in Chapter 2, WordNet is an external lexical database for English that may be 

applied in natural language processing systems to incorporate linguistic knowledge. It 

organizes lexical knowledge in terms of word senses, whereby all the words are organized 

into an inheritance hierarchy. Due to ambiguities in natural language, words may have 

several meanings (homonyms and polysemes) and many concepts can be represented by 

two or more words (synonyms) (Burg and van de Riet, 1998). With the help of WordNet, 

the right meaning of a word in each specific universe of discourse (UoD) can be 

determined.  

 

As for conceptual modelling, WordNet can be viewed as a source of reusable knowledge, 

which can be used to ensure that the resulting models are correct (Burg and Van de Riet, 

1998). A possible extension in this research work is to integrate WordNet with ER-

Converter to improve the results of the system. Among the possible uses of WordNet are:     

 

• to disambiguate the meaning of verb or noun by examining synonyms. For instance, a 

user needs to know the meaning of a word in a specific UoD like ‘book’ to ensure the 

correct interpretation of the word in the right context. Consider this example: 

 

“The customer can book a place for the fishing trip.” 

 

In this example, the word ‘book’ is categorised as a verb. WordNet has 10 senses for 

the word ‘book’ as a noun and four senses as a verb. The output from WordNet for the 

verb category of the word ‘book’ is as follows: 
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1. book -- (record a charge in a police register; "The policeman booked her when she 

tried to solicit a man") 

2. reserve, hold, book -- (arrange for and reserve (something for someone else) in 

advance; "reserve me a seat on a flight"; "The agent booked tickets to the show for 

the whole family"; "please hold a table at Maxim's") 

3. book -- (engage for a performance; "Her agent had booked her for several concerts 

in Tokyo") 

4. book -- (register in a hotel booker) 

 

The users can then select the intended meaning from the options given. In this case, 

option (2) suits best the meaning of ‘book’ in the given example. The disambiguation 

process can help to verify consistency and correctness in the resulting ER model 

produced by ER-Converter.  

 

• to discover some hidden relationships through WordNet. For instance, the relationship like 

‘employee’ is a ‘person’ may be helpful in the conceptual modelling especially in 

aggregation and inheritance concepts. The output from the hypernym search category, 

which defines concepts to super-ordinates, has 1 sense on the word ‘employee’. This is 

shown in Figure 7.1. The information relating to the hierarchical concepts is useful 

especially when the relationships between two ER elements are not explicitly mentioned in 

the natural language specifications. This additional feature may enhance the accuracy of the 

results produced by ER-Converter.  

 

•  to identify hidden attributes like the use of adjectives (Harmain, 2000). This can be sought 

by using WordNet through the senses provided. For example, given a sentence, “The large 

branch has many departments”, the adjective ‘large’ may indicate size of the branch and 

hence it may be an attribute of the entity ‘branch’. This feature may help in reducing the 

number of undergenerated attributes in ER-Converter. 
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Figure 7.1: Output from WordNet for the hypernym search category of the word 

‘Employee’ 

 

7.2.3 Heuristics’ weights 

The heuristics’ weights might have not proved optimal and the level of granularity is still 

debatable. A larger dataset is needed to ascertain the optimal weights. The weights could 

also be investigated with different granularities. The optimisation of the weights can be 

investigated in future work. 

 

 

 

1 sense of employee                                                      

 

Sense 1 

employee -- (a worker who is hired to perform a job) 

       => worker -- (a person who works at a specific occupation; 

          "he is a good worker") 

           => person, individual, someone, somebody, mortal, human, soul --           

                 (a human being; "there was too much for one person to do") 

               => organism, being -- (a living thing that has (or can 

                   develop) the ability to act or function independently) 

                   => living thing, animate thing -- (a living (or once 

                       living) entity) 

                       => object, physical object -- (a tangible and  

                           visible entity; an entity that can cast a 

                            shadow; "it was full of rackets, balls and     

                             other objects") 

                           => entity -- (that which is perceived or known  

                               or inferred to have its own distinct   

                                existence (living or nonliving)) 

               => causal agent, cause, causal agency -- (any entity that  

                   causes events to happen) 

                   => entity -- (that which is perceived or known or  

                       inferred to have its own distinct existence (living      

                        or nonliving)) 
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7.2.4 Part of a domain model in an ITS 

ER-Converter could be incorporated as part of the domain model in an ITS environment. 

To date, no ITS for Databases that incorporates a dynamic domain model is capable of 

solving database problems. Most existing ITSs store the solutions prior to tutoring. ER-

Converter could be embedded in the domain model and may provide improvement by 

allowing students to enter their own examples.  
 

7.3 Summary 

In conclusion, this work has achieved favourable results on the performance of ER-

Converter, a heuristics-based tool to generate ER models automatically from natural 

language requirements’ specifications. Though ER-Converter only performs syntactic 

analysis, based on the combination of previously published and newly formed heuristics to 

produce the ER models, the result is comparable to other systems that utilize semantics 

knowledge. In addition, the degree of user intervention is low, with 1.6% in the test dataset. 

In addition to developing ER-Converter, this work has defined new measures to be 

employed in the quantitative evaluation against human performance. The measures can be 

used as a benchmark for other similar systems to be evaluated.  The evaluation results 

support the hypothesis that the newly formed heuristics do contribute in generating ER 

models in a semi-automated environment. Suggestions are made for future work to improve 

the accuracy of the results produced by ER-Converter. These include semantic analysis, the 

use of WordNet and the optimisation of the weights. The resultant software system, ER-

Converter, could be applied to areas such as ITSs for teaching Databases. 

 


