

MediaHub:
Bayesian Decision-making

in an Intelligent Multimodal Distributed Platform H ub

Glenn G. Campbell, B.Eng. (Hons.) (University of Ulster)

School of Computing & Intelligent Systems
Faculty of Computing & Engineering

University of Ulster

A thesis submitted in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

April, 2009

ii

Table of Contents

Table of Contents .. ii

List of Figures ... vi

Acknowledgements ... xiii
Abstract ... xiv
Notes on access to contents ... xv

Chapter 1 Introduction .. 1
1.1. Overview of multimodal systems .. 1

1.1.1. Distributed processing .. 2
1.1.2. Bayesian networks.. 3

1.2. Objectives of this research ... 3
1.3. Outline of this thesis .. 4

Chapter 2 Approaches to Multimodal Systems ... 6

2.1. Multimodal data fusion and synchronisation ... 6

2.2. Multimodal semantic representation .. 8

2.2.1. Frames .. 8
2.2.2. Typed Feature Structures ... 9

2.2.3. Melting pots.. 9
2.2.4. XML and derivatives .. 10
2.2.5. Other semantic representation languages ... 11

2.3. Multimodal semantic storage ... 13
2.4. Communication .. 14
2.5. Multimodal decision-making ... 15

2.5.1. Uncertainty ... 16
2.5.2. Fuzzy Logic .. 17
2.5.3. Genetic Algorithms .. 20
2.5.4. Neural Networks .. 22
2.5.5. Bayesian networks.. 23

2.6. Distributed processing ... 25
2.7. Tools for distributed processing .. 25

2.7.1. PVM ... 25
2.7.2. ICE ... 26
2.7.3. DACS ... 27
2.7.4. Open Agent Architecture (OAA) ... 27

2.7.5. JavaSpaces .. 28
2.7.6. CORBA .. 29
2.7.7. JATLite... 30
2.7.8. .NET ... 30
2.7.9. OpenAIR .. 31
2.7.10. Psyclone ... 32
2.7.11. Constructionist Design Methodology .. 32

2.8. Multimodal platforms and systems .. 35

2.8.1. Chameleon .. 35
2.8.2. TeleMorph .. 38
2.8.3. CONFUCIUS ... 40
2.8.4. Ymir ... 41
2.8.5. InterACT .. 42
2.8.6. JASPIS ... 43

iii

2.8.7. SmartKom .. 45
2.8.8. DARPA Galaxy Communicator ... 45

2.8.9. Waxholm .. 47
2.8.10. Spoken Image (SI)/SONAS ... 47

2.8.11. Aesopworld .. 48
2.8.12. Collagen ... 48
2.8.13. Oxygen ... 50
2.8.14. DARBS... 51
2.8.15. EMBASSI... 52
2.8.16. MIAMM ... 55
2.8.17. XWand ... 57
2.8.18. COMIC/ViSoft ... 58
2.8.19. Microsoft Surface ... 58
2.8.20. Other multimodal systems .. 60

2.9. Intelligent multimedia agents... 60
2.9.1. Turn-taking in intelligent multimedia agents ... 63

2.10. Multimodal corpora and annotation tools .. 64

2.11. Dialogue act recognition .. 66
2.12. Anaphora resolution ... 67
2.13. Limitations of current research .. 68
2.14. Summary .. 70

Chapter 3 Bayesian Networks ... 71

3.1. Definition and brief history.. 71
3.2. Structure of Bayesian networks ... 73
3.3. Intercausal inference .. 73
3.4. An example Bayesian network .. 74
3.5. Influence diagrams ... 76
3.6. Challenges in constructing Bayesian networks ... 77

3.7. Advantages of Bayesian networks ... 80

3.8. Limitations of Bayesian networks ... 81
3.9. Applications of Bayesian networks ... 81

3.10. Bayesian networks in multimodal systems .. 83

3.11. Tools for implementing Bayesian networks .. 86

3.11.1. MSBNx... 87
3.11.2. GeNIe ... 87
3.11.3. Netica ... 88
3.11.4. Elvira .. 89
3.11.5. Hugin .. 90
3.11.6. Additional Bayesian modelling software ... 97

3.11.7. Summary .. 98

Chapter 4 Bayesian Decision-making in Multimodal Fusion and Synchronisation 99

4.1. Generic architecture of a multimodal distributed platform hub 100

4.2. Decision-making in multimodal systems ... 101

4.3. Semantic representation and understanding .. 101

4.3.1. Frame-based semantic representation .. 102

4.3.2. XML-based semantic representation .. 103

4.4. Multimodal data fusion .. 104
4.5. Multimodal ambiguity resolution .. 107
4.6. Uncertainty... 108
4.7. Missing data ... 109

iv

4.8. Aids to decision-making in multimodal systems ... 112

4.8.1. Distributed processing .. 112
4.8.2. Dialogue history, context and domain information 114

4.8.3. Learning ... 114
4.9. Key example problems in multimodal decision-making 116

4.9.1. Anaphora resolution ... 116
4.9.2. Domain knowledge awareness ... 117

4.9.3. Multimodal presentation .. 118

4.9.4. Turn-taking ... 119
4.9.5. Dialogue act recognition .. 120

4.9.6. Parametric learning .. 122
4.10. Requirements criteria for a multimodal distributed platform hub 123

4.11. Bayesian decision-making in multimodal fusion and synchronisation 123

4.11.1. Rationale... 123
4.12. Summary .. 127

Chapter 5 Implementation of MediaHub ... 129

5.1. Constructionist Design Methodology .. 129

5.2. Architecture of MediaHub ... 130
5.2.1. Dialogue Manager .. 130
Interfacing to MediaHub ... 131
Semantic fusion ... 131
Communication between MediaHub modules .. 132

5.2.2. MediaHub Whiteboard ... 133

5.2.3. Domain Model.. 134
5.2.4. Decision-Making Module .. 135

5.3. Semantic representation and storage.. 136

5.4. Distributed processing with Psyclone .. 136

5.4.1. MediaHub’s psySpec.. 137

5.4.2. JavaAIRPlugs ... 138
5.4.3. psyProbe ... 139
5.4.4. Psyclone contexts ... 139

5.5. Decision-making layers in MediaHub ... 140

5.6. Bayesian decision-making using Hugin .. 141

5.6.1. Hugin GUI .. 142
5.6.2. Documentation of Bayesian networks.. 142

5.6.3. Use of Hugin API (Java) .. 143

Accessing Bayesian networks ... 143
Supplying evidence ... 143
Reading updated beliefs .. 144
Saving a Bayesian network ... 145

5.7. Example decision-making scenarios in MediaHub ... 145

5.7.1. Anaphora resolution ... 145
Checking MediaHub Whiteboard in the History class .. 151

5.7.2. Domain knowledge awareness ... 153

Document Type Definition (DTD) .. 154
5.7.3. Multimodal presentation .. 158

5.7.4. Turn-taking ... 162
5.7.5. Dialogue act recognition .. 164

5.7.6. Parametric learning .. 167
5.8. Summary .. 168

v

Chapter 6 Evaluation of MediaHub ... 170

6.1. Test environment systems specifications ... 170

6.2. Initial testing .. 170
6.3. Evaluation of MediaHub .. 174

6.3.1. Anaphora resolution ... 174
6.3.2. Domain knowledge awareness ... 178

6.3.3. Multimodal presentation .. 183

6.3.4. Turn-taking ... 188
6.3.5. Dialogue act recognition .. 189

6.3.6. Parametric learning .. 190
6.4. Performance of MediaHub... 192
6.5. Requirements criteria check... 193
6.6. Summary .. 195

Chapter 7 Conclusion and Future Work ... 196

7.1. Summary .. 196
7.2. Relation to other work ... 198
7.3. Future work .. 199

7.3.1. MediaHub increased functionality ... 199

7.3.2. MediaHub application domains ... 200

7.4. Conclusion ... 201

Appendices ... 202

Appendix A: MediaHub’s Document Type Definitions (DTDs) 203

Appendix B: MediaHub message types .. 205
Appendix C: HTML Bayesian network documentation ... 207

Appendix D: Test case tables .. 209

References .. 214

vi

List of Figures

Figure 2.1: Example frames from Chameleon (Brøndsted et al. 1998, 2001) 9

Figure 2.2: Melting Pots in MATIS (Nigay & Coutaz 1995) ... 10

Figure 2.3: Spectrum of intelligent behaviour (Hopgood, 2003) .. 15

Figure 2.4: Inverted Pendulum (Passino & Yurkovich 1997)... 18

Figure 2.5: Membership function for “possmall” (Passino & Yurkovich 1997) 19

Figure 2.6: Membership functions for “error” and “change in error” ... 20

Figure 2.7: Darwin’s Theory of Evolution .. 21

Figure 2.8: Example of a typical neural network structure ... 23

Figure 2.9: Example of a simple Bayesian network ... 23

Figure 2.10: Typical structure of an ICE system (Amtrup 1995) ... 26

Figure 2.11: Agent interaction in OAA (OAA 2009) ... 28

Figure 2.12: Read, write and take operations within JavaSpaces ... 28

Figure 2.13: A typical object request (CORBA 2009) .. 29

Figure 2.14: Architecture of .NET framework (MS.NET 2009) .. 31

Figure 2.15: XML Code to initialise Psyclone at start-up (Psyclone 2009) 33

Figure 2.16: Embodied agent Mirage (Thórisson et al. 2004) .. 34

Figure 2.17: Architecture of Chameleon (Brøndsted et al. 1998, 2001) 36

Figure 2.18: Information exchange using the blackboard (Brøndsted et al. 1998, 2001) 36

Figure 2.19: Internal blackboard architecture (Brøndsted et al. 1998, 2001) 37

Figure 2.20: Syntax of messages (frames) within Chameleon (Brøndsted et al. 1998, 2001) 37

Figure 2.21: Physical environment data (Brøndsted et al. 1998) .. 38

Figure 2.22: Architecture of TeleMorph’s Fuzzy Inference System (Solon et al. 2007)............ 39

Figure 2.23: Architecture of CONFUCIUS (Ma 2006) .. 40

Figure 2.24: Output animation in CONFUCIUS (Ma 2006) .. 41

Figure 2.25: Narrator Merlin in CONFUCIUS (Ma 2006) ... 41

Figure 2.26: Frame posted on Ymir’s Functional Sketchboard (Thórisson 1999) 42

Figure 2.27: Network architecture of InterACT (Waibel et al. 1996) .. 43

Figure 2.28: Architecture of JASPIS (Jokinen et al. 2002)... 44

Figure 2.29: Example of M3L code (Wahlster 2003) ... 46

Figure 2.30: Hub-and-spoke architecture of GCSI (Bayer et al. 2001) 46

Figure 2.31: An example Aesopworld frame (Okada et al. 1999) .. 49

Figure 2.32: User-Agent Collaboration within Collagen (Rich & Sidner 1997) 49

Figure 2.33: Collagen architecture (Rich & Sidner 1997) .. 50

vii

Figure 2.34: Architecture of DARBS (Nolle et al. 2001) ... 52

Figure 2.35: Communication within DARBS (Nolle et al. 2001) .. 52

Figure 2.36: A typical DARBS rule (Nolle et al. 2001).. 53

Figure 2.37: User-computer-environment relationship (Kirste et al. 2001)................................ 53

Figure 2.38: Generic architecture of EMBASSI (Kirste et al. 2001) .. 54

Figure 2.39: MIAMM architecture (Reithinger et al. 2002) ... 55

Figure 2.40: Example MIAMM hand-held device (Reithinger et al. 2002) 56

Figure 2.41: The XWand (Wilson & Shafer 2003) ... 57

Figure 2.42: WorldCursor motion platform (Wilson & Pham 2003).. 57

Figure 2.43: Avatar and screen shot of ViSoft (Foster 2004) ... 58

Figure 2.44: Commercial application of Microsoft Surface (Microsoft 2009) 59

Figure 2.45: Digital photography in Microsoft Surface (Microsoft 2009) 59

Figure 2.46: The REA agent (Cassell et al. 2000) .. 61

Figure 2.47: SAM (Cassell et al. 2000)... 61

Figure 2.48: Gandalf (Thórisson 1996) ... 62

Figure 2.49: Greta’s expressions (de Rosis et al. 2003) .. 63

Figure 3.1: Example Bayesian network (Pfeffer 2000) .. 74

Figure 3.2: Conditional Probability Tables for student grades example (Pfeffer 2000) 75

Figure 3.3: Example influence diagram (Hugin 2009) ... 76

Figure 3.4: Iterative process of Bayesian network construction (Kjærulff & Madsen 2006) 78

Figure 3.5: Incorrect modelling of causality ... 79

Figure 3.6: Correct modelling of causality ... 79

Figure 3.7: Dynamic Bayesian network in XWAND (XWAND 2009) 83

Figure 3.8: Bayesian network for triggering ‘envy’ (de Rosis et al. 2003) 85

Figure 3.9: Model Diagram Window in MSDNx Editor (Kadie et al. 2001) 87

Figure 3.10: GeNIe GUI (Genie 2009) ... 88

Figure 3.11: Netica GUI (Norsys 2009) .. 89

Figure 3.12: Elvira’s main screen (Elvira 2009) ... 90

Figure 3.13: Elvira in inference mode (Elvira, 2009) ... 90

Figure 3.14: Main window of Hugin GUI (Hugin 2009) .. 91

Figure 3.15: Simple example of a Bayesian network in Hugin .. 91

Figure 3.16: View of table for Diet node .. 92

Figure 3.17: CPT of Weight Loss node ... 93

Figure 3.18: Example of run mode ... 93

Figure 3.19: Evidence added to the Diet node .. 93

viii

Figure 3.20: Evidence of a good diet and exercise ... 94

Figure 3.21: Evidence of a bad diet added .. 95

Figure 3.22: Evidence of bad diet and no exercise added ... 95

Figure 3.23: Data file for structural learning (Hugin 2009) .. 96

Figure 3.24: The Bayesian network learned (Hugin 2009) ... 96

Figure 3.25: EM Learning window (Hugin 2009) .. 97

Figure 4.1: Generic architecture of a multimodal distributed platform hub 100

Figure 4.2: Example semantic representation of multimodal input .. 102

Figure 4.3: Example semantics for multimodal output presentation .. 103

Figure 4.4: XML semantic representation of “Whose office is this?” 105

Figure 4.5: Frame-based semantic representation of deictic gesture .. 105

Figure 4.6: Semantic representations for ‘hotel availability’ example 106

Figure 4.7: Frame-based semantic representation of speech recognition result 113

Figure 4.8: XML-based semantic representation of gaze input semantics 113

Figure 4.9: Segment of data file for structural learning of a Bayesian network 116

Figure 4.10: Partial frame for intelligent bus ticket reservation system 117

Figure 4.11: Bayesian network for multimodal presentation .. 118

Figure 4.12: Bayesian network for turn-taking ... 119

Figure 4.13: Bayesian network for dialogue act recognition .. 121

Figure 4.14: Segment of data file for structural learning of a Bayesian network 122

Figure 5.1: Architecture of MediaHub .. 131

Figure 5.2: MediaHub example Document Type Definition (DTD) .. 132

Figure 5.3: Segment of XML file containing data on offices ... 134

Figure 5.4: Segment of Domain Model code .. 135

Figure 5.5: Architecture of Psyclone (Thórisson et al. 2005) ... 137

Figure 5.6: Psyclone running in command window.. 137

Figure 5.7: Segment of MediaHub’s psySpec.XML file .. 138

Figure 5.8: Java code for establishing a connection to Psyclone .. 138

Figure 5.9: Viewing messages on MediaHub Whiteboard with psyProbe 139

Figure 5.10: MediaHub’s five decision-making layers ... 140

Figure 5.11: Hugin Graphical User Interface (GUI) ... 142

Figure 5.12: Domain Model XML file for ‘anaphora resolution’ ... 146

Figure 5.13: Semantics of speech input for ‘anaphora resolution’ ... 146

Figure 5.14: Use of Psyclone psyProbe for ‘anaphora resolution’ ... 147

Figure 5.15: Semantics of deictic gesture for ‘anaphora resolution’ .. 147

ix

Figure 5.16: Segment of PsySpec.XML configuring MediaHub Whiteboard 148

Figure 5.17: Segment of if-else statement in Decision-Making Module 148

Figure 5.18: Checking XML segment against a Document Type Definition 149

Figure 5.19: SpeechGesture.DTD for ‘anaphora resolution’ .. 149

Figure 5.20: Extracting coordinates from XML Integration Document 149

Figure 5.21: Extraction of coordinates for each office .. 150

Figure 5.22: Parsing Domain Model for ‘anaphora resolution’ .. 150

Figure 5.23: Segment of Replenished Document (RepDoc) ... 150

Figure 5.24: Speech segment for turn 5 of ‘anaphora resolution’... 151

Figure 5.25: Retrieval of dialogue history from MediaHub Whiteboard.................................. 151

Figure 5.26: Calling History class from Decision-Making Module .. 152

Figure 5.27: Finding the last male referred to in a dialogue ... 152

Figure 5.28: Repackaging speech segment in the History class ... 152

Figure 5.29: Posting speech segment from the History class to MediaHub Whiteboard 152

Figure 5.30: Bayesian network for ‘domain knowledge awareness’ .. 153

Figure 5.31: DTD for ‘domain knowledge awareness’ ... 155

Figure 5.32: Complete IntDoc for ‘domain knowledge awareness’ ... 155

Figure 5.33: Domain-specific information for ‘domain knowledge awareness’ 156

Figure 5.34: DTD for ‘domain knowledge awareness’ ... 156

Figure 5.35: Matching coordinates of eye-gaze in the Domain Model 157

Figure 5.36: Code which posts RepDoc and HisDoc to MediaHub Whiteboard 157

Figure 5.37: Bayesian network for ‘multimodal presentation’ ... 159

Figure 5.38: CPT of Steering node ... 160

Figure 5.39: CPT of Face node ... 160

Figure 5.40: CPT of EyeGaze node... 160

Figure 5.41: CPT of Head node .. 160

Figure 5.42: CPT of Posture node .. 160

Figure 5.43: CPT of Braking node .. 160

Figure 5.44: CPT of Tired node .. 160

Figure 5.45: CPT of SpeechOutput node .. 161

Figure 5.46: Bayesian network for ‘turn-taking’ .. 162

Figure 5.47: CPT of Gaze node .. 163

Figure 5.48: CPT of Posture node .. 163

Figure 5.49: CPT of Speech node ... 163

Figure 5.50: CPT of Turn node ... 163

x

Figure 5.51: Alternative Bayesian network for ‘turn-taking’ ... 164

Figure 5.52: Bayesian network for ‘dialogue act recognition’ ... 165

Figure 5.53: CPT of Speech node ... 165

Figure 5.54: CPT of Intonation node .. 166

Figure 5.55: CPT of Eyebrows node ... 166

Figure 5.56: CPT of Mouth node .. 166

Figure 5.57: CPT of DialogueAct node... 166

Figure 5.58: Section of data file for ‘parametric learning’ ... 168

Figure 5.59: ‘Generate Simulated Cases’ window .. 168

Figure 6.1: Hugin GUI deploying Bayesian network ... 171

Figure 6.2: Entering evidence on a node through the Hugin GUI .. 171

Figure 6.3: NetBeans IDE ... 172

Figure 6.4: Psyclone’s psyProbe for testing MediaHub ... 173

Figure 6.5: psyProbe Post Message page ... 173

Figure 6.6: psyProbe Whiteboard Messages page .. 174

Figure 6.7: Viewing more information on a message with psyProbe 174

Figure 6.8: Sending speech segment from Dialogue Manager to MediaHub Whiteboard 175

Figure 6.9: NetBeans’ output window confirming speech input received 175

Figure 6.10: RepDoc received in Dialogue Manager ... 176

Figure 6.11: Output trace for turn 3 of ‘anaphora resolution’... 176

Figure 6.12: Speech segment for turn 5 .. 177

Figure 6.13: Posting the speech segment of turn 5 to MediaHub Whiteboard 177

Figure 6.14: First part of turn 5 received in Decision-Making Module 177

Figure 6.15: Semantics of deictic gesture for turn 5 ... 178

Figure 6.16: Final output trace for ‘anaphora resolution’ ... 178

Figure 6.17: Bayesian network for ‘domain knowledge awareness’ .. 179

Figure 6.18: Testing of ‘domain knowledge awareness’ Bayesian network in Hugin GUI 179

Figure 6.19: Testing of ‘domain knowledge awareness’ Bayesian network 180

Figure 6.20: Evidence applied to the Speech and EyeGaze nodes .. 181

Figure 6.21: Further evidence applied to Speech and EyeGaze nodes 182

Figure 6.22: Evidence applied on the Speech and EyeGaze nodes ... 182

Figure 6.23: NetBeans output trace for ‘domain knowledge awareness’ 183

Figure 6.24: Bayesian network for ‘multimodal presentation’ ... 184

Figure 6.25: Entering test evidence into ‘multimodal presentation’ Bayesian network 185

Figure 6.26: Entering test evidence into the ‘multimodal presentation’ Bayesian network 186

xi

Figure 6.27: Entering test evidence into ‘multimodal presentation’ Bayesian network 186

Figure 6.28: psyProbe testing ‘multimodal presentation’ ... 187

Figure 6.29: Results of running ‘multimodal presentation’ Bayesian network 187

Figure 6.30: ‘Turn-taking’ Bayesian network in Hugin.. 188

Figure 6.31: Alternative ‘turn-taking’ Bayesian network ... 188

Figure 6.32: Testing of ‘dialogue act recognition’ Bayesian network 190

Figure 6.33: Bayesian network for ‘parametric learning’ ... 191

Figure 6.34: Section of data file for ‘parametric learning’ ... 191

Figure 6.35: Section of data file for ‘parametric learning’ ... 191

Figure 6.36: Task Manager in Windows Vista ... 193

Figure 6.37: KSysGuard Performance Monitor in Linux (Kubuntu) .. 193

Figure A.1: DTD for ‘anaphora resolution’ .. 203

Figure A.2: DTD for ‘domain knowledge awareness’ .. 203

Figure A.3: DTD for ‘multimodal presentation’ ... 203

Figure A.4: DTD for ‘turn-taking’ .. 204

Figure A.5: DTD for ‘dialogue act recognition’ ... 204

Figure B.1: ‘Anaphora resolution’ message types .. 205

Figure B.2: ‘Domain knowledge awareness’ message types .. 205

Figure B.3: ‘Multimodal presentation’ message types ... 205

Figure B.4: ‘Turn-taking’ message types .. 206

Figure B.5: ‘Dialogue act recognition’ message types ... 206

xii

List of Tables

Table 2.1: Word accuracy of Speech/Lip system (Waibel et al. 1996) 43

Table 2.2: Summary of multimodal systems 65

Table 3.1: Utility tables for Drill decision node (Hugin 2009) 77

Table 3.2: Utility tables for Test decision node (Hugin 2009) 77

Table 4.1: Example hypotheses held by an ‘intelligent travel agent’ system 109

Table 4.2: Example hypotheses held by an ‘intelligent car safety’ system 110

Table 4.3: CPT of Face node 119

Table 4.4: CPT of SpeechOutput node 119

Table 4.5: CPT of Speech node 120

Table 4.6: CPT of Gaze node 120

Table 4.7: CPT of Posture node 120

Table 4.8: CPT of Turn node 120

Table 4.9: CPT of Intonation node 121

Table 4.10: CPT of Eyebrows node 121

Table 4.11: CPT of Mouth node 121

Table 4.12: CPT of Speech node 121

Table 4.13: CPT of DialogueAct node 122

Table 4.14: Requirements criteria for a multimodal distributed platform hub 124

Table 6.1: Test environment system specifications 170

Table 6.2: Generic structure of initial testing results table 172

Table 6.3: Subset of test cases for ‘domain knowledge awareness’ Bayesian network 180

Table 6.4: Subset of test cases for ‘multimodal presentation’ Bayesian network 184

Table 6.5: Subset of test cases for ‘turn-taking’ Bayesian network 189

Table 6.6: Subset of test cases for alternative ‘turn-taking’ Bayesian network 189

Table 6.7: Subset of test cases for ‘dialogue act recognition’ Bayesian network 190

Table 6.8: Check on multimodal hub requirements criteria 194

Table D.1: Test cases for ‘domain knowledge awareness’ Bayesian network 209

Table D.2: Test cases for ‘multimodal presentation’ Bayesian network 210

Table D.3: Test cases for ‘turn-taking’ Bayesian network 211

Table D.4: Test cases for alternative ‘turn-taking’ Bayesian network 212

Table D.5: Test cases for ‘dialogue act recognition’ Bayesian network 213

xiii

Acknowledgements

I would like to express my appreciation to Dr. Tom Lunney and Prof. Paul Mc Kevitt for their

continuous advice, support and guidance throughout my Ph.D. work. Their knowledge and

expertise in distributed processing, intelligent multimedia and multimodal systems has made an

immense contribution to my research. Thanks to Aiden Mc Caughey for all his advice and

assistance with Java programming. I also want to express gratitude to other Ph.D. student

members of the Intelligent Systems Research Centre (ISRC) at Magee, Jonathan Doherty,

Rosaleen Hegarty and Sheila McCarthy, who were always willing and able to share their

knowledge of IntelliMedia. Additionally, I would like to thank Dr. Minhua (Eunice) Ma for her

advice on semantic representation and Dr. Tony Solon for engaging in numerous meetings and

discussions on multimodal decision-making. I wish to express sincere appreciation to various

members of the ISRC who frequently offered valuable feedback, criticisms and advice on my

research, in particular Dr. Caitríona Carr, Bryan Gardiner, Dr. Pawel Herman, Simon Johnston,

Dermot Kerr, Fiachra MacGiolla-Bhride and Dr. Tina O’Donnell. Their friendships and

solidarity have been invaluable to me throughout the duration of my Ph.D. work. Thanks to

Frank Jensen for his assistance with the Hugin software tools, Dr. Thor List and Dr. Kristinn

Thórisson for their valuable help with Psyclone and the OpenAIR specification. Many thanks to

Kristiina Jokinen and Jim Larson for their advice at the Elsenet Summer School 2007. Thanks

to Prof. Pádraig Cunningham for his comments at AICS 2006. Thanks to Dr. Kevin Curran,

Prof. Sally McClean, Prof. Bryan Scotney and Prof. Mike McTear who provided valuable

feedback on my Ph.D. work and to Dr. Philip Morrow for his assistance. Thanks also to Pat

Kinsella, Ted Leath, Paddy McDonough and Bernard McGarry for their technical support. I

want to express my appreciation to Margaret Cooke and Heather Law (now at the University of

Ulster Research Office) at the Faculty of Computing and Engineering Graduate School and also

to Eileen Shannon at the University of Ulster Research Office for all their assistance. Thanks to

Annemarie Doohan, Barry Harper, Lee Tedstone and Dr. Ramesh Kanagapathy of Nvolve

Limited for their practical support that enabled the submission of this thesis.

I want to offer sincere thanks to my parents, Imelda and Joe, to my brothers, Joe and

Seamus, and my sister, Katrina for their unending encouragement and support. Thanks to Jim

McGrath for all his advice and to many other friends and relations who took an interest in my

research and encouraged me along the way. Last, but not least, I want to express my

appreciation to my wife, Leona for her continuous patience, encouragement and support

throughout my research.

xiv

Abstract

Intelligent multimodal systems facilitate natural human-computer interaction through a wide

range of input/output modalities including speech, deictic gesture, eye-gaze, facial expression,

posture and touch. Recent research has identified new ways of processing and representing

modalities that enhance the ability of multimodal systems to engage in intelligent human-like

communication with real users. As the capabilities of multimodal systems have been extended,

the complexity of the decision-making required within these systems has increased. The often

complex and distributed nature of multimodal systems has meant that the ability to perform

distributed processing is a fundamental requirement in such systems. The hub of a multimodal

distributed platform must interpret and represent multimodal semantics, facilitate

communication between different modules of a multimodal system and perform decision-

making over input/output data.

 This research has investigated distributed processing and intelligent decision-making

within multimodal systems and proposes a new approach to decision-making based on Bayesian

networks within the hub of a multimodal platform. The thesis is demonstrated in a test-bed

multimodal distributed platform hub called MediaHub. MediaHub performs Bayesian decision-

making for semantic fusion and addresses three key problems in multimodal systems: (1)

semantic representation, (2) communication and (3) decision-making. MediaHub has been

tested on a number of problems such as anaphora resolution, domain knowledge awareness,

multimodal presentation, turn-taking, dialogue act recognition and parametric learning across a

series of application domains such as building data, cinema ticket reservation, in-car

information and safety, intelligent agents and emotional state recognition. Evaluation of

MediaHub gives positive results which highlight its capabilities for decision-making and it is

shown to compare favourably with existing approaches. Future work includes the integration of

MediaHub with existing multimodal systems that require complex decision-making and

distributed communication, and the automatic population of Bayesian networks.

xv

Notes on access to contents

I hereby declare that with effect from the date on which the thesis is deposited in the Library of

the University of Ulster, I permit the Librarian of the University to allow the thesis to be copied

in whole or in part without reference to me on the understanding that such authority applies to

the provision of single copies made for study purposes or for inclusion within the stock of

another library. This restriction does not apply to the British Library Thesis Service (which is

permitted to copy the thesis on demand for loan or sale under the terms of a separate

agreement) nor to the copying or publication of the title and abstract of the thesis. IT IS A

CONDITION OF USE OF THIS THESIS THAT ANYONE WHO CONSULTS IT MUST

RECOGNISE THAT THE COPYRIGHT RESTS WITH THE AUTHOR AND THAT NO

QUOTATION FROM THE THESIS AND NO INFORMATION DERIVED FROM IT MAY

BE PUBLISHED UNLESS THE SOURCE IS PROPERLY ACKNOWLEDGED.

1

Chapter 1 Introduction

Multimodal systems provide the potential to transform the way in which humans communicate

with machines. Already there have been significant advances towards the goal of achieving

natural human-like interaction with computers (Bunt et al. 2005; López-Cózar Delgado & Araki

2005; Maybury 1993; Mc Kevitt 1995/96; Stock & Zancanaro 2005; Thórisson 2007; Wahlster

2006). Speech is a common form of communication between humans and computational

devices (Mc Tear 2004). Of course, speech is just one modality that humans use to

communicate. We use a vast array of modalities to interact with each other, including gestures,

facial expressions, gaze and touch. In order to realise truly natural human-computer interaction,

there is a need to design multimodal systems that can process these modalities in intelligent and

complementary ways. Such systems must be flexible, enabling the user to choose the interaction

modalities. They must adapt to the changing needs of a dialogue with the user, accessing

various modalities as required. Communication must not be restricted to a particular modality,

but use a wide range of potential modalities. Multimodal systems must also facilitate

communication through a combination of modalities in parallel (e.g. speech and gesture, speech

and gaze) and be able to adapt their output to suit both the current context and the needs and

preferences of the user. A more natural form of human-machine interaction has resulted from

the development of systems that facilitate multimodal input such as natural language, eye and

head tracking and 3D gestures.

1.1. Overview of multimodal systems
With respect to multimodal systems, of particular importance are their methods of semantic

representation (Mc Kevitt 2005, Ma & Mc Kevitt 2003), semantic storage (Thórisson et al.

2005), and decision-making, i.e., semantic fusion and synchronisation (Wahlster 2006). Ymir

(Thórisson 1996, 1999) is a multimodal architecture for creating autonomous creatures capable

of human-like communication. A prototype interactive agent called Gandalf has been created

with the Ymir architecture (Thórisson 1996, 1997). Gandalf is capable of fluid turn-taking and

dynamic sequencing. Chameleon (Brøndsted et al. 2001) is a platform for the development of

intelligent multimedia applications. In Chameleon, communication between modules is

achieved by exchanging semantic representations via a blackboard. SmartKom (Wahlster 2006)

is a multimodal dialogue system that deploys rule-based pre-processing together with

2

probabilistic based decision-making in the form of a stochastic model. SmartKom primarily

focuses on three application domains: home, e.g., interfacing with home entertainment; public,

e.g., tourist information, hotel reservations, banking; and mobile, e.g., driver interaction with

mobile services in the car. SmartKom deploys a combination of speech, gestures and facial

expressions to facilitate a more natural form of human-computer interaction, allowing face-to-

face interaction with its conversational agent, Smartakus. Interact (Jokinen et al. 2002) aids the

creation of agent-based distributed systems. Agents are scored with regard to their suitability in

performing particular tasks and an Interaction Manager deals with interactions between Interact

modules. An early application of Interact was an intelligent bus-stop that enables multimodal

access to city transport information. MIAMM (Reithinger et al. 2002) is an abbreviation for

Multidimensional Information Access using Multiple Modalities. The aim of MIAMM is to

develop new concepts and techniques that will facilitate fast and natural access to multimedia

databases through multimodal dialogues. Considerable work has also been conducted on

semantic representation within multimodal systems. Approaches to representing semantics

include frames, typed feature structures, melting pots and XML (Mc Kevitt, 2005).

1.1.1. Distributed processing
Advances in the field of distributed processing have seen the emergence of various software

tools that aid the design of distributed systems. Psyclone (Thórisson et al. 2005) is a powerful

and robust message-based middleware that enables the development of large distributed

systems. Psyclone facilitates a publish-subscribe mechanism of communication, where a

message is routed through one or more central whiteboards to modules that have subscribed to

that message type. Psyclone implements the OpenAIR (Mindmakers 2009; Thórisson et al.

2005) routing and communication protocol and enables the creation of single- and multi-

blackboard based Artificial Intelligence (AI) systems. The Open Agent Architecture (OAA)

(Cheyer et al. 1998; OAA 2009) is a framework for developing distributed agent-based

applications. .NET (MS .NET 2009) is the Microsoft Web services strategy that enables

applications to share data across different operating systems and hardware platforms. The Web

services provide a universal data format that enables applications and computers to

communicate with each other. Based on XML, the Web services facilitate communication

across platforms and operating systems, irrespective of what programming language is used to

write the applications. Other tools for distributed processing include CORBA (CORBA 2009;

Vinoski 1993), an architecture for developing distributed object-based systems, and DACS

(Distributed Applications Communication System) (Fink et al. 1996), a software tool for system

3

integration that provides useful features for the development and maintenance of distributed

systems.

1.1.2. Bayesian networks
Bayesian networks (Bayes nets, Belief networks, Causal Probabilistic Networks (CPNs)) (Pearl

1988; Charniak, 1991; Jensen 1996, 2000; Jensen & Nielsen 2007; Pourret et al. 2008) are an

AI technique for reasoning about uncertainty using probabilities. There are a number of

properties of Bayesian networks that make them suited to modelling decision-making within

multimodal systems. Bayesian networks are appropriate where there exist causal relationships

between variables of a problem domain, but where uncertainty forces the decision-maker to

describe things probabilistically, e.g., where a multimodal system is 75% sure that the user is

happy because the person is believed to be smiling. Becoming more prevalent over the last two

decades, Bayesian networks have been applied in a number of application scenarios including

medical diagnosis (Peng & Reggia, 1990; Milho & Fred, 2000), story understanding (Charniak

& Goldman, 1989) and risk analysis (Agena 2009). A key advantage of Bayesian networks is

their ability to perform intercausal reasoning, i.e., evidence supporting one hypothesis explains

away competing hypotheses. Several software tools facilitate development of Bayesian

networks, with many offering both a Graphical User Interface (GUI) and a set of Application

Programming Interfaces (APIs). Popular Bayesian software includes Hugin (2009), MSBNx

(Kadie et al. 2001, MSBNx 2009), Elvira (2009) and the Bayes Net Toolbox (Murphy 2009).

1.2. Objectives of this research
The key objectives of the research are summarised as follows:

• Develop a Bayesian approach to decision-making, i.e., fusion and synchronisation of

multimodal input and output data.

• Implement and test this Bayesian approach within MediaHub, a multimodal distributed

platform hub, with a generic approach to decision-making over multimodal data.

• Generate/interpret semantic representations of multimodal input/output within

MediaHub.

• Coordinate communication between the modules of MediaHub and between MediaHub

and external modules.

• Design, implement and evaluate MediaHub.

In pursuing these objectives several key problems in multimodal systems are addressed

including anaphora resolution, domain knowledge awareness, multimodal presentation, turn-

4

taking, dialogue act recognition and parametric learning. MediaHub is tested in a number of

different application domains including building data, cinema ticket reservation, in-car

information and safety, intelligent agents and emotional state recognition. The testing of

MediaHub across a range of application domains demonstrates the breadth of its applicability in

decision-making over multimodal data. The focus here is to demonstrate the breadth of

MediaHub’s decision-making, as opposed to its depth in any specific application domain.

1.3. Outline of this thesis
This thesis consists of seven chapters. Chapter 2 reviews related research and a number of

concepts that are fundamental to multimodal systems, including semantic representation and

storage, communication and the fusion and synchronisation of multimodal input/output data,

i.e., decision-making. The chapter includes a discussion on tools for distributed processing and

a review of existing multimodal platforms and systems. Intelligent multimedia agents are

discussed and available multimodal corpora and annotation tools are reviewed. Also considered

are the problems of dialogue act recognition and anaphora resolution.

 Chapter 3 includes a detailed discussion of Bayesian networks and their application to

decision-making. A definition and discussion of the history of Bayesian networks is provided

initially before the structure of Bayesian networks is discussed. The ability of Bayesian

networks to perform intercausal reasoning is given particular attention. Chapter 3 also considers

the key problems that are encountered when constructing Bayesian networks and highlights

their advantages over other approaches to decision-making. Applications of Bayesian networks

are then discussed and a review of their current usage in multimodal systems is given. Chapter 3

concludes by reviewing existing software for implementation of Bayesian networks.

 Chapter 4 presents a Bayesian approach to decision-making in a multimodal distributed

platform hub. First, a generic architecture for a multimodal platform hub is given. This is

followed by a discussion on the nature of decision-making and the key problems that arise

within multimodal decision-making. The decisions are grouped into two areas: (1)

synchronisation of multimodal data and (2) multimodal data fusion. Also considered are

semantic representation, multimodal fusion and ambiguity resolution. Next, the features of a

multimodal system that support decision-making including distributed processing, dialogue

history, domain-specific information and learning are discussed. Following this, a list of

necessary and sufficient requirements criteria for an intelligent multimodal distributed platform

hub is compiled. Finally, the chapter ends with a discussion on the rationale for a Bayesian

approach to decision-making within a multimodal distributed platform hub.

5

 Chapter 5 details MediaHub, a multimodal distributed platform hub for Bayesian

decision-making over multimodal input/output data. First, MediaHub’s architecture is presented

and its modules described in detail. Semantic representation and storage within MediaHub is

addressed, before the role of Psyclone (Thórisson et al. 2005), which facilitates distributed

processing in MediaHub, is described. Next, MediaHub’s five decision-making layers are

outlined: (1) psySpec and Contexts, (2) Message Types, (3) Document Type Definitions

(DTDs), (4) Bayesian networks and (5) Rule-based. Following this, the functionality of Hugin

(Jensen 1996) in implementing Bayesian networks for decision-making in MediaHub is

discussed. Multimodal decision-making in MediaHub is then demonstrated through worked

examples that investigate key problems in various application domains.

 Chapter 6 discusses evaluation of MediaHub. First, hardware and software

specifications of test environment systems are discussed. Next, initial testing of MediaHub is

outlined, including NetBeans IDE, Hugin GUI and Psyclone’s psyProbe. Then, the results of

testing MediaHub on six key problems in multimodal decision-making are presented. The six

problem areas considered are: (1) anaphora resolution, (2) domain knowledge awareness, (3)

multimodal presentation, (4) turn-taking, (5) dialogue act recognition and (6) parametric

learning across five application domains: (1) building data, (2) cinema ticket reservation, (3) in-

car information and safety, (4) intelligent agents and (5) emotional state recognition. Next, the

performance and potential scalability of MediaHub is considered. Chapter 6 then provides a

discussion on how MediaHub meets the essential and desirable requirements criteria for a

multimodal distributed platform hub. Finally, Chapter 7 concludes the thesis with a comparison

to other work and a discussion on potential future work.

6

Chapter 2 Approaches to Multimodal Systems

This chapter reviews multimodal systems and the concepts and technology related to their

development. First, the fusion and synchronisation of multimodal input and output data is

considered. Then, three problems fundamental to the design of intelligent multimodal systems are

discussed; semantic representation and storage, communication and decision-making. Tools for

distributed processing are addressed and a review of existing multimodal platforms and systems is

given. Intelligent multimedia agents are discussed and the pertinent problem of turn-taking in such

agents considered. Multimodal corpora and annotation tools are reviewed, before a discussion on

two key problems in the design of intelligent multimodal systems: dialogue act recognition and

anaphora resolution. The chapter concludes with a discussion on the limitations of current AI

research.

2.1. Multimodal data fusion and synchronisation
Multimodal data fusion refers to the process of combining information from different modalities

(information chunks), “so that the dialogue system can create a comprehensive representation of

the communicated goals and actions of the user” (López-Cózar Delgado & Araki 2005, p. 34).

More specifically, it refers to fusion of semantics relating to various modalities. Fusion of

semantics is a critical task at both the input and the output of a multimodal system. An example of

semantic fusion can be found in Brøndsted et al. (2001), where semantics of the utterance, “Whose

office is this?” needs to be fused with semantics of the corresponding gesture input, i.e., pointing

to the intended office.

Fusion, as discussed in López-Cózar Delgado & Araki (2005, p. 34), can be performed at a

number of levels including signal, contextual, micro-temporal, macro-temporal and semantic.

Signal (lexical) fusion involves attaching hardware primitives to software events. Only temporal

concerns, e.g., synchronisation, are considered without any regard to interpretation at a higher

level. Signal fusion frequently occurs in audio-visual speech recognition, i.e., fusion of speech

with lip movement signals. Semantic fusion interprets the multimodal information chunks

separately and considers their meaning before combining them. Fusion at the semantic level is

normally conducted in two stages: (1) the multimodal events are combined at a low level and (2)

7

the high level meaning of the combination is extracted. As discussed in López-Cózar Delgado &

Araki (2005, p. 36), semantic fusion, “is mostly applied to modalities that differ in the time scale

characteristics of their features”. For example, semantic fusion often occurs when combining

speech and pointing, as in the IntelliMedia WorkBench application of Chameleon (Brøndsted et

al. 1998, 2001). Nigay and Coutaz (1995) consider three kinds of fusion: microtemporal,

macrotemporal and contextual. Microtemporal fusion combines the information chunks as they are

provided in parallel. Macrotemporal fusion combines information chunks that are provided in

sequence, provided in parallel but processed sequentially, or delayed due to processing limitations

of the system. Information chunks may be delayed due the processor-hungry nature of the data

being processed, e.g., speech or visual input will take longer to process than mouse input.

Contextual fusion, according to Nigay and Coutaz (1995), combines the information chunks

without giving any consideration to temporal constraints.

Decisions on the output of a multimodal system can relate to both the choice of output

modality, e.g., speech output only when a car is moving, as discussed in Berton et al. (2006) and

to the synchronisation of multimodal output, e.g., synchronising the movement of a pointing laser

with corresponding speech output, as in the IntelliMedia WorkBench application of Chameleon

(Brøndsted et al. 2001) where a statement of the form, “This is the route from Paul’s office to

Tom’s office”, needs to be synchronised with the laser output tracing the route between the two

offices.

Systems capable of integrating speech and gestures have been proposed since the early

eighties. Bolt (1980, 1987) introduced the ‘Put-That-There’ system, which enables the user to

move shapes about a graphical display with speech commands and pointing gestures. Mc Kevitt

(1995/96) includes a collection of computational models and systems that have been designed to

address the challenge of multimodal integration. Ó Nualláin & Smith (1994) investigate the

relationship between the semantics of language and vision, which led to the development of

Spoken Image (Ó Nualláin et al. 1994). Spoken Image enables a user to quickly build an

envisaged house or town scene, within a 3D environment, by describing the scene with natural

language. Aesopworld (Okada 1996; Okada et al. 1999) aims to create an architectural foundation

for intelligent agents. Aesopworld involves the creation of a computational agent that simulates

various kinds of mental activities. QuickSet (Johnston et al. 1997, Johnston 1998) focuses on the

integration of speech with pen-based input. Hall and Mc Kevitt (1995) observe that language and

vision are combined by humans in a non-linear fashion which makes analysis of the phenomenon

a very difficult task. They argue that their use of a knowledge representation that is independent of

8

both the vision processing and natural language processing modules makes vision-language

integration feasible. Pastra & Wilks (2004) highlight the need for a comprehensive language and

vision integration standard and present the Vision-Language intEgration MechAnism (VLEMA)

as a possible solution. Martin et al. (2001) achieve the linking of a speech/gesture segment with its

visual reference object by nesting the reference object in an XML segment annotation. This work

was then continued in Martin & Kipp (2002), where it was put to practice in the ANVIL

annotation tool (Kipp 2001, Martin & Kipp 2002). Several mechanisms have been employed for

the semantic fusion of multiple modalities, including frames, melting pots, neural networks and

agents. An important prerequisite of modality integration is the means of representing the

individual modalities. This is referred to as semantic representation and is discussed in the next

section.

2.2. Multimodal semantic representation
One of the central questions in the development of intelligent multimedia or multimodal systems

is what form of semantic representation should be used (Ma & Mc Kevitt 2003, Mc Kevitt 2005).

This semantic representation needs to support the interpretation/generation of multimodal

input/output and semantic theory. The representation can contain architectural, environmental and

interactional information. Architectural information comprises the producer/consumer of the

information, associated confidence and input/output devices. Environmental information contains

timestamps and spatial information, whilst interactional information includes the speaker/user’s

state. Here, four approaches to semantic representation are considered: frames, typed feature

structures, melting pots and XML.

2.2.1. Frames
A frame is a set of attributes together with associated values that represent some real world entity.

Minsky (1975) first introduced frames as a method of semantically representing situations in order

to facilitate decision-making and reasoning. The idea of frames is based on human memory and

the psychological view that, when humans are faced with a new problem, they select an existing

frame, or remembered framework, and adapt it to fit the new situation by changing appropriate

details. Although frames have limited capabilities on their own, a frame-based system provides a

powerful mechanism for encoding information to support reasoning and decision-making. Frames

can be used to represent concepts, including real world objects, for example, “the village of

Dromore”. The frames for representing each concept have slots which represent the attributes of

the concept. Frame-based methods of semantic representation are implemented in several

9

multimodal platforms, including Ymir (Thórisson 1996, 1999), Chameleon (Brøndsted et al. 1998,

2001), Waxholm (Carlson & Granström 1996; Carlson 1996) and DARBS (Choy et al. 2004a,

2004b; Nolle et al. 2001). Figure 2.1 shows example frame-based semantic representations from

Chameleon. The example frames in Figure 2.1 illustrate how speech and gesture input are

represented. The SPEECH-RECOGNISER frame in Figure 2.1 has three slots: (1) UTTERANCE:,

which contains the speech recognised by the system, (2) INTENTION:, which indicates the

perceived intention of the user, i.e., the user is intending to give an instruction, and (3) TIME:

which contains a timestamp for speech input. The GESTURE frame in Figure 2.1 also captures the

intention and timestamp of the gesture input and contains the recognised coordinates of the

pointing gesture in the GESTURE: slot. Note that, although the syntax and structure of frames will

vary from system to system, the basic principles of knowledge representation will remain the

same.

Figure 2.1: Example frames from Chameleon (Brøndsted et al. 1998, 2001)

2.2.2. Typed Feature Structures
Typed Feature Structures (TFSs) (Carpenter 1992) are another means of combining chunks of

information across different modalities. TFSs allow partial information chunks to be specified. For

example, a gesture that partially specifies the user’s intention can be represented by a TFS

containing some un-instantiated features. The dialogue manager can then ask the user to provide

missing information to help clarify the intentions of the user. TFSs have been used in the

implementation of a variety of dialogue systems, including QuickSet (Johnston et al. 1997) and in

Holzapfel et al. (2002) which used multidimensional TFSs to annotate multimodal information

chunks with, e.g., confidence scores and input channels.

2.2.3. Melting pots
Melting pots (Nigay & Coutaz 1995, López-Cózar Delgado & Araki 2005) are a semantic

representation technique for encapsulating time-stamped multimodal information to support fusion

based on the complementarity of the melting pots, time and the current context. Separate melting

pots can combine information from different modalities. For example, when the user says, “What

[SPEECH-RECOGNISER
UTTERANCE:(Point to Hanne’s office)
INTENTION: instruction!
TIME: timestamp]

[GESTURE
GESTURE: coordinates (3, 2)
INTENTION: pointing
TIME: timestamp]

10

are the available flights from Chicago to this city?”, and points to a map, one melting point can

handle speech input stating the start location, and the other handle a pointing gesture to the

destination. The two melting pots can then be integrated by a fusion module to fully represent the

intention of the user. Melting pots are applied in MATIS (Multimodal Airline Travel Information

System) (Nigay & Coutaz 1995), which gives information on flight schedules. The integration of

two melting pots in the MATIS system is illustrated in Figure 2.2.

Figure 2.2: Melting Pots in MATIS (Nigay & Coutaz 1995)

The fusion depicted in Figure 2.2 occurs when the user issues a multimodal request for

information on flights from Pittsburgh to Boston. The left melting pot in Figure 2.2 is generated

by the speech act triggered by the utterance, “flights from Pittsburgh”, whilst the right melting pot

results from the user selecting Boston with the mouse.

2.2.4. XML and derivatives
The eXtensible Markup Language (XML), created by the W3C (World Wide Web Consortium)

(W3C 2009), is a derivative of SGML (Standard Generalised Mark-up Language). XML was

initially developed for use in electronic publishing, but is now used extensively in the exchange of

data via the Web. The main purpose of XML is to provide a mechanism for the mark-up and

structuring of documents. XML is different to HTML in that tags are only used within XML to

delimit segments of data. Interpretation of the data is left to the application that reads it. Another

advantage of XML is that it is possible to easily create new XML tags. SmartKom (Wahlster

Pit

 Bos

Pit

 Bos

Time

Structural parts

Structural parts

Time Time
t i t i+1

Structural parts

11

2003, 2006; Wahlster et al. 2001; SmartKom 2009), Interact (Jokinen et al. 2002) and MIAMM

(Reithinger et al. 2002) have an XML-based method of multimodal semantic representation.

Derivatives of XML also exist for multimodal semantic representation. SmartKom

(Wahlster 2006) has an XML-based mark-up language, M3L (MultiModal Markup Language), for

semantically representing information passed between its various components. The exchange of

information within MIAMM is facilitated by a derivative of XML called MMIL (Multi-Modal

Interface Language). The Synchronised Multimedia Integration Language (SMIL) (Rutledge 2001,

Rutledge & Schmitz 2001, SMIL 2009a,b) is a representation language for encoding multimedia

presentations for distribution over the Web. SMIL consists of XML elements and attributes

describing the temporal and spatial coordination of media objects. The focus of SMIL is on the

integration and synchronisation of independent media. Another XML-based mark-up language is

EMMA (Extensible MultiModal Annotation markup language) (EMMA 2009). EMMA is a

canonical structure for marking up a variety of modalities including speech, natural language text

and gestures.

2.2.5. Other semantic representation languages
MPEG-7 (MPEG-7 2009) is an ISO/IEC standard developed by MPEG (Moving Picture Experts

Group). The MPEG-7 standard provides tools for describing multimedia content. MPEG-7 aims to

enable, “interoperable searching, indexing, filtering and access of audio-visual (AV) content by

enabling interoperability among devices and applications that deal with AV content description”

(MPEG-7 2009, p. 1). It is expected that MPEG-7 will make the Web more searchable with

multimedia content as the search criteria, as opposed to the traditional method of searching for

text.

The Semantic Web (Berners-Lee et al. 2001; SW 2009) aims to provide, “a common

framework that enables data to be shared and reused across application, enterprise and community

boundaries” (SW 2009, p. 1). Based on the Resource Description Framework (RDF) (Klein 2001,

2002, Nejdl et al. 2000, RDF Schema 2009), it is a joint effort led by the W3C (World Wide Web

Consortium) with input from other research and industrial partners. According to Berners-Lee et

al. (2001, p. 36), “the Semantic Web is an extension of the current Web in which information is

given well-defined meaning, better enabling computers and people to work in cooperation”.

Research in this area is motivated by the need to develop a knowledge representation framework

that can manage the mass of unstructured data on the current Web. An important goal of the

Semantic Web is to put information on the Web that can be processed by machines in addition to

humans. Semantic Web technologies such as RDF (Resource Description Framework) (Klein

12

2001, 2002, Nejdl et al. 2000, RDF Schema 2009), OIL (Ontology Inference Layer) (Fensel et al.

2001) and OWL (Ontology Web Language) (OWL 2009) enable rich information networks to be

rapidly created and can assist in the generation of hypotheses across large sets of data. RDF is a

general-purpose language for the representation of information on the Web. RDF Schema, an

extension of RDF, provides mechanisms for describing groups of resources and relationships

between them. RDF’s class and property system is comparable to that of object-oriented

programming languages such as Java. However, RDF, rather than defining a class in terms of the

properties its instances may have, describes properties in terms of the classes of resource to which

they may be applied. OIL (Ontology Inference Layer) (Fensel et al. 2001) is an ontology

architecture that is being developed for use with the Semantic Web. An ontology, as defined by

Gruber (1993, p. 200), is, “an explicit specification of a conceptualization”. OIL represents a

standard for specifying and exchanging ontologies, and aims to provide a general-purpose

semantic mark-up language for the Semantic Web. OWL enables applications to process the

content of information rather than simply presenting it to humans. OWL facilitates greater

machine interpretability of Web content than that provided by XML, RDF and RDF Schema. This

is achieved by providing additional vocabulary together with a formal semantics. OWL, based on

DAML+OIL (DAML 2009, DAML+OIL 2009, Mc Guinness et al. 2002), has three sublanguages:

OWL Lite, OWL DL, and OWL Full. DAML + OIL evolved from the merging of DAML + ONT,

an earlier ontology language, and OIL. The goal of DAML + OIL is to, “support the

transformation of the Web from being a forum for information presentation to a resource for

interoperability, understanding, and reasoning” (Mc Guinness et al. 2002, p.1). A further

advancement in the DAML project led to the development of DAML-S (DAML Services)

(DAML-S 2009), which provides a set of mark-up language constructs to describe Web Services

in a format understandable to computers.

SOAP (Simple Object Access Protocol) (Chester 2001) enables software applications

developed using different programming languages and running on different platforms to

interoperate. SOAP uses a combination of HTML and XML to send and receive messages in a

distributed environment. HTML facilitates communication between modules, while the actual

network conversation is encoded in XML. SOAP is a network protocol for calling components,

methods, objects and services on remote servers. This is enabled by representing parameters,

return values and errors in an XML document known as a SOAP envelope. A standardised XML

vocabulary called WSDL (Web Services Definition Language) facilitates description of the

methods, parameters and return values of a SOAP Web Service. The SOAP model is

13

language/platform independent, secure and scalable. It is a loosely coupled protocol that enables

information exchange in a decentralised, distributed environment. The NKRL (Narrative

Knowledge Representation Language) (Zarri 1997, 2002) language can represent the semantic

content of complex multimedia information in a standardised way. NKRL is a language for

representing the meaning of natural language narrative documents such as, for example, news

stories and corporate documents.

2.3. Multimodal semantic storage
In addition to semantic representation, another important factor is how semantics is stored within a

multimodal system. Semantic storage is important for maintaining dialogue history in a

multimodal system, which becomes increasingly more complex as dialogue systems become more

intelligent. The storage of semantics is important for deictic reference ambiguity resolution in a

dialogue where a user may ask, “How can I get from his office to that office [�]1?”. It is also

important for communication between modules of multimodal systems.

There are three key approaches to semantic storage: blackboard based, non-blackboard

based and multi-blackboard based. Similar to the traditional classroom-based blackboard, a

blackboard within a multimodal system is a repository of shared information containing semantic

representations of the reasoning performed, other information important to the reasoning process

and conclusions reached by the system during the resolution of a problem (e.g. a dialogue). This

information is maintained over time and can be accessed later to support decision-making in a

multimodal dialogue. Blackboards (Thórisson et al. 2005) help simplify the construction of AI

systems with large numbers of interacting modules. A key advantage of a blackboard is

modularity. That is, a problem space can be divided into a number of problem areas with each

being addressed by an ‘expert’ which works on the problem and communicates with other experts

via the blackboard. The principle of modularity makes blackboards popular in the design of

distributed and multimodal systems. Multimodal distributed platforms that deploy a blackboard

model of semantic storage include Chameleon (Brøndsted et al. 1998, 2001), Psyclone (Thórisson

et al. 2005) and DARBS (Nolle et al. 2001).

Non-blackboard based systems typically store semantics in individual modules and

communicate this semantics directly between modules through message-passing. Waxholm

(Carlson & Granström 1996; Carlson 1996), Aesopworld (Okada 1996, Okada et al. 1999) and

1 [�] indicates a deictic gesture.

14

InterACT (Waibel et al. 1996) all implement a non-blackboard based model of semantic storage.

Some large, complex platforms and systems need to implement multiple blackboards. Multi-

blackboard based approaches are deployed in Ymir (Thórisson 1996, 1999) and SmartKom

(Wahlster 2006). Psyclone (Thórisson et al. 2005) enables the creation of single- and multi-

blackboard based systems. Psyclone actually implements a special type of blackboard referred to

as a whiteboard. A whiteboard can perform all the functions of a blackboard and has the same

primary purpose, i.e., the storage of information relating to a problem in a shared space to support

decision-making in the multimodal system. However, whiteboards in Psyclone significantly

extend the blackboard model in a number of ways, including independence of programming

language, both query and publish-subscribe mechanisms, and implementation of an explicit

temporal model.

2.4. Communication
Communication is an important consideration in the development of any system. It is particularly

important in the design of multimodal systems, where the system will process input and output

from a variety of sources across multiple modalities. A common approach to communication

within large multimodal systems is to implement a blackboard, or shared space, and have all

modules in the system communicate by exchanging semantic representations via the blackboard

(Brøndsted et al. 1998, 2001). Alternatively, communication may be achieved by exchanging

semantic representations directly between the modules. It is also possible to both implement a

blackboard and allow direct communication between the modules themselves, as is the case in

Chameleon (Brøndsted et al. 1998, 2001).

 A number of communication protocols exist, a frequently used protocol being TCP/IP.

This is a suite of protocols used by Internet browsers and servers to connect to the Internet.

TCP/IP takes its name from the two key protocols contained in the suite: Transmission Control

Protocol (TCP) and Internet Protocol (IP). In addition to the Internet, TCP/IP also enables

communication within multimodal and unimodal systems. MATCH (Multimodal Access To City

Maps) (Johnston et al. 2002) uses TCP/IP for communication between the user interface and its

Java-based facilitator MCUBE. TCP/IP is also used in JATLite (Kristensen 2001, Jeon et al.

2000), which encompasses a collection of Java packages for constructing multi-agent systems and

DARBS (Distributed Algorithmic and Rule-Based System) (Choy et al. 2004a, 2004b, Nolle et al.

2001). The OpenAIR specification (Mindmakers 2009; Thórisson et al. 2005), implemented

within the Psyclone platform (Thórisson et al. 2005), is a routing and communication protocol.

15

Based on the publish-subscribe architecture paradigm, and built upon standard TCP/IP and XML,

OpenAIR aids the creation of large distributed systems.

2.5. Multimodal decision-making
In order to solve complex real-world problems, a system needs to combine knowledge and

techniques from various sources. Such problem-solving has required systems to be developed that

mimic the reasoning and decision-making capabilities of a human being. A system that is capable

of tackling complex problems in a human-like manner is said to be an intelligent system and the

intelligence that the system exhibits is termed Artificial Intelligence (AI) (Hopgood 2003). Many

definitions of AI exist in standard text books, some more complex than others. A simple definition

may be found in Hopgood (2003, p. 1), which states that AI, “is the science of mimicking human

mental faculties in a computer”. This definition, although perfectly correct, leaves the notion of

intelligence somewhat vague. It is important to appreciate the incredible complexity of the human

mind and the various levels of human intelligence that need to be replicated using intelligent

systems. Figure 2.3 provides some clarification by illustrating the spectrum of intelligence based

on the level of understanding involved.

Figure 2.3: Spectrum of intelligent behaviour (Hopgood, 2003)

Although there have been considerable advancements made at the top and bottom end of the

spectrum of intelligence, replicating human behaviour in the middle of the spectrum has proven to

be the greatest challenge. For example, a significant gap still exists in the “common sense” region.

It remains difficult to build systems that are capable of making sensible decisions under

uncertainty.

According to Hopgood (2003), AI technology for modelling intelligent behaviour can be

broadly categorised into the following two areas:

• Explicit modelling – with words and symbols

• Implicit modelling– with numerical techniques

16

Explicit modelling includes techniques such as rule-based and case-based reasoning. With explicit

modelling, words and symbols create explicit rules to model the problem. An example is, ‘if the

temperature is hot, then turn the fan on’. This technique has the disadvantage that it can only deal

with explicit situations and cannot deal with unfamiliar situations. Implicit modelling uses

numerical techniques in an attempt to overcome this problem. Numerical techniques such as

Neural Networks, Genetic Algorithms, Fuzzy Logic and Bayesian Networks enable the computer

to create its own model based on observations and past experience. For example, Neural Networks

can learn rules from a set of example data and apply these rules in previously un-encountered

situations.

2.5.1. Uncertainty
Real world decisions are seldom taken with 100% certainty that they are correct. Humans deal

with uncertainty all the time, often during the course of a dialogue. Background noise, for

example, can increase the uncertainty involved in speech recognition. In a noisy environment there

may be increased uncertainty relating to the recognition of speech. Here, people can use other non-

verbal cues (e.g. lip movement, gestures) to compensate for uncertainty in recognising speech and

increase their overall certainty about the message being communicated. Of course, even without

noise, uncertainty frequently arises in everyday conversations. As an example consider the

following dialogue segment, as discussed in Mc Tear (2004, p. 47):

1 A: John caught up with Bill outside the pub.

2 B: Did he give him the tickets?

Here there is uncertainty as to who ‘he’ and ‘him’ refer to. In this example, the uncertainty can be

resolved if it is known who has the tickets. Whilst uncertainty is something that decision-making

mechanisms try to resolve it is important, in the first instance, that uncertainty relating to certain

inputs and beliefs are adequately recognised within the multimodal system.

 It should also be noted that a dialogue which contains no uncertainty in the real world can

have uncertainty introduced when interpreted by a multimodal system. Also, the choice of the

wrong decision-making strategy for a particular situation can lead to the system being both 100%

certain and 100% wrong. For example, consider the following conversation discussed in Mc Tear

(2004, p. 48):

1 A: Click on the “install” icon to install the program.

2 B: OK.

3 B: By the way, did you hear about Bill?

17

4 A: No, what’s up?

5 B: He took his car to be fixed and they’ve found all sorts of problems.

6 A: Poor Bill. He’s always in trouble.

7. A: OK. Is it ready yet?

It will be obvious to the reader that the referent of “it” in turn 7 is not Bill’s car, but the program

that B is trying to install. However, if the system were to use the last recently mentioned pronoun

that matches syntactically it would believe A is referring to Bill’s car. This is just one unimodal

example of how an ill thought-out decision strategy could lead to uncertainty or incorrectness. The

presence of multiple modalities can further complicate the decision-making process unless care is

taken to design a decision-making strategy that appropriately weights the various inputs and

ensures that the multiple modalities are harnessed to reduce uncertainty and ambiguity.

Another potential source of uncertainty in a dialogue is sarcasm. Consider the dialogue

below:

1 A: Any holidays planned this year?

2 B: Off for a week on Monday. Going to stay local, planning to tour Donegal.

3 B: Have you heard the weather forecast for the next few days?

4 A: I heard there will be a lot rain on Monday and Tuesday.

5B: Oh Great! (☺).

Note that the ☺ symbol indicates the speaker is smiling whilst uttering turn 5. Here, participant B

is not happy that there is a lot of rain forecasted for Monday and Tuesday. The utterance, “Oh

Great!’, and the accompanying smile of turn 5 are examples of sarcasm. Again, this will be

obvious to the reader, but turn 5 could easily be misinterpreted by a computer. The effective use of

dialogue history, labelling turn 4 as negative information for participant B, and an understanding

that a positive comment and expression can sometimes constitute sarcasm could help avoid

uncertainty in this dialogue.

2.5.2. Fuzzy Logic
Fuzzy Logic (Zadeh 1965; Passino & Yurkovich 1997) is a problem solving methodology that can

be used to arrive at definite conclusions based on vague, imprecise or missing data. This enables

Fuzzy Logic to mimic the approximate reasoning capability of human beings. As an example of

such reasoning, consider what we do in the shower when the temperature is too hot: we can

quickly fix the problem by adjusting the temperature control knob without knowing the exact

temperature of the water. Note that the water will be perceived to be too hot over a wide range of

18

temperature values and not only at a fixed temperature. Thus our action in adjusting the control

knob is based on perception, not just on a measured value. Fuzzy Logic attempts to replicate this

form of human reasoning.

 Fuzzy Logic uses linguistic or fuzzy variables, typically nouns such as, “temperature”,

“error” or “voltage”. All of these linguistic variables have linguistic values assigned to them.

Examples of linguistic values are, “very hot”, “zero”, “positive large”, “negative small”, “ok”,

“cold” and “very cold”. This will be further clarified by a simple example. Consider the problem

of balancing an inverted pendulum as discussed in Passino & Yurkovich (1997). A model diagram

of the problem is shown in Figure 2.4.

Figure 2.4: Inverted Pendulum (Passino & Yurkovich 1997)

Note that ‘u’ in Figure 2.4 represents the force that must be applied to the moving cart in order to

balance the pendulum, and ‘y’ represents the displacement of the pendulum from the vertical

(balanced) position. Suppose that an expert on the system says that he/she will use e(t), i.e., error,

and d/dt e(t), i.e., change in error, as the variables on which to base decisions. The error is

mathematically expressed as follows:

e(t) = r(t) - y(t) (2.1)

where r(t) is the reference point, indicated by the dashed line in Figure 2.4, and y(t) is the displacement

from this position. The following linguistic variables will be used in the fuzzy system:

“error” describes e(t)

“change-in-error” describes d/dt e(t)

“ force” describes u(t)

The linguistic variables will assume linguistic values over time. That is, “error” , “change-in-

error” and “force” will take on the following linguistic values:

19

“neglarge”

“negsmall”

“zero”

“possmall”

“poslarge”

Note that, “neglarge”, is an abbreviation for, “negative large”, and, “poslarge”, is an

abbreviation for “positive large”. We can now define linguistic rules that will capture the expert’s

knowledge about how to control the pendulum. A few of these rules are:

If error is negsmall and change-in-error is zero Then force is possmall

If error is zero and change-in-error is possmall Then force is negsmall

If error is poslarge and change-in-error is negsmall Then force is negsmall

We can now use membership functions to plot the meaning of the linguistic values. Consider

Figure 2.5. This is a plot of a function µ versus an error e(t). The function µ quantifies the

certainty that e(t) can be classified linguistically as “possmall”. For example, if e(t) = π/4 then

µ(π/4) = 1.0, indicating that we are absolutely certain that e(t) = π/4 is what we mean by

“possmall”.

Figure 2.5: Membership function for “possmall” (Passino & Yurkovich 1997)

To better understand the concept of the membership function, we will draw the membership

functions for the inverted pendulum using the following default initial conditions:

y(0) = 0.1 radians, r(0) = 0, and u = 0 (2.2)

Therefore, using (2.1):

e(t) = r(0) – y(0) = 0 – 0.1 = -0.1 (2.3)

20

d/dt e(t) = dy/dt = 0 (2.4)

The membership functions for these input conditions are shown in Figure 2.6. For e(t) = - 0.1 and

d/dt e(t) = 0, we can see from Figure 2.6 that there are two active rules:

If error is zero and change-in-error is zero then force is zero

If error is negsmall and change-in-error is zero then force is possmall

"zero" "possmall""negsmall""neglarge" "poslarge"

Pi / 2- Pi / 2 Pi / 4
e(t)

"zero" "possmall""negsmall""neglarge" "poslarge"

Pi / 4- Pi / 8- Pi / 4 Pi / 8
d / dt e(t)

0
- 0.1

0

0

- Pi / 4
- 0.7854

Figure 2.6: Membership functions for “error” and “change in error”

Having defined which rules are on, our next step (the inference step) is to determine which

conclusions should be reached in deciding what force should be applied to the cart in order to keep

the inverted pendulum balanced. The final step is to convert the decisions reached by each of the

rules into actions. This step is known as defuzzification and the result is a crisp (or non-fuzzy)

output force that should be applied to the cart in order to keep the inverted pendulum balanced.

Fuzzy logic is one method of AI that could be applied in a multimodal system where decisions

need to be made based on noisy or ambiguous multimodal data. The TeleMorph Fuzzy Inference

System (Solon et al. 2007) implements fuzzy logic for decision-making in TeleTuras, a mobile

intelligent multimedia tourist information system.

2.5.3. Genetic Algorithms
Genetic Algorithms (GAs) (Davis 1991; Goldberg 1989; Holland 1992) are another paradigm

within Artificial Intelligence that can facilitate decision-making within a multimodal system. GAs

were inspired by Darwin’s Theory of Evolution which states how all living things evolve,

21

adapting themselves to constantly changing environments in order to survive. Darwin observes

that the weaker members of a species have a tendency to die away, leaving the stronger to mate

and create offspring. This theory is illustrated in Figure 2.7.

Figure 2.7: Darwin’s Theory of Evolution

Genetic Algorithms are essentially exploratory search and optimisation methods, where each

potential solution to the problem is represented by an individual in the population. Each individual

within the GA is represented by a string. Every iteration of the GA creates a new population from

the old by interbreeding the fittest strings to create new ones which may be closer to the optimal

solution to the problem in question. So in each generation, new strings are created from the

segments of previous strings. Additionally, new random data is occasionally added in order to

keep the population from stagnating. GAs are parallel search procedures, i.e., they can be

implemented on parallel processing machines which can greatly speed up their operation. The

main elements of GAs are:

• Chromosomes - Each point in a solution space is encoded into a bit string called a

chromosome.

• Encoding schemes – An encoding scheme transforms a point in a solution space into a bit

string representation.

Fitter
members
survive

Evolution
through
millions
of years

Population of
species with unique

characteristics

Survivors re-produce a
new generation

Weaker members of the
species die in adverse

environment

22

Although several encoding schemes exist, the most commonly used is the binary coding scheme.

In the binary coding scheme, each decision variable in the solution set is encoded in a binary

string and concatenated to form a chromosome. For example, a point (3, 12, 7) in a 3D parameter

space could be represented by the following chromosome:

C = { 0011 1100 0111}

Three basic operators are found in every GA. These are selection (reproduction), crossover and

mutation. The selection operator allows an individual string to be copied, based on its fitness

value, and possibly included in the next generation. A fitness function is used to calculate the

fitness value of a string. Crossover in GA is analogous to crossover in biological terms where

chromosomes from the parents are blended to produce new chromosomes for the offspring. The

mutation operator introduces new genetic material into an existing individual, thus increasing the

genetic diversity of the population.

2.5.4. Neural Networks
Neural Networks (Haykin 1999) are information processing paradigms that have been inspired by

the manner in which biological nervous systems, e.g., the human brain, process information. A

neural network is made up of large numbers of interconnected processing elements, or neurons,

working in parallel to solve a problem. Neural networks, “learn by example”. That is, they are

trained using input and output data sets to adjust the synaptic weight connections between the

neurons. An example of a neural network is shown in Figure 2.8. Three important properties of

neural networks are:

• Parallelism

• Learning

• Generalisation

Parallelism enables large volumes of data to be processed in parallel. Due to the distributed nature

of the neurons within the layers of a neural network, the processing capabilities of the network are

distributed across all of its neurons and synapses. This means that the corruption or damage of one

layer may not significantly degrade the output. Learning can be applied to solving a problem when

a model of the problem is not known. The network is trained using known input/output data sets of

the problem. Generalisation enables a neural network to process data on which it has never been

trained. The network learns rules from a set of examples, thus it is not necessary to explicitly

23

know and program the necessary actions. Neural Networks are another technique within Artificial

Intelligence for potential decision-making within multimodal systems.

Figure 2.8: Example of a typical neural network structure

2.5.5. Bayesian networks
Bayesian networks (Pearl 1988; Jensen 2000; Kadie et al. 2001; Jensen & Nielsen 2007; Hugin

2009; Pourret et al. 2008) are also known as Bayes nets, Causal Probabilistic Networks (CPNs),

Bayesian Belief Networks (BBNs) or belief networks. A Bayesian network consists of a collection

of nodes with directed edges between the nodes. Each of the nodes represents a random variable,

with each edge representing a cause-effect relationship within the domain, i.e., causal impact from

one node to another. An edge connecting two nodes A and B indicates that a direct influence

exists between the state of A and the state of B. All edges in the graph are directed and directed

cycles are not permitted, i.e., it is a Directed Acyclic Graph. As an example, consider Figure 2.9,

where the directed edges from ‘Diet’ and ‘Exercise’ have an impact on ‘Weight Loss’. It can be

seen in Figure 2.9 that the nodes are represented by ovals and the directed edges are illustrated by

arrows. In Figure 2.9, there is a causal dependency from ‘Diet’ to ‘Weight Loss’ and from

‘Exercise’ to ‘Weight Loss’.

Figure 2.9: Example of a simple Bayesian network

Exercise

Weight
Loss

 Diet

Input Layer Hidden Layer Output Layer

Input 1

Input 2

Output 1

Output 2

24

Each node in a Bayesian network contains the states of the random variable it represents together

with a Conditional Probability Table (CPT), or a Conditional Probability Function (CPF). The

CPT contains the probabilities of the node being in a particular state given the states of its parents.

The effects in a Bayesian network, represented by the directed edges, are not completely

deterministic (e.g. disease -> symptom) and the strengths of these effects are modelled as

probabilities. The following example gives the conditional probability of having a certain medical

condition given the variable temp (where P(…) represents a probability function):

1) If tonsillitis then P(temp>37.9) = 0.75

2) If whooping cough then P(temp>37.9) = 0.65

Since 1) and 2) could be mistakenly read as rules, the following notation was developed, where ‘|’

represents a directed edge in the Bayesian network from the latter node (whooping cough) to the

first node (temp>37.9):

P(temp>37.9 | whooping cough) = 0.65

If 1) and 2) are read as ‘If otherwise healthy and...then...’, it is also necessary to specify how the

two causes combine. That is, one needs to know the probability of having a fever if both, or none,

of the symptoms are present. Hence, it is necessary to specify the conditional probabilities:

P(temp>37.9 | whooping cough, tonsillitis)

where ‘whooping cough’ and ‘tonsillitis’ each have the states ‘yes’ and ‘no’. Thus it is necessary

to define the strength of all combinations of states for all of the possible causes. Inference, or

model evaluation, computes the conditional probability for some variables given information, or

evidence, on other variables. This is easiest when all evidence relates to variables that are

ancestors, or parent nodes, of the variable(s) of interest. However, when evidence relates to a

descendant of the variable(s) of interest, one has to perform inference against the direction of the

edges. In order to do this, Bayes’ Theorem is employed:

P(A | B) = P(B | A)P(A) (2.5)

 P(B)

In other words, the probability of some event A occurring, given that event B has occurred, is

equal to the probability of event B occurring, given that event A has occurred, multiplied by the

probability of event A occurring and divided by the probability of event B occurring.

25

2.6. Distributed processing
A distributed system allows the various components of the system to be distributed over multiple

computers. The processing power of a distributed system may thus be spread over several

computers and the processing speed of the system can be greatly increased. Each computer within

a distributed system can be configured to operate on a specific task. The collection of computers

that form a distributed system can appear to the user as a single system. In addition to the ability to

run applications faster, distributed systems offer several other advantages. These include:

• Price – desktop computers provide cheap but powerful processing.

• Data sharing – data can be shared amongst all computers in a distributed system. For

example, a central computer might keep the records of all the customers of a bank. Staff at

all branches of the bank can access these records as if they were available locally on their

own computers.

• Reliability – if one computer in a distributed system goes down, the others can still

perform.

• Incremental growth – machines can be upgraded, replaced and added incrementally.

• Scalability – if more processing is needed, new computers can be added to the distributed

system.

A disadvantage associated with the use of distributed systems is that they are often critically

dependent on the network. If the network is down or unreliable, serious problems can arise.

Another disadvantage concerns security, as data sharing increases the possibility of security

violations.

2.7. Tools for distributed processing
Recent advances in the area of distributed systems have seen the development of several software

tools for distributed processing. These tools are utilised in the creation of a range of distributed

platforms. Numerous software tools for distributed computing are available and an overview of

such tools will now be given.

2.7.1. PVM
PVM (Parallel Virtual Machine) (Sunderam 1990, Fink et al. 1995) is a programming

environment that provides a unified framework where large parallel systems can be developed. It

enables development of large concurrent or parallel applications consisting of relatively

independent interacting components. An objective of PVM is to enable existing software to be

incorporated into a larger system, with little or no modifications. A demon task is present on each

26

machine of the distributed system. This allows communication to be monitored by a debugger,

thus simplifying the analysis of heterogeneous interaction between the modules. A disadvantage

with the PVM system is that it does not have a centralised instance of a service that can monitor

the system configuration. This limitation causes additional overhead during reconfiguration.

2.7.2. ICE
ICE (INTARC Communication Environment) (Amtrup 1995) is a communication mechanism for

AI projects developed at the University of Hamburg. ICE is based on the Parallel Virtual Machine

(PVM), with an additional layer added to interface with several programming languages. Support

for visualisation is provided by the use of the Tcl/Tk scripting language, which has graphical

capabilities. ICE supports the following programming languages:

• C / C++

• Allegro Common Lisp

• C LISP

• LUCID Common Lisp

• Sicstus Prolog

• Quintus Prolog

• Tcl/Tk

The overall structure of a system constructed using ICE is shown in Figure 2.10. A system

developed using ICE can be composed of several components written in different programming

languages. Each component is given a unique name and can communicate with all other

components within the system.

Figure 2.10: Typical structure of an ICE system (Amtrup 1995)

27

As shown in Figure 2.10, components communicate with each other via channels. ICE provides a

base channel between components that uses eXternal Data Representation (XDR) to encode data

as hardware-independent.

2.7.3. DACS
DACS (Distributed Applications Communication System) (Fink et al. 1995, 1996) is a powerful

tool for system integration that provides a multitude of useful features for developing and

maintaining distributed systems. Communication within DACS is based on asynchronous message

passing, with additional extensions to deal with dynamic system reconfiguration at run-time. Other

more advanced features include both synchronous and asynchronous remote procedure calls and

demand streams that can handle data in continuous data streams.

 All messages passed within DACS are encoded in a Network Data Representation, which

enables the inspection of data at any stage and the development of generic tools capable of

processing different kinds of information. Similar to PVM, DACS uses a communication demon

that runs on each participating machine. DACS differs from PVM in that the communication

demon enables multiple users to access the system simultaneously and virtual machines dedicated

to individual users are not provided. The purpose of the DACS demon is to route all internal

traffic and establish connections to other demons located on remote machines. A central name

server keeps track of all registered demons and modules. This avoids the overhead that would

result if changes in the system configuration were broadcasted. Each participating module must

register with the system using a unique name, which is passed to the name server and enables

other modules to address it. DACS constitutes a flexible communication tool that can be utilised in

the creation of distributed systems. DACS could be used in different applications that necessitate

the integration of existing heterogeneous software systems.

2.7.4. Open Agent Architecture (OAA)
The Open Agent Architecture (OAA) (Cheyer et al. 1998, OAA 2009) is a general-purpose

infrastructure for creating systems that contain multiple software agents. OAA enables such

agents to be written in different programming languages and running on different platforms.

According to its developers, “OAA enables a truly cooperative computing style wherein members

of an agent community work together to perform computation, retrieve information, and serve user

interaction tasks” (OAA 2009, p.1). OAA distinguishes itself from other methods of distributed

computing, such as the Blackboard approach, in that it enables both human users and software

agents to express what they want done without specifying who should perform the task or how it

28

should be done. For example, a user may issue the request “notify me immediately when a

message for me arrives in relation to security” or “print this page on the nearest printer”. Figure

2.11 shows the agent interaction within an OAA-based system.

Figure 2.11: Agent interaction in OAA (OAA 2009)

As shown in Figure 2.11, the requesting agent issues a request to the Facilitator, which matches

the request with an agent, or agents, which provides that service. All agents interact using the

Interagent Communication Language (ICL), which can express high-level, complex tasks and

natural language expressions. A major advantage of OAA is the ability to add new agents on the

fly.

2.7.5. JavaSpaces
JavaSpaces (Freeman 2009), developed by Sun Microsystems, enable developers to quickly create

collaborative and distributed applications. JavaSpaces represent a distributed computing model

where, in contrast to conventional network tools, processes do not communicate directly. Instead,

processes exchange objects through a space or shared memory. A process can write an object to a

space, take an object from a space, or read an object in a space, i.e., make a copy of an object.

These operations are shown in Figure 2.12.

Figure 2.12: Read, write and take operations within JavaSpaces

SP SPACE

P

write

Process

objects

P

P

take

read

29

To read or take an object from the space, processes use simple matching, based on the value of

fields, to find the object that they require. Because processes can communicate through spaces,

rather than communicating directly, more flexible and scalable distributed applications can be

developed.

2.7.6. CORBA
The CORBA (Common Object Request Broker Architecture) (CORBA 2009, Vinoski 1993)

specification was released by the Object Management Group (OMG) in 1991. CORBA is a

standard architecture for the creation of distributed object systems, enabling distributed

heterogeneous objects to work together. CORBA facilitates the requesting of the services of a

distributed object. The services of an object can be accessed through the object’s interface, defined

using the Interface Definition Language (IDL) and which has a syntax similar to C++. A major

component of CORBA is the Object Request Broker (ORB), which delivers requests to objects

and returns results back to the client. The role of the ORB is shown in Figure 2.13.

Figure 2.13: A typical object request (CORBA 2009)

Note that the client object holds a reference to the distributed object. The operation of the ORB is

completely transparent to the client. That is, the client doesn’t need to know where the objects are,

how they communicate, how they are implemented, stored or executed. The client and the

CORBA object uses exactly the same request mechanism irrespective of where the object is

located. In situations where the requesting client is written in a different programming language

from that of the CORBA object, the ORB will translate between the two programming languages.

One of the key objectives of CORBA is to enable client and object implementations to be

30

portable. To meet this requirement two application programmer’s interfaces (APIs) are defined,

one for implementing the CORBA object and another for the clients of a distributed object.

2.7.7. JATLite
JATLite (Kristensen 2001, Jeon et al. 2000) provides a set of Java packages that enable multi-

agent systems to be developed using Java. JATLite provides a Java agent platform that uses the

KQML Agent Communication Language (ACL) for inter-agent communication. An important

component within the JATLite platform is the Agent Message Router (AMR). The AMR is

responsible for registering agents with a name and password. JATLite facilitates modular

construction of systems and consists of the following layers:

• Abstract layer, which provides a collection of abstract classes necessary for JATLite

implementation.

• Base layer, which provides communication based on TCP/IP and the abstract layer.

• KQML (Knowledge Query and Manipulation Language) layer, which provides for storage

and parsing of KQML messages.

• Router layer, which provides name registration and routing and queuing of messages via

the AMR.

These four layers enable flexibility in the infrastructure of systems developed using JATLite,

allowing developers to select the most appropriate layer for their system.

2.7.8. .NET
.NET (MS .NET 2009) is the Microsoft Web services strategy that enables applications to share

data across different operating systems and hardware platforms. The Web services provide a

universal data format that enables applications and computers to communicate with each another.

Based on XML, the Web services enable communication across platforms and operating systems,

irrespective of what programming language is used to write the applications. The .NET framework

can either be installed as a client or a server. Both the client and the server configurations of the

.NET framework offer their own advantages and the developer must consider these carefully

before making a decision on which configuration to use. The .NET framework consists primarily

of the following two components:

• The Common Language Runtime (CLR)

• The .NET Framework Class Library

The CLR is a system agent that runs and manages .NET code at run-time, managing basic services

such as memory management and error control. The .NET Framework Class Library is a

31

collection of object-oriented types for developing applications, services and components. .NET

enables the components of a system to be shared over the Internet. The framework makes use of

Web Services that can be utilised by both Windows-based applications and those running on other

platforms – provided these applications use Internet standards such as TCP/IP, HTTP, XML and

SOAP. The architecture of the .NET framework is shown in Figure 2.14. As shown in Figure 2.14,

.NET enables three different kinds of applications to be developed: applications running managed

code under the CLR, applications running unmanaged machine code and Web applications, and

services running unmanaged code under ASP.NET. Using .NET, both managed and unmanaged

applications can be written to co-exist on the same computer.

Figure 2.14: Architecture of .NET framework (MS.NET 2009)

2.7.9. OpenAIR
The OpenAIR specification (Mindmakers 2009; Thórisson et al. 2005) can be applied to routing

and communication within large distributed systems based on the publish-subscribe architecture.

OpenAIR is an open-source specification of the AIR protocol implemented in C# and Java.

Implementations are available for the Windows, Mac, and Linux operating systems. OpenAIR is

used to implement an AIR server in Psyclone (Thórisson et al. 2005), a platform for creating large

32

distributed AI projects. OpenAIR messages are in XML format and contain a ‘Type’ slot which is

a dot-delimited string. The following is an example of a message type in OpenAir, delimited by

XML tags:

<type>Internal.Perception.Hearing.Voice</type>

The dot-delimited string is used by the dispatcher, i.e., a blackboard or whiteboard, to decide

which modules are subscribed to which message types, and to route messages accordingly. The

asterisk can be used as a wild card when subscribing to messages. For example, a module

subscribed to messages of type *Perception* or *Voice* would receive all messages headed by

the previous message type. The OpenAIR specification defines a number of other XML tags and

attributes that enables the design of publish-subscribe blackboard based architectures.

2.7.10. Psyclone
Psyclone (Thórisson et al. 2005) is a powerful message-based middleware for simplifying the

creation of modular, distributed systems. Psyclone is applied in applications where complexity

management or interactivity is of importance. Psyclone enables software to be easily distributed

across multiple machines and enables communication to be managed through rich messages

formatted in XML. A design methodology called, ‘divisible modularity’, enables the incremental

construction of multi-granular, heterogeneous systems. Psyclone, written in C++, uses XML

configuration files and bulletin boards to enable the easy set-up and testing of system

architectures. Psyclone runs on the following platforms:

• Linux

• Windows

• Mac OS X

• PocketPC

Psyclone introduces the concept of a, ‘whiteboard’, which is essentially a blackboard that is

capable of handling media streams. A psySpec in Psyclone initialises modules and whiteboards at

start-up. Figure 2.15 shows an example psySpec. The code in Figure 2.15 creates a whiteboard

(WB1) and an internal module called ‘Startup’. It is possible to create multiple whiteboards and

multiple modules for a system. In order to enable multiple programs to communicate with each

other via the whiteboards, programs can use plugs written in Java, C++, Python and Lisp.

2.7.11. Constructionist Design Methodology
Constructionist Design Methodology (CDM) (Thórisson et al. 2004) aids the construction of large

AI systems. CDM is based on the principle of multiple interacting modules communicating via

33

message-passing. At the heart of CDM is the notion of modularity, i.e., breaking down the

functionalities of the system into software modules whose roles are defined in terms of associated

message types and information content.

Figure 2.15: XML Code to initialise Psyclone at start-up (Psyclone 2009)

The methodology follows the idea that the human mind can be effectively modelled through a

combination of interacting modules (Mc Kevitt et al., 2002). CDM is particularly suited to

facilitating large teams of researchers collaborating on large and complex systems. Previous

research has shown that a modular approach can hasten the development of such systems (Fink et

al. 1996; Thórisson 1996, 1997; Martinho et al. 2000; Thórisson et al. 2004). To test CDM,

Thórisson et al. (2004) chose to develop a system encompassing an embodied virtual character,

called Mirage, living in an augmented reality setting. Mirage is shown in Figure 2.16. At the

highest level, CDM follows the following fundamental design principles (Thórisson et al. 2004, p.

6):

• “To mediate communication between modules, use one or more blackboards with publish-

subscribe functionality.

• Only build functionality from scratch that is critical to the raison d’entre of the system –

use available software modules wherever possible”.

 <psySpec name="Project X" version="1.2">

 <whiteboard name="WB1">
 <description>This is a basic Whiteboard</descr iption>
 </whiteboard>

 <module name="Startup">
<description>Bootstrap by pos ting a root context upon system
ready</description>
 <context name="System">
 <phase name="Look for System Created">
 <triggers from="any">
 <trigger type="System.Ready " after="100"/>
 </triggers>
 <posts>
 <post to="WB1" type="Psyclone.Conte xt:SoB.Alive"/>
 </posts>
 </phase>
 </context>

 </module>

 </psySpec>

34

Figure 2.16: Embodied agent Mirage (Thórisson et al. 2004)

The implementation of one or more blackboards makes modularity explicit within a system. The

fact that modules communicate through a blackboard, as opposed to communicating directly,

enables parallel implementation of modules. The second design principle puts emphasis on

defining the goal(s) of the project, e.g., practically motivated or research oriented. The following

outlines the specific steps of CDM, as discussed in Thórisson et al. (2004):

1. Define the project’s goal(s).

2. Define the project’s scope.

3. Modularisation – build the system using modules communicating through a

blackboard and/or publish-subscribe mechanism.

4. Test the system against scenarios.

5. Iterate – repeat steps 2 to 4 until satisfied that desired functionality is achieved.

6. Assign modules to suitable team members (based on their strengths and areas of

interest).

7. Test all modules at run-time (at an early stage in their implementation).

8. Build modules to full specification.

9. Tune the system will all the modules running.

In the implementation of Mirage, Psyclone (Thórisson et al. 2005) was used to implement the

blackboard, more precisely, a whiteboard, as discussed in Section 2.3, and the publish-subscribe

mechanism. Mirage consisted of 8 modules and a total of 5 team members implemented the

35

system. With CDM the design and implementation took only 9 weeks, thus demonstrating the

merits of adopting the methodology in the construction of such a large complex system. The

distributed processing capabilities of Psyclone (Thórisson et al. 2005) proved very useful in the

implementation of Mirage and adherence to the principles of CDM. CDM primarily aims to

support the development of large AI systems by a large team of researchers. However, many of its

recommendations could be adopted by a single researcher (or small team), provided the system

under construction is of sufficient complexity to justify the use of such a methodology.

2.8. Multimodal platforms and systems
Several multimodal platforms and systems have been developed that assist the creation of

intelligent multimodal systems. These multimodal systems are capable of processing input/output

in a wide range of modalities including speech, vision, eye-gaze, facial expression, gesture and

tactile. These platforms enable systems to be developed that can communicate with users through

the entire range of human communication modalities. The result of enabling such rich multimodal

input and output is the development of systems that are more flexible and can adapt to the varying

needs of each individual user. In this section several existing multimodal platforms will be

discussed, with particular attention given to their methods of semantic representation, semantic

storage and decision-making.

2.8.1. Chameleon
Chameleon (Brøndsted et al. 1998, 2001) is a distributed architecture capable of processing

multimodal input and output. The system consists of ten modules, mostly programmed in C and

C++. The ten modules are listed below:

• Blackboard

• Dialogue Manager

• Domain model

• Gesture recogniser

• Laser system

• Microphone array

• Speech recogniser

• Speech synthesiser

• Natural language processor

• Topsy

36

The ten modules of Chameleon are glued together by the DACS communication system (Fink et

al. 1995, Fink et al. 1996). Chameleon implements a blackboard for semantic storage. The

blackboard keeps track of interactions over time, using frames for semantic representation. The

architecture of Chameleon is shown in Figure 2.17.

Figure 2.17: Architecture of Chameleon (Brøndsted et al. 1998, 2001)

The blackboard and dialogue manager are collectively the kernel of Chameleon. The blackboard

stores the semantic representations produced by other modules, keeping a history of all

interactions. Communication between modules is achieved by exchanging semantic

representations between themselves or the blackboard. Figure 2.18 shows how the blackboard acts

as a mediator for information exchange between the modules of Chameleon.

Figure 2.18: Information exchange using the blackboard (Brøndsted et al. 1998, 2001)

The blackboard consists of the following components:

• SQL database

• Communication interface

• Table of implicit requests

37

The internal architecture of the blackboard is shown in Figure 2.19. The semantic representation is

in the form of input, output and integration frames which represent the meaning of user input and

system output. Frames are coded as messages and are passed between modules using the DACS

communication system. Figure 2.20 defines the predicate-argument syntax of frames, as they

appear on Chameleon’s blackboard. The code for the frame messages is compiled separately and

included in other modules which operate on the representation using a rule-based method of

decision-making.

Figure 2.19: Internal blackboard architecture (Brøndsted et al. 1998, 2001)

 FRAME ::= PREDICATE

 PREDICATE ::= identifier(ARGUMENTS)

 ARGUMENTS ::= ARGUMENT

| ARGUMENTS, ARGUMENT

ARGUMENT ::= CONSTANT

| VARIABLE

| PREDICATE

CONSTANT ::= identifier

| integer

| string

VARIABLE ::= $identifier

Figure 2.20: Syntax of messages (frames) within Chameleon (Brøndsted et al. 1998, 2001)

The IntelliMedia WorkBench (Brøndsted et al. 2001) is a prototype application for Chameleon.

An example domain of application is a Campus Information System for 2D building plans, where

the user can ask the system for directions, using speech and pointing gestures, to various offices

within a building. The Domain Model, implemented in C, contains all the relevant data for the

Campus Information System, including information on rooms, their function and their occupants.

Figure 2.21 shows an extract from a file containing the description of the physical environment.

38

Figure 2.21: Physical environment data (Brøndsted et al. 1998)

Hierarchical levels are illustrated with indentation. As shown, the top level is identified by the

keyword, ‘area’, which is followed by the area’s name and minimal/maximal x and y coordinates.

The next level is identified by the keyword, ‘building’, which is again followed by the name and

coordinates. Similar files store information about the occupants of the building. The functionality

provided by the domain model is to answer questions relating to the environment through search

functions. Examples of such functions are:

dm_get_person_coordinates(person_id)

dm_get_place_coordinates(place_id)

dm_get_person_name(person_id)

dm_get_place_name(place_id)

The first two functions return a C struct holding x and y coordinates, while the last two functions

return a string containing the name of the person or place. Inputs to Chameleon include

synchronised spoken dialogue and pointing gestures, and outputs include synchronised spoken

dialogue and laser pointing. Topsy, implemented within Chameleon, is a general purpose

distributed system for representing real world knowledge as patterns of synchronisation. Topsy

consists of: Sensors, which represent words and intentions; Effectors, which interact with the

outside world, through laser and speech synthesis; Event Windows, the learning mechanism in

Topsy; and Actions.

2.8.2. TeleMorph
TeleMorph (Solon et al. 2007) is an inference system that uses fuzzy logic for decision-making on

the selection of output for a mobile intelligent multimedia presentation system. TeleMorph

area FRB7 1190 0 920
 building environment 0 1190 0 920

 building A1-1 871 1111 497 739
 tp A1-1s1 725 898 2 A1-2s1 A2-1c1-1
 building A1-2 317 557 497 739
 tp A1-2s1 725 341 2 A1-1s1 A2-2c1-1
 building A2-1 631 871 497 739
 room 00 624 663 746 860 meeting_room
 tp A2-100 653 797 1 A2-1c2

room 01 683 739 787 860 laboratory
 tp A2-101 693 797 1 A2-1c2

room 02 663 739 693 787 laboratory
 tp A2-102 706 746 1 A2-102-2

tp A2-102-2 673 746 3 A2-1c2 A2-102 A2-102-4
tp A2-102-3 693 704 2 A2-103 A2-102-4
tp A2-102-4 673 704 3 A2-102-2 A2-102-3 A2-102- 5
tp A2- 102 - 5 640 704 3 A2 - 105 A2 - 102 - 4 A2 - 1c3 - 1

39

dynamically adapts output based on available bandwidth and addresses the problems that typically

plague mobile presentation systems, including bandwidth fluctuations and packet loss. A

particular focus of the research is transmoding, the adaptation of multimedia content across

different modalities. For example, if bandwidth is limited, TeleMorph can replace certain media

combinations, e.g., audio and video, with an alternative combination using different modalities,

e.g., text and images. TeleMorph defines fuzzy logic rules for deciding when to perform

adaptations on output, e.g., from images-text to audio-images, from video to images-text. Matlab’s

Fuzzy Logic Toolbox (Babuska 1993) was used to implement fuzzy logic within TeleMorph. The

architecture of TeleMorph’s Fuzzy Inference System is shown in Figure 2.22.

Figure 2.22: Architecture of TeleMorph’s Fuzzy Inference System (Solon et al. 2007)

40

As shown in Figure 2.22, TeleMorph’s Fuzzy Inference System defines 7 membership functions

which provide a sufficient level of granularity for decision-making within the system. TeleTuras, a

testbed for TeleMorph, is a mobile multimedia presentation system, which provides tourist

information about the city of Derry. TeleTuras enables users to ask questions such as, “Where is

the University of Ulster?”, and responds by presenting multimedia content that automatically

adapts in response to fluctuations in the bandwidth of the mobile network. A number of bandwidth

specific test scenarios, created to test the transmoding capabilities of TeleMorph, have given

positive results.

2.8.3. CONFUCIUS
CONFUCIUS (Ma 2006) is an intelligent storytelling system that performs language visualisation

of English sentences. The architecture of CONFUCIUS is shown in Figure 2.23. A key problem

addressed by CONFUCIUS is the mapping between language knowledge and visual/audio

knowledge. CONFUCIUS can generate output animation based on speech input. For example, the

utterance, “John put a cup on the table”, causes CONFUCIUS to produce the output animation

presented in Figure 2.24.

Figure 2.23: Architecture of CONFUCIUS (Ma 2006)

41

Figure 2.24: Output animation in CONFUCIUS (Ma 2006)

CONFUCIUS also includes a presentation agent called Merlin, shown in Figure 2.25, who acts as

a narrator.

Figure 2.25: Narrator Merlin in CONFUCIUS (Ma 2006)

2.8.4. Ymir
Ymir (Thórisson 1996, 1999) is a multimodal platform for the creation of autonomous agents

capable of human-like communication. Ymir represents a distributed, modular approach that

implements a coherent framework to bridge between multimodal perception, decision-making and

action. Within the Ymir architecture, a prototype agent called Gandalf (Thórisson 1996) has been

created. The interactive agent, Gandalf, is capable of fluid turn-taking and dynamic sequencing.

The modules within Ymir are divided into the following four process collections:

42

• The Reactive Layer (RL), which operates on relatively simple data.

• The Process Control Layer (PCL), which controls the global aspects of the dialogue and

manages the communicative behaviour of the agent.

• The Content Layer (CL), which hosts the processes that interpret the content of the

multimodal input and generates suitable responses.

• The Action Scheduler (AS), which coordinates appropriate actions.

Three main blackboards are implemented in Ymir. The first blackboard, called the Functional

Sketchboard, is primarily used to exchange information between the Reactive Layer and the

Process Control Layer. The Content Blackboard deals with communication between the Process

Control Layer and the Content Layer. The messages that are posted on the Content Blackboard are

less time-critical than those posted on the Functional Sketchboard. The third blackboard is called

the Motor Feedback Blackboard and keeps track of which part of an action stream is presently

being planned or carried out by the Action Scheduler (AS). Ymir uses a frame-based method of

semantic representation. Within Ymir, the majority of messages take the form

[<Message>,<State>,<Timestamp], with state being either true or false. Figure 2.26 shows an

example of a message posted on the Functional Sketchboard. The message can either be the form

of a decision or a perception. For example, I-GIVE-TURN is a decision, whilst HAND-IN-GEST-

SPACE indicates a belief about the dialogue. It is expected that Ymir’s modular structure will

allow systems to be easily extended, without affecting the simplicity or performance of the

system. Ymir has been applied in the development of the Honda ASIMO humanoid robot (Ng-

Thow-Hing et al. 2008) and, according to Thórisson (1999), looks promising in providing a

general framework for communicative, task-knowledgeable agents.

Figure 2.26: Frame posted on Ymir’s Functional Sketchboard (Thórisson 1999)

2.8.5. InterACT
InterACT (Waibel et al. 1996) aims to remove the limitations associated with traditional computer

interfaces by enabling input using the entire range of human communication modalities, including

(RHAND-IN-GEST-SPACE T 5140)

(HAND-IN-GEST-SPACE T 5150)

(R-DEICTIC-MORPH T 5180)

(SPEAKING T 5180)

(USER-TAKING-TURN T 5190)

(I-TAKE-TURN NIL 5330)

(I-GIVE-TURN T 5340)

43

speech, gesture, eye-gaze, face recognition, facial expression, lip motion, handwriting and sound

localisation. InterACT uses frames for semantic representation and implements a non-blackboard

model of semantic storage. An initial application of InterACT is an Audio/Visual Automated

Speech Recognition (ASR) System. This involves the recognition of letters in the German

alphabet using automated lip reading and speech recognition. A Multi-State Time-Delay Neural

Network (MS-TDNN) performs recognition of visual data. The network architecture of InterACT

is shown in Figure 2.27, where the acoustic and visual inputs are processed in isolation. The audio

and visual inputs are then combined for further processing in the combined layer.

Figure 2.27: Network architecture of InterACT (Waibel et al. 1996)

Table 2.1 shows recognition performances for InterACT. The results show that when visual

information is added to speech the overall recognition rate can be significantly improved. It can

also be seen that, as expected, the improvement is greatest when the speech input is noisy.

Speaker Acoustic Visual Combined

msm/clean 88.8 31.6 93.2

msm/noisy 47.2 31.6 75.6

mcb/clean 97.0 46.9 97.2

mcb/noisy 59.0 46.9 69.6

Table 2.1: Word accuracy of Speech/Lip system (Waibel et al. 1996)

2.8.6. JASPIS
JASPIS (Turunen & Hakulinen 2000; Jokinen et al. 2002) focuses on the exploration of natural

human-computer interaction and the development of natural adaptive dialogue models. Another

44

key objective of JASPIS is adaptivity - the ability of the system to adapt to the changing needs and

activities of a user, e.g., in a mobile environment. An agent-based architecture has been developed

in pursuit of these objectives. The architecture of JASPIS is depicted in Figure 2.28 where

different agents focus on specific tasks within the system. Using these specialised agents modular,

reusable interaction components are implemented. An information storage knowledge base acts

similar to a blackboard, with other system components accessing the knowledge base via the

Information Manager. An Interaction Manager facilitates interactions between the modules of

JASPIS. An unlimited set of modules can be connected to JASPIS and the Interaction Manager

caters for all connections between modules.

Figure 2.28: Architecture of JASPIS (Jokinen et al. 2002)

The architecture also enables JASPIS to be distributed over multiple computers. Agents within

JASPIS have different capabilities and the most suitable agent for performing a given task can be

selected dynamically at run-time based on its capabilities and the current context. Evaluators

determine which agent is best suited to deal with a particular situation. The decision-making

process involves the evaluator giving a score between zero and one to each of the agents. A score

of zero indicates the agent is not suited to the situation, a score of one means the agent is deemed

perfectly suited, whilst values between zero and one indicate the degree of suitability. Several

evaluators give scores to an agent, indicating its suitability for the current situation. Scaling

functions can give greater importance to certain evaluators, before the scores are multiplied to give

final scores, or suitability factors, for each of the agents. Multiple evaluations are performed

before an agent is chosen for a particular task. JASPIS uses an XML-based method of semantic

representation and, through the use of a shared knowledge base, implements a blackboard-style

45

method of semantic storage. An early application of JASPIS is an intelligent bus-stop that allows

multimodal access to city transport information.

2.8.7. SmartKom
SmartKom (Wahlster 2003, 2006; Wahlster et al. 2001; SmartKom 2009) is a multimodal

dialogue system that helps overcome the problems of interaction between people and machines.

SmartKom focuses on developing multimodal interfaces for applications in the home, public and

mobile domains. SmartKom uses a combination of speech, gestures and facial expressions to

facilitate more natural human-computer interaction, enabling face-to-face interaction with its

conversational agent Smartakus. For example, in the public domain, the user can allocate to

Smartakus the task of finding a library. Together with its language capabilities, Smartakus uses

facial expressions and body language to improve the naturalness of the interaction. It is intended

that SmartKom will enable complex dialogic interactions, where both the user and the system will

be capable of initiating interactions, asking questions, requesting clarification, signalling problems

of understanding and interrupting the dialogue partner. SmartKom enables the following two

modes of interaction:

• ‘Lean-forward’ mode, which supports touch and visual input.

• ‘Lean-back’ mode, where input and output is only achieved via the speech channel.

An XML-based mark-up language, M3L (MultiModal Mark-up Language), provides semantic

representation of information passed between components of SmartKom. An example of the M3L

code within SmartKom is shown in Figure 2.29. SmartKom also makes use of the OIL ontology

language (Fensel et al. 2001) to represent domain and application knowledge. SmartKom

constitutes a distributed multi-blackboard system, including more than 40 asynchronous modules

coded in C, C++, Java and Prolog. The integration platform for SmartKom is called

MULTIPLATFORM (MUltiple Language Target Integration PLATform FOR Modules) (Herzog

et al. 2003), which enables the creation of open, flexible and scalable software architectures.

MULTIPLATFORM uses a message-based middleware, based on the Parallel Virtual Machine

(PVM), to provide a powerful framework for creating integrated multimodal dialogue systems.

The ultimate aim of SmartKom is to provide a kernel system that can be utilised within different

application scenarios.

2.8.8. DARPA Galaxy Communicator
The DARPA Galaxy Communicator project (Bayer et al. 2001) investigates ways to engage

humans in robust, mixed-initiative spoken interactions, which would surpass the capabilities of

46

current dialogue systems. This project has involved the development of a distributed message-

passing infrastructure for dialogue systems, namely the Galaxy Communicator Software

Infrastructure (GCSI).

Figure 2.29: Example of M3L code (Wahlster 2003)

An extension of the Galaxy-II distributed infrastructure for dialogue interaction, the GCSI is a

distributed hub-and-spoke architecture. Semantic representation is managed by frames and

communication is facilitated via message-passing. The architecture of the GCSI is illustrated in

Figure 2.30.

Figure 2.30: Hub-and-spoke architecture of GCSI (Bayer et al. 2001)

<presentationTask>
 <presentationGoal>
 <inform> <informFocus> <RealizationType>list
</RealizationType> </informFocus> </inform>
<abstractPresentationContent>
<discourseTopic> <goal>epg_browse</goal> </discours eTopic>
<informationSearch id="dim24"><tvProgram id="dim23" >
<broadcast><timeDeictic id="dim16">now</timeDeictic >
<between>2003-03-20T19:42:32 2003-03-20T22:00:00</b etween>
<channel><channel id="dim13"/> </channel>
</broadcast></tvProgram>
</informationSearch>
<result> <event>
<pieceOfInformation>
<tvProgram id="ap_3">
<broadcast> <beginTime>2003-03-20T19:50:00</beginTi me>
<endTime>2003-03-20T19:55:00</endTime>
<avMedium> <title>Today’s Stock News</title></avMed ium>
<channel>ARD</channel>
</broadcast>……..</event>
</result>
</presentationGoal>
</presentationTask>

47

The GCSI’s hub enables programmers to create programs using a simple scripting language that

can control message traffic. The message-passing nature of the GCSI infrastructure means that the

hub doesn’t need to have any compile-time knowledge of the functional properties of the server it

is communicating with. A scripting language enables the programmer to alter the flow of

messages, allowing the integration of servers with a variety of interaction paradigms without

making modifications to the servers themselves. This property also enables tools and filters to be

inserted that can convert data between different formats. Included in the GCSI are libraries and

templates, allowing Communicator-compliant servers to be created in C, Java, Python and Allegro

Common Lisp.

2.8.9. Waxholm
Waxholm (Carlson & Granström 1996; Carlson 1996) combines speech synthesis and recognition

in a human-computer dialogue framework. Waxholm gives information on boat traffic. Besides

the spoken language capabilities, Waxholm has modules to deal with graphical information such

as pictures, maps, charts and timetables. Waxholm uses SQL to access information, as requested

by the user. During a dialogue the decision on which topic path to follow is based on dialogue

history and the content of the utterance. Using a rule-based system, the utterance is encoded in a

semantic frame with slots relating to both the grammatical analysis of the utterance and the current

application domain. In order to decide on the topic, the semantic features found in the semantic

and syntactic analysis are considered in the form of conditional probabilities. Probabilities are

expressed in the form p(topic | F), where F is a feature vector containing all the semantic features

found in the utterance. The topic prediction is trained with utterances from the Waxholm database.

Waxholm implements a non-blackboard model of semantic storage.

2.8.10. Spoken Image (SI)/SONAS
Spoken Image (SI) and its successor, SONAS (Ó Nualláin et al. 1994, Ó Nualláin & Smith 1994,

Kelleher et al. 2000), are systems for interacting with a 3D environment through natural language,

gestures and other modes of communication. SI and SONAS are systems that enable users to

communicate and interact with them in a multimodal manner, inspired by the way humans

communicate with ease through multiple modalities. The original project, Spoken Image, enabled

a user to quickly build a house or town scene by describing the scene with natural language. The

user could then refine the details until the presented scene matches how the user has envisioned it.

Each element of a scene is an instance of a class implemented in C++. SONAS is an intelligent

multimedia system that enables input comprising a combination of several modalities. SONAS

48

enables objects in a 3D environment to be manipulated with natural language. Consider the

following example, as discussed in Kelleher et al. (2000). With the input, “Put the book on the

table”, the user sees the book moving onto the table. In order to achieve this, the following steps

are necessary:

• The input phrase is parsed and broken down into the figure, “the book”, the reference

object, “the table”, the action, “put”, and the spatial relation, “on”.

• Next the visual model is searched for the figure and reference objects.

• Then, at the conceptual level, the objects are considered with respect to their position in the

physical ontology of objects.

• At the semantic level the objects are reduced to, e.g., geometric points, lines and planes.

An important theme in developing SI/SONAS has been an effort to find a common semantics

between language and vision, i.e., to develop a meaning representation scheme that is common to

both the language and vision data. This presents many challenges as the same word can mean

different things in different situations. For example, the word, “park”, can have different

meanings, e.g., play park, park the car. SI/SONAS uses frames for semantic representation and

uses a blackboard for semantic storage.

2.8.11. Aesopworld
Aesopworld (Okada 1996, Okada et al. 1999) aims to create an architectural foundation of

intelligent agents. Aesopworld involves the creation of a computational agent that simulates

various kinds of mental activities. A key objective of Aesopworld is the development of human-

friendly interfaces that can make decisions on a dialogue based on the user’s facial expressions,

gestures and the tone of their voice. Aesopworld employs a frame-based method of semantic

representation and a non-blackboard method of semantic storage. An example Aesopworld frame

is shown in Figure 2.31. In its efforts to develop a truly intelligent agent, Aesopworld attempts to

integrate seven intelligent activities: recognition, planning, action, desire, emotion, memory and

language.

2.8.12. Collagen
Collagen (Rich & Sidner 1997) introduces the concept of a SharedPlan to represent the common

goal of a user and a collaborative agent. Grosz and Sidner’s (1990) theory maintains that, in order

to achieve successful collaboration, it is necessary that participants have mutual beliefs about the

goals/actions that must be performed and the capabilities/intentions of the participants. In addition

49

to the concept of a SharedPlan, a recipe within Collagen is defined as an agreed sequence of

actions necessary to accomplish a common goal.

Figure 2.31: An example Aesopworld frame (Okada et al. 1999)

Data structures and algorithms are provided within Collagen to represent and manipulate goals,

actions, recipes and SharedPlans. Figure 2.32 illustrates how a user can collaborate with an agent

using Collagen, whilst Figure 2.33 shows the internal architecture of Collagen.

Figure 2.32: User-Agent Collaboration within Collagen (Rich & Sidner 1997)

µ-agent(

 name(evt_get_out_of),

 domain(dom_evt_recognition),

 description(...),

 input(

 msg(subs,evt_get_out_of,C_agent,(natural,movable)) ,

 msg(subs,evt_get_out_of,C_origin,(artificial,ha s_inside))),

 execution(

 event_extraction(

 concept_feature_1([lapse(Before,After)]),

 concept_feature_2([existence([C_agent,(Before,Aft er)]),

 concept_feature_3([existence([C_origin,(Before,Af ter)]),

 concept_feature_4([inside(C_agent,C_origin,Before)]),

 concept_feature_5([movement([C_agent,(Before,Afte r)]),

 concept_feature_6([outside([C_agent,C_origin,Afte r)]))),

 output()).

50

Figure 2.33: Collagen architecture (Rich & Sidner 1997)

Note from Figure 2.33, that the agent’s decision-making and execution is a, ‘black box’. That is,

although Collagen provides a framework for communicating and recording decisions between the

user and an agent, it does not offer a means of decision-making – this is left to the discretion of the

developer. Collagen uses Sidner’s (1994) artificial discourse language to represent agent

communication acts. Within the artificial discourse language there is a set of constructors for basic

act types, e.g., proposing, accepting and rejecting proposals. Examples of such act types are PFA

(Propose For Accept) and AP (Accept Proposal). The syntax of a PFA is as follows:

PFA (t, participant1, belief, participant2)

The above states that at time t, participant1 has a belief, communicates it to participant2 with the

intention that participant2 will believe it also. If participant2 now responds with an AP act, i.e.,

accepts the proposal, then the belief is considered to be mutually believed. There are two

additional application-independent operators to model a belief about an action, SHOULD (act) and

RECIPE (act, recipe). The remainder of the belief sublanguage is application-specific. Collagen

implements a frame-based method of semantic representation and a non-blackboard model for

semantic storage.

2.8.13. Oxygen
Oxygen (Oxygen 2009) is motivated towards making computing available to everyone,

everywhere in the world – just as accessible as the oxygen we breathe. Some of the aims of

Oxygen are the development of a system that is:

51

• Human-centred and directly addresses human needs.

• Pervasive, i.e., all around us.

• Embedded in the world around us, sensing and affecting it.

• Nomadic, i.e., allowing users and computations to move around freely as necessary.

• Adaptable to changes in user requirements.

• Intentional, i.e., enabling people to name a service or software object by intent, e.g., “the

closest printer”, as opposed to by address.

The meeting of these objectives creates a system that adapts to the needs of the user, as opposed to

traditional computer systems that force the user to learn how to interact with the machine using the

keyboard and mouse. Oxygen aims to enable pervasive, human-centred computing by integrating

various technologies that address human needs. Within Oxygen, spoken language and visual cues

form the main modes of user-machine interaction. Speech and vision technologies are used to

enable the user to interact with the system as if communicating with another person. Knowledge

access technology allows information to be found quickly by remembering what the user looked at

previously. Semantic representation is in the form of frames, whilst semantic storage is

implemented with a non-blackboard model.

2.8.14. DARBS
DARBS (Distributed Algorithmic and Rule-Based System) (Choy et al. 2004a,b; Nolle et al.

2001) is a distributed system that enables several knowledge sources to operate in parallel to solve

a problem. DARBS is an extension of ARBS, which was first developed in 1990. The original

ARBS system only enabled one knowledge source to operate at any one time. A distributed

version of the system was designed to deal with more complicated engineering problems.

DARBS, programmed in standard C++, consists of a central blackboard with several knowledge

source clients. A client is a separate process that may reside on a separate networked computer and

can contribute to solving a problem when it has a contribution to make. Figure 2.34 shows the

architecture of DARBS. As shown, DARBS comprises rule-based, procedural, neural network and

genetic algorithm knowledge sources operating in parallel. DARBS uses frames for semantic

representation. The major advantage that DARBS offers over its predecessor is parallelism.

Knowledge about a problem is distributed across the client knowledge sources, with each of the

clients seen as an expert in a specific area. DARBS implements client/server technology, with

standard TCP/IP used for communication. The independent clients can only communicate via the

central blackboard. This is illustrated in Figure 2.35.

52

Figure 2.34: Architecture of DARBS (Nolle et al. 2001)

Figure 2.35: Communication within DARBS (Nolle et al. 2001)

The DARBS knowledge sources constantly examine the blackboard and only activate themselves

when the information is of interest to them. Thus the knowledge sources are deemed to be

completely opportunistic and will activate themselves when they have a contribution to make.

Rules within DARBS facilitate looking up information on the blackboard, writing information to

the blackboard and making decisions about information on the blackboard. An example of a

typical DARBS rule is shown in Figure 2.36. In order to demonstrate its flexibility, DARBS has

been applied to several different AI applications, including interpreting ultrasonic non-destructive

evaluation (NDE) and controlling plasma processes.

2.8.15. EMBASSI
The EMBASSI project (Kirste et al. 2001, EMBASSI 2009) aims to provide a platform that will

give computer-based assistance to a user in achieving his/her individual objectives, i.e., the

computer will act as a mediator between users and their personal environment.

53

Figure 2.36: A typical DARBS rule (Nolle et al. 2001)

The ideas of human-computer interaction and human-environment interaction take focus in the

EMBASSI project and effort is made to allow humans to more easily interact with their

environment through the use of computers. This concept is illustrated in Figure 2.37, which shows

the relationship between the user, the computer and the user’s personal environment.

Figure 2.37: User-computer-environment relationship (Kirste et al. 2001)

Another important concept in the EMBASSI project is the idea of goal-based interaction, where

the user need only specify a desired effect or goal and doesn’t need to specify the actions

necessary to achieve the goal. For example, a goal could be, “I want to watch the news”. In

RULE ghost_echo_prediction_rule
IF
[
[on_partition [?centre1 is the CENTRE of the AREA = = corners ~area1]
setsoflinechars]
AND
[on_partition [?centre2 is the CENTRE of the AREA = = corners ~area2]
setsoflinechars]
]
THEN
[
[add [ghost echoes for centres ~centre1 and ~centre 2 expected to pass thru
~[run_algorithm [ghostecho_predict [~centre1 ~centr e2]] coords]]
prediction_list]
[report [ghost echoes for centres ~centre1 and ~cen tre2 expected to pass
thru ~coords] nil]
]
BECAUSE [~centre1 is the centre of the area]
END

Where:
The match variable, which is prefixed by a “?”, will be looked up from the blackboard;
The insert variable, which is prefixed by a “~”, will be replaced by the instantiations of that variable.

54

response to the user’s goal, the system would then fill in the sequence of necessary actions to

achieve this goal. Thus, a major function of the EMBASSI framework is the translation of user

utterances into goals. The generic EMBASSI architecture used to achieve this is shown in Figure

2.38.

Figure 2.38: Generic architecture of EMBASSI (Kirste et al. 2001)

As shown in Figure 2.38, the MMI levels determine the goals of users from their utterance. The

assistance levels are then responsible for mapping these goals to actual changes in the

environment, i.e. real-world effects, such as showing the news. Below the EMBASSI protocol

suite, the EMBASSI project makes use of existing standards. KQML (Knowledge Query and

Manipulation Language) Agent Communication Language (ACL) (Finin et al. 1994) acts as a

messaging infrastructure, whilst XML (eXtensible Mark-up Language) (W3C XML 2009) acts as

55

the content language. A non-blackboard based model of semantic storage is implemented within

EMBASSI. The platform has been tested in three main technical environments – the home,

automotive and public (terminal) environments. For example, in the home environment there is

the, ‘living room scenario’, which involves the management of home entertainment infrastructures

and the control of, e.g., lighting, temperature within the room. Another scenario, this time in the

car domain, is the operation of the car radio where the user could use natural language to request a

suitable station, e.g., “I want a station with traditional Irish music”. Many other scenarios are

possible where the user can simply express a goal and leave the required technical functionality to

the EMBASSI platform.

2.8.16. MIAMM
MIAMM (Multidimensional Information Access using Multiple Modalities) (Reithinger et al.

2002; MIAMM 2009) facilitates fast and natural access to multimedia databases using multimodal

dialogues. A multimedia framework for designing modular multimodal dialogue systems has been

created. MIAMM offers a considerable benefit to the user in that access to information systems

can be made easier through the use of a flexible intelligent user interface that adapts to the context

of the user query. The MIAMM platform is based upon a series of interaction scenarios that use

various modalities for multimedia interaction. Integrated within the platform is a haptic and tactile

device for multidimensional interaction. This enables the interface to create tactile sensations on

the skin of the user and to add the sensation of weight to the interaction. The result is a more

natural user interface, with haptic technology applied where the eyes and ears of the user are

focused elsewhere. The MIAMM architecture is shown in Figure 2.39.

Figure 2.39: MIAMM architecture (Reithinger et al. 2002)

56

The exchange of information within MIAMM is facilitated through the XML-based Multi-Modal

Interface Language (MMIL). MMIL comprises, amongst other components, information on

gesture trajectory, speech recognition and understanding, as well as information specific to each

individual user. A key objective of MMIL is to enable the incremental integration of multimodal

data to provide a full understanding of the user’s multimodal input, i.e., speech or gesture, and to

provide the necessary information for an appropriate system response (spoken output and

graphical or haptic feedback). MIAMM implements a non-blackboard based model of semantic

storage. Within MIAMM, a dialogue manager combines information from the underlying

application, the haptic device, the language modules and the graphical user interface. As an

example, suppose the user says, “Show me the song that I was listening to this morning” . Now,

assuming the user has listened to some music in the morning, the utterance will be analysed and an

intention based MMIL representation will be produced. MIAMM first retrieves the lists of songs

from the dialogue history. The action planner then identifies displaying the list as the next system

goal, passing the goal and the list to the visual-haptic agent. The interface shown in Figure 2.40 is

then presented to the user. When the user has highlighted the desired track using the selection

buttons on the left, he/she can select the song by simultaneously uttering, “I want this one”, and

clicking the selection button on the right. Now both the Speech Analysis and Visual-Haptic

Processing agents send time-stamped MMIL representations to the dialogue manager. Multimodal

fusion then checks time and type constraints of each structure and the action planner invokes the

domain model to retrieve the relevant information from the database. Finally, the action planner

sends a display order to the visual-haptic agent.

Figure 2.40: Example MIAMM hand-held device (Reithinger et al. 2002)

57

2.8.17. XWand
XWand (Wilson & Shafer 2003; Wilson & Pham 2003) is an intelligent wand which employs

Bayesian networks to control devices in the home environment, e.g., lights, hi-fis, televisions.

XWand has been designed to help speed the day of truly intelligent environments – where

computational ability will reside in everyday devices, enabling the creation of powerful integrated

intelligent environments. XWand addresses the problem of selecting one of several devices in an

intelligent environment by adopting the notion of the computing curser and using this familiar

point-and-click paradigm in the physical world. With XWand users can select and control several

networked devices in a natural way. For example, users can point at a lamp and press a button on

the XWand to turn it on. The XWand is shown in Figure 2.41.

Figure 2.41: The XWand (Wilson & Shafer 2003)

In the XWand Dynamic Bayesian networks perform multimodal integration. The Dynamic

Bayesian network determines the next action by combining wand, speech and world state inputs

(Wilson & Shafer 2003). The technology offered by the XWand has been enhanced in the

WorldCursor system (Wilson & Pham 2003). WorldCursor uses the XWand but removes the need

for a geometric model, and hence the 3D position of the wand, instead using projection of a laser

spot to indicate where the user is pointing, as believed by the system. A laser pointer is mounted

on a motion platform, which in turn is mounted on the ceiling. The motion platform steers the

laser point onto objects pointed to by the XWand. The WorldCursor motion platform is illustrated

in Figure 2.42.

Figure 2.42: WorldCursor motion platform (Wilson & Pham 2003)

58

User testing of WorldCursor and the XWand has shown that users use the XWand similar to the

way they use a mouse. The user seldom looks at the XWand itself, instead focusing on the laser

dot (or cursor). Hence the familiar point-and-click paradigm of interaction has been successfully

transferred from the desktop computing environment into the physical world.

2.8.18. COMIC/ViSoft
COMIC (COnversational Multimodal Interaction with Computers) (Foster 2004) uses models and

results from cognitive psychology to make interaction with the system more intuitive. A

demonstrator multimodal dialogue system, ViSoft, has been developed that helps customers to

choose new designs for their bathroom. The system facilitates spoken, hand written and pen

gesture input. A ‘talking head’ avatar provides system output combined with synthesised speech,

deictic gestures and a simulated mouse pointer. The talking head avatar and a screenshot of the

system are depicted in Figure 2.43. ViSoft first enables the user to specify the size/shape of their

bathroom and position of doors/windows. The user then chooses the positioning of sanitary ware,

before deciding on the bathroom tiles. When satisfied with the design of the bathroom, the user is

finally given a 3D tour. A fission module, implemented in Java, chooses and coordinates output

across the multimodal output channels.

Figure 2.43: Avatar and screen shot of ViSoft (Foster 2004)

2.8.19. Microsoft Surface
Microsoft Surface (Microsoft 2009) is a recent attempt to revolutionise the way humans interface

with computational devices. The physical interface to Surface is a 30 inch table-like display.

Surface can recognise physical objects, such as mobile phones, that are placed on the surface and

enables hands-on direct manipulation of digital content such as ring tones, images and maps.

59

Users can interact with Surface using touch, gesture, or by simply placing objects on it. Catering

for both commercial and non-commercial end users, Surface has been tested in a number of

application domains including mobile phone sales, e.g., choosing price plans and selecting ring

tones, intelligent restaurant services, e.g., viewing menus and ordering food, paying bills, and

digital photography, e.g., viewing, sharing and printing photos. Figure 2.44 illustrates the

application of Surface in the sale of mobile phones.

Figure 2.44: Commercial application of Microsoft Surface (Microsoft 2009)

As shown in Figure 2.44, the customer can easily compare mobile phones and packages simply by

placing the phones side by side on the surface. Figure 2.45 shows Microsoft Surface in a non-

commercial setting – digital photography.

Figure 2.45: Digital photography in Microsoft Surface (Microsoft 2009)

60

As shown in Figure 2.45, users can slide and flick photos around in Surface just as they would in

the physical world. In addition to direct interaction using touch and object recognition, the system

allows multi-touch, i.e., recognition of multiple points of contact in parallel, and multi-user, e.g.,

collaboration between users to share photos, ring-tones.

2.8.20. Other multimodal systems
QuickSet (Johnston et al. 1997), a training simulator that enables voice and pen input, is a

distributed system that consists of a collection of interacting agents that communicate using the

Open Agent Architecture (Cheyer et al. 1998, OAA 2009). QuickSet supports direct manipulation

by enabling complex pen gestures, such as arrows and various types of lines. The QuickSet

interface enables users to manipulate an intelligent map with natural language and pen-based

gestures. Semantic representation within QuickSet is in the form of typed feature structures

(Carpenter 1992). MATCH (Multimodal Access To City Help) (Johnston et al. 2002) allows users

to interact with a dynamic map with speech and pen input. Users can perform a variety of tasks

such as circling an area of a map while asking for information about restaurants in that area. Maps

are also the focus of attention in CUBRICON (Neal & Shapiro 1991) where users can point to

objects on a map and ask questions such as, “Is this an air-base?”.

MATIS (Multimodal Airline Travel Information System) (Nigay & Coutaz 1995) enables

users to access information about flight schedules with speech, keyboard, mouse and direct

manipulation. The user can choose and freely switch between the various interaction modalities.

The IHUB (Reithinger & Sonntag 2005) integration framework is intended for use in mobile

multimodal dialogue systems that access the Semantic Web (Berners-Lee et al. 2001; SW 2009).

IHUB, which constitutes a hub and spoke architecture, aims to allow users to perform real-time

queries to the Semantic Web. The IHUB does not perform reasoning about message content, but

simply validates the messages and routes them between the various modules of the system.

2.9. Intelligent multimedia agents
Authors use different terms to describe an intelligent multimedia agent that can engage with

humans in a natural and intuitive way, using both verbal and non-verbal input/output

communication, including, ‘intelligent agent’, ‘intelligent multimodal agent’, ‘conversational

agent’, ‘Embodied Conservational Agent (ECA)’, ‘animated human simulation’, ‘animated

presentation agent’, ‘interface agent’, ‘affective agent’ and ‘virtual human’. Whilst there are many

different types of agents, e.g., talking heads, embodied, cartoon style, here the broad term, ‘agent’

shall refer to all such agents. There has been considerable research focusing on the development of

61

agents that can engage in human-like conversations with real users. Central to the design of such

agents is the means by which they accept and react to multimodal input, implement a strategy for

turn-taking, and coordinate output across a range of modalities.

REA (Real Estate Agent) (Cassell et al. 2000) is an intelligent multimodal agent which

acts as a salesperson in the real estate application domain. The real estate domain provides REA

the opportunity to engage in both task- and socially-oriented dialogues. REA deploys computer

vision techniques that enable it to understand the conversational intentions of a user. REA can

respond using automated speech, facial expressions, and hand and body gestures. A user

interacting with REA is depicted in Figure 2.46.

Figure 2.46: The REA agent (Cassell et al. 2000)

BEAT (Cassell et al. 2001), used for the implementation of REA, is an annotation tool which

supplies input text to be spoken by an agent. Based on the same principle of Text-to-Speech (TTS)

systems (Mc Tear 2004), which convert written text into speech, BEAT converts written text into

verbal and non-verbal behaviours, e.g., hand gestures, head movements, facial expressions, eye-

gaze. SAM (Cassell et al. 2000) acts as a peer playmate for children, telling stories and sharing

experiences in a shared collaborative space. SAM can share physical objects across the real and

physical world. Real-time video of the child’s play space is projected behind SAM so that he can

appear to exist in the child’s actual environment. A screenshot of SAM is shown in Figure 2.47.

Figure 2.47: SAM (Cassell et al. 2000)

62

The Gandalf agent (Thórisson 1996, 1997), developed with the Ymir platform (Thórisson 1996,

1999), gives information about the planets of the solar system. The computer animated face and

hand of Gandalf is shown in Figure 2.48.

Figure 2.48: Gandalf (Thórisson 1996)

Gandalf can engage in natural, multimodal communication by coordinating output across speech,

eye-gaze and gesture modalities. The agent can also sense the position of the user, determine what

they are looking at, monitor their hand position, and perform automated speech recognition. A

major focus in the design of Gandalf is its ability to handle turn-taking in an intelligent and

human-like way.

 de Rosis et al. (2003) focus on developing an expressive and believable agent, called

Greta, which can communicate complex information using a combination of tightly synchronised

verbal and non-verbal signals. Greta has been designed as an, ‘individual’, as opposed to a generic

agent, to help encourage users to consider Greta a ‘friend’, not just an agent. Greta has been

applied in the medical domain, giving information about treatments being proscribed by a doctor.

Using facial expressions and behaviours, Greta is capable of performing many believable

expressions as illustrated in Figure 2.49. Other agents include PPP Persona (André et al. 1996), a

multipurpose agent that can present information retrieved from the Internet, Rapport (Gratch et al.

2007), which can build rapport with the user by providing non-verbal listening feedback, Steve

(Rickel et al. 2001), an intelligent tutor that cohabits a number of virtual words with its student,

and MAX (Multimodal Assembly eXpert) (Kopp & Wachsmuth 2004), an assembly expert who,

in a virtual environment, assists users with complex assembly procedures.

63

Figure 2.49: Greta’s expressions (de Rosis et al. 2003)

2.9.1. Turn-taking in intelligent multimedia agents
The problem of turn-taking is of huge importance in the design of agents. A well designed turn-

taking strategy can greatly enhance the believability of an agent, and hence the naturalness of a

dialogue with such an agent. By the same token, failure to deal adequately with the issue of turn-

taking can have drastic effects on the naturalness of the human-agent interaction. Turn-taking is a

key consideration in the design of the Gandalf agent (Thórisson 1996). Gandalf signals his

intention to take a turn by using a common behaviour pattern in humans, i.e., moving eyebrows up

and down quickly and glancing to the side and back. The Ymir Turn-taking Model (YTTM)

(Thórisson 2002) is one of the most comprehensive computational models of multimodal turn-

taking. YTTM addresses the full perception-action loop that is necessary for real-time turn-taking

including multimodal perception, knowledge representation, decision-making and action

generation. Turn-taking is an important task involved with dialogue management, and much

research is devoted to managing turn-taking as part of a broader dialogue management strategy

(López-Cózar Delgado & Araki 2005; Mc Tear 2004). Turn-taking signals are typically composed

of a combination of multimodal events, such as head and gaze direction, hand position, and speech

intonation. Considerable advances in the area of dialogue management have seen the granularity

of turn-taking increase. Next-generation spoken dialogue systems are likely to abandon today’s

principles of turn-taking completely, since there will not be clearly defined transition points where

a user will stop and wait for a system response. The challenge in turn-taking is the recognition that

‘neutral’ ‘sorry-for’

‘relief’ ‘tiny’

64

the user wishes to give or take a turn. As dialogue systems become increasingly multimodal the

dialogue management strategy need to become more competent recognising turn-taking cues, e.g.,

speech, eye-gaze, head movement/direction, facial expression, simultaneously across multiple

modalities. This requires that dialogue management systems are capable of complex, flexible

decision-making over some or all of the relevant input modalities.

 Table 2.2 gives a summary of the multimodal systems discussed in this chapter. The

systems are categorised into three groups: (1) multimodal platforms, (2) multimodal systems and

(3) intelligent multimedia agents. A symbol is used to indicate a capability of the system,

whilst a symbol indicates little or no capability. Table 2.2 shows that all multimodal platforms

are considered to offer full capability in each of the categories since they provide a framework for

implementing a range of different multimodal systems. Note that F in the semantic representation

column represents frames, whilst BB and D in the semantic storage column represent blackboard-

based and distributed.

2.10. Multimodal corpora and annotation tools
In order to develop intelligent multimodal systems it is necessary to semantically annotate

multimodal input/output data that can be used to test such systems. Typically, multimodal data is

collected from staged or naturally occurring situations, e.g., meetings, talk shows, Wizard-of-Oz

experiments. Multimodal corpora aid study of the characteristics of human-human communication

and the development of more natural human-computer interaction. Rules may also be derived

from such corpora that can then be applied to decision-making within multimodal systems. The

corpora can be annotated with varying levels of granularity, depending on their intended use. To

assist the process of annotation various software tools have been developed. The Anvil tool

(Martin & Kipp 2002) is widely used to annotate multimodal data from various application

domains but, despite the existence of tools such as Anvil, annotation of multimodal data remains a

difficult task.

 The AMI corpus (Carletta et al. 2006), collected during staged and naturally occurring

meetings, is one of the largest of its kind and is freely available for academic purposes. In

Petukhova (2005), the author focuses on the detailed annotation of dialogue acts in the AMI

corpus. The SACTI-2 (Simulated ASR Channel, Tourist Information) corpus (Weilhammer et al.

2005) contains annotations relating to speech and mouse click input. The data was collected

during task-oriented human-human dialogues with speech and an interactive map. The annotations

were performed with the Anvil tool (Martin & Kipp 2002).

65

Categories System Year

Semantic
representation

Semantic
Storage

Multimodal Interaction

Input Media Output Media

F XML BB D Text
Pointing
(haptic
deixis)

Speech Vision

Text Audio Visual

 Speech
Non-

speech
audio

Graphics
(static)

Video or
animation

Multimodal
Platforms

Collagen 1996
Ymir 1997
Chameleon 1998
Oxygen 1999
EMBASSI 2001
DARPA Galaxy
Communicator

2001

DARBS 2001
JASPIS 2000
Psyclone 2003

Multimodal
Systems

Waxholm 1992
Spoken Image/
SONAS

1994

Aesopworld 1996
InterACT 1996
SmartKom 2000
MIAMM 2001
XWand 2003
COMIC/ViSoft 2003
CONFUCIUS 2003
TeleMorph/
TeleTuras

2004

Intelligent
Multimedia

Agents

Gandalf 1997
SAM & REA
(BEAT)

1999

Greta 2000

Table 2.2: Summary of multimodal systems

66

The MUMIN multimodal annotation scheme (Allwood et al. 2007) caters for the annotation of

gestures and facial expressions and focuses on their use in feedback, turn-taking and sequencing

communicative functions. Other work is concerned with learning from multimodal corpora in

order to automatically generate the multimodal behaviours of an agent (Kipp 2006). Available

sources of multimodal corpora are discussed further in Rehm and André (2006) and López-

Cózar Delgado & Araki (2005), whilst Carletta et al. (2006) give a comprehensive review of

existing annotation schemes.

2.11. Dialogue act recognition
In a multimodal dialogue system, a dialogue act (Mc Tear 2004) is a functional tag which

represents the communicative intention of a user’s utterance or gesture. Determining the

communicative intentions behind an utterance is considered an important first step in dialogue

management (Webb et al. 2005). Considerable research concerns itself with the recognition of

user intentions. Grosz and Sidner (1986) consider in detail the recognition of the intentions of a

user. They consider the three components of discourse structure to be linguistic, intentional and

attentional, where ‘attentional’ refers to the focus of attention of the user as a dialogue unfolds.

Bunt and Keizer (2006) propose a multi-agent approach to multidimensional dialogue

management, where dialogue act agents are designed to focus on tasks, feedback and social

obligation management. A dialogue manager, called PARADIME, has been implemented to test

the approach in a question-answering system which provides information in the medical

application domain. The PARADIME architecture implements a context model, primarily

concerned with linguistic, semantic, cognitive, and social context, though physical and

perceptual context is also considered. The various dialogue act agents constantly monitor the

context model and are automatically triggered by certain conditions.

The recognition of dialogue acts, before the advent of multimodal systems, concerned

only the analysis of words spoken by the participants in a dialogue. Dialogue act recognition for

language alone is by no means a simple task, but clearly it becomes more complicated when

one must consider multiple modalities such as eye-gaze, gesture and facial expression, in

addition to speech. Of course, multimodality can do more than make dialogue act recognition

more complicated – it can make it more accurate and, in instances where serious ambiguity

occurs in one modality, the use of information from other modalities can facilitate multimodal

decision-making. In order that dialogue act recognition can be effectively achieved over

multiple modalities there is a requirement for more advanced and innovative approaches to

decision-making.

67

2.12. Anaphora resolution
Reference resolution is a key problem in the design of multimodal systems. Two types of

references that regularly occur in day-to-day speech are anaphoric and deictic. Here we

consider the term ‘anaphoric’ to broadly include references to preceding utterances, forward

references (cataphora), and reference to objects in the physical world (exophora). Anaphoric

expressions can frequently occur in a user’s interaction with a multimodal system. For example,

the user could refer to the subject of a preceding utterance, e.g., “where is her office?”, or to an

object in the user’s environment, e.g., “the table”. Deictic references often co-occur with

pointing, e.g., when a user refers to a position on a map displayed on the screen, e.g., “is this a

library?”. They can also refer to some time in the future, e.g., “I will give you the document

then”. Resolving such references requires that the system has an understanding of current

dialogue (contextual information), a record or past dialogue and an understanding of the current

domain (domain model).

 Bolt (1980) developed one of the first multimodal interfaces. His ‘Put That There’

system was one of the earliest attempts to address the issue of anaphora resolution in a

multimodal system. The ‘Put That There’ interface allowed users to add, delete, and move

graphical objects around a wall projection panel using speech and gesture input. In Brøndsted

(1999) reference problems in the Chameleon platform (Brøndsted et al. 1998, 2001) are

discussed. Brøndsted (1999) considers three linguistic reference types; (1) Endophora –

covering both anaphora and cataphora, (2) deixis – depends on extralinguistic context, i.e.

interpretation of the reference relies on the circumstance of the utterance, (3) cross-media

(deictic) – reference to an antecedent in another communication channel, and (4) cross-

user/system - reference in the user input/system output to an antecedent in the system

output/user input. Brøndsted (1999) emphasises the point that, in order to deal effectively with

such decisions, a system must understand not just user input but also its own output. Pineda and

Garza (1997) discuss a model for multimodal resolution where the focus is on establishing the

referent of an expression in one modality using contextual information from another modality.

André and Rist (1994) developed a model for referring to objects using text and pictures, which

is demonstrated in a multimodal presentation system (Stock & Zancanaro 2005). The model

outlined in André and Rist (1994) was implemented in the WIP multimodal presentation system

(Wahlster et al. 1992).

With all approaches concerned with reference resolution it is important that the system

understands the current domain, e.g., to resolve queries such as, “whose office is this [�]?”,

and, “how do I get from his office to that office [�]?”. It is equally important that the system

understands the meaning of not just the current utterance, and/or gesture, facial expressions, but

68

also previous dialogue acts, so that queries of the form, “what is his surname?”, and, “where is

her office?”, can be more easily resolved, i.e., the system needs to maintain a dialogue history.

A common means of maintaining a dialogue history is the use of a blackboard (Thórisson et al.

2005), as discussed in Section 2.3. The storage of semantics over time enables multimodal

systems to retrace dialogue history in order to address the problem of reference resolution.

2.13. Limitations of current research
The work discussed in this chapter has considerably advanced the capabilities of multimodal

systems, enabling them to engage with real users in intelligent natural and human-like

interaction. Such rich interaction would only have been imaginable when Richard Bolt took the

first tentative steps towards a multimodal interface with his ‘Put That There’ system in the early

eighties (Bolt 1980, 1987). Yet, if progress over the next thirty years matches the speed of the

previous three decades then we can expect the systems of today to quickly appear primitive. Of

course, such an opinion may be optimistic since the last thirty years have seen considerable

advancements in the processing power of computers, which has enabled the development of

more intelligent systems. How much intelligent systems can advance over the next thirty years

is dependent upon how much we can be assured that hardware technology will continue to

advance at a similar rate to before, i.e., will Moore’s Law (Brock 2006) continue to remain

true? Whilst this question will continue to evoke debate within the research community, one

thing is certain, there will always be hardware constraints that impose a glass ceiling on the

development of intelligent systems. It is therefore important that AI researchers focus on (1)

removing or reducing these constraints or (2) developing more efficient and innovative

intelligent systems that can operate within the current hardware limitations. What AI

researchers certainly must not be focused on, or rather be distracted by, is developing software

and hardware technology that already exists. In other words, they need to avoid ‘reinventing the

wheel’, since this practice distracts them from other work that can add real value by advancing

the capabilities of multimodal systems. This is a view shared by Thórisson (2007, p. 13) who

states that, “instead of trying to build directly on systems already implemented, researchers do

one of two things: they either re-implement (some of the) functionality of the former student’s

software from scratch or they choose to do their research in isolation from the functionality and

context that that software would have provided…the result is a state where researchers either

constantly reinvent the wheel or produce their work in increased isolation.”

 Much of the work discussed in this chapter could, to a certain extent, be considered to

re-implement existing technology. For example, one could find similarities between the hub of

Chameleon (Brøndsted et al. 1998, 2001) and the hub implemented in Galaxy Communicator

69

(Bayer et al. 2001), but both platforms were developed independently of each other using

different tools to implement distributed processing. DARBS (Distributed Algorithmic and Rule-

Based System) (Choy et al. 2004a, 2004b; Nolle et al. 2001) and Chameleon both implement a

centralised blackboard but both blackboards have been developed from scratch to operate

within their respective systems. Similarly, the functionality of the blackboards in Ymir is

similar to that of the multiple blackboards in SmartKom, yet both platforms used different tools

to develop their blackboards. Few of the systems discussed here, with the notable exceptions of

some, including Psyclone (Thórisson et al. 2005) and OpenAir (Mindmakers 2009; Thórisson et

al. 2005), have made their work freely available to others in the community so that it may form

the basis of future research. Should this trend prevail, the constant reimplementation discussed

in Thórisson (2007, p. 14) will continue indefinitely and the advancement of multimodal

systems will continue to be stifled by the practice of isolated researchers constantly reinventing

the wheel. Two points are key to ensuring this trend is not continued: (1) reversal of the culture

within many academic institutions that forces researchers and Ph.D. students to work in

isolation and subsequently focus to a large extend on developing technology that already exists,

and (2) researchers focus more on building on existing tools and technology to advance towards

more intelligent multimodal systems. It is the change in culture that poses the greatest challenge

and overcoming this would go some way to ensuring that researchers focus more of their effort

on exciting new research and less on the replication of existing work.

 Further evidence of a lack of synergy in AI research can be found in the area of

multimodal corpora and annotation tools. As discussed in Section 2.10, there is an abundance of

existing multimodal corpora (Carletta et al. 2006; Petukhova 2005; Weilhammer et al. 2005;

Kipp 2006; Rehm & André 2006) and annotation tools (Martin & Kipp 2002). However, many

of these corpora are developed for the very specific needs of different applications. The corpora

are therefore often difficult to utilise outside of that particular application domain. One possible

way to maximise the use of existing multimodal data is to increase collaboration between

researchers and academic institutions on shared projects and, in turn, build synergy within the

AI research community and reduce the replication of work and academic effort. Another option

is to further standardise the annotation schemes for multimodal corpora, thus ensuring that

future corpora will be of maximum benefit to the research community as a whole and not just of

use in one system or a small subset of systems. The latter is obviously a huge challenge since,

as multimodal systems constantly advance, so too do their requirements in respect of semantic

representation.

 In summary, there are two key limitations of current research: (1) replication of work

due to lack of collaboration between researchers who subsequently often work in isolation and

70

reinvent the wheel and (2) lack of standardised multimodal corpora that could be applied across

multiple application domains. Overall, it follows that there is a general lack of synergy in AI

research. So how can this be addressed in the short term? First, it is important to utilise existing

tools and technology wherever possible. For example, Psyclone (Thórisson et al. 2005)

facilitates distributed processing and is free to use for academic purposes. Likewise, other tools

exist for semantic representation, communication and decision-making and all these should be

explored in detail before deciding to re-implement such technology. By utilising existing

technology researchers can focus on more novel aspects of their work and subsequently add

more value to their academic endeavours. Second, systems should be constructed in a modular

way using standard tools for programming and representation that maximise their potential use

by others in the field. For example, it would be better to use an XML-based approach to

semantic representation than to develop a representation framework bespoke to a particular

application domain. Finally, more researchers should focus on building systems or components

that can form the basis of future research in the area of multimodal systems.

2.14. Summary
This chapter has reviewed a number of areas key to the field of multimodal systems. First, the

problem of multimodal semantic fusion and synchronisation was discussed. A review of

multimodal semantic representation techniques was then presented. Next, communication in

multimodal systems was considered, before a discussion on four AI methods for decision-

making in multimodal systems: fuzzy logic, genetic algorithms, neural networks and Bayesian

networks. Distributed processing was considered and a summary of available tools for

distributed processing was given. We then focused on existing multimodal systems and

platforms, with discussion primarily around their individual approach to semantic storage and

representation, communication and decision-making. Some intelligent multimedia agents were

presented to give a flavour of progress in this area, before a discussion on the pertinent issue of

turn-taking in such agents. Existing multimodal corpora and annotation tools were then

reviewed, before consideration of the important challenges of dialogue act recognition and

anaphora resolution, which are key to this thesis. The chapter concluded with a discussion on

the limitations of current research.

71

Chapter 3 Bayesian Networks

This chapter provides a background discussion of Bayesian networks and their application to

decision-making. First, a definition and discussion of the history of Bayesian networks is

provided. The structure of Bayesian networks is then given and their ability to perform

intercausal reasoning is considered. An example Bayesian network is presented before

consideration of influence diagrams, which are Bayesian networks extended to include utility

and decision nodes. Key problems in constructing Bayesian networks are highlighted followed

by a discussion of their advantages over other approaches to decision-making. Next, the

limitations of Bayesian networks are considered. Applications of Bayesian networks are then

addressed and their deployment to date in multimodal systems presented. The chapter

concludes with an evaluation of existing software and tools for implementing Bayesian

networks.

3.1. Definition and brief history
Bayesian networks (Pearl 1988; Charniak 1991; Jensen 1996, 2000; Kjærulff & Madsen 2006;

Jensen & Nielsen 2007; Pourret et al. 2008) are an AI technique for probabilistic reasoning

under conditions of uncertainty. As observed by Charniak (1991, p. 62), Bayesian networks

provide, “a convenient way to attack a multitude of problems in which one wants to come to

conclusions that are not warranted logically but, rather, probabilistically”. Although they have

come to greater prominence in the last two decades, the origins of Bayesian networks are

several centuries old. The term ‘Bayesian’ is derived from the surname of Thomas Bayes who,

in 1763, presented his ratio formula for computing conditional probabilities (Bayes, 1763):

)(

),(
)|(

CP

CAP
CAP = (3.1)

In deriving this equation, Thomas Bayes gave scientific notation to the phrase, “…given that

what I know is C” (Pearl 1988, p. 17). C in Equation 3.1 represents the context of the belief in

A. The notation P(A|C) is referred to as Bayes conditionalisation and represents the probability

P of an event A occurring given the knowledge or evidence C. Equation 3.1 was developed to

form Bayes’ Theorem:

72

)(

)()|(
)|(

CP

APACP
CAP = (3.2)

Bayes’ Theorem enables the belief of hypothesis A to be updated in light of new evidence C.

Bayesian networks provide a compact graphical means of implementing Bayes’ Theorem.

P(A|C) can also be read as, “the probability of A being true in the context of evidence C being

observed”.

 More generally, network representations have been used extensively in AI reasoning

systems to encode relevancies between variables and facts, e.g., pointers, frames, inheritance

hierarchies (Pearl 1988, p. 13). A major reason for their use is their ability to represent causal

relations (Pearl 2000). The notion of causality has intrigued mankind for centuries. In a public

lecture delivered in 1996 entitled, “The Art and Science of Cause and Effect”, Judea Pearl

presents a history of causality dating back to the earliest days of human development. He

observes that even Adam and Eve in the Garden of Eden were well versed on causality when

they gave explanations of what caused them to eat fruit from the tree (Pearl 2000, p. 332). Pearl

illustrates the wide scope of causality when he says that, “whether you are evaluating the

impact of bilingual education programs or running an experiment on how mice distinguish food

from danger or speculating about why Julius Caesar crossed the Rubicon or diagnosing a

patient or predicting who will win the presidential election, you are dealing with a tangled web

of cause-effect considerations” (Pearl 2000, p. 331). Causation is a concept that can easily be

understood by humans. As discussed in Pearl (2000, p. 1), humans often use causal utterances

in situations where there exists uncertainty. For example, we say, “tonight’s football match will

be cancelled if that rain keeps up”, or, “if we can score another point, we will win the match”,

when we are entirely uncertain that the game will be cancelled if it keeps raining, or that

another point will mean our team will win the match. Such causal statements are an everyday

occurrence in human speech and are typically used under conditions of uncertainty. It is

therefore intuitive for humans to consider causes and effects, and to build Bayesian networks to

represent the causal relationships between variables and events. Three other relationships:

likelihood, conditioning and relevance, are considered, with causation, as the basic primitives of

the language of probability (Pearl 1988). These, too, are relationships which humans can easily

comprehend and can be effectively represented using the cause-effect structure of Bayesian

networks. Bayesian networks are therefore an intuitive means of modelling human-like

decision-making and provide a more developer-friendly method of implementing the power of

probabilistic reasoning under uncertainty.

73

3.2. Structure of Bayesian networks
The Bayesian network itself consists of chance nodes (random variables, uncertain quantities)

and directed edges (arcs, arrows, links) between the nodes. The nodes represent variables in the

domain and directed edges represent influences between nodes in the network. The graph,

consisting of the nodes and edges, represents the qualitative part of the Bayesian network. A

Conditional Probability Table (CPT) specifies the quantitative part of the network. The

conditional probabilities are updated dynamically when new information is input to the

network, i.e., new observations or evidence. The term prior probability is used before any

evidence is considered, whilst the term posterior probability applies after evidence has been

added. Bayesian networks are a compact means of explicitly representing relationships, e.g.,

causation, dependence and independence, between variables of a domain. As observed by

Pfeffer (2000, p. 27), “the graphical structure of the network reflects the causal structure of the

domain”. A drawback of probability theory per se is the vast amount of numbers that need to be

considered in order to reach a conclusion, i.e., for n binary variables, we have 2n-1 joint

probabilities (Charniak 1991). The structure of Bayesian networks enables us to encode

knowledge in such a way that important, and ignorable, information is easily recognisable

(Pearl 1988, p. 12). As Charniak (1991) alludes to, the conclusions of a Bayesian network may

be reached with minimal computation due to the compact nature of the networks. Because

graphs are easy to understand they provide, “an excellent language for communicating and

discussing dependence and independence relations among problem-domain variables” (Kjærulff

& Madsen 2006, p. 3). The efficiency of a Bayesian network is due to the built-in independence

assumptions about variables of the problem domain. Thus, the secret to developing efficient

Bayesian networks is our understanding of the (conditional) dependence and independence

relationships between the variables of the domain, or nodes in our network. Bayesian networks

allow us to represent these dependence and independence relations using directed links from

causes to effects.

3.3. Intercausal inference
Bayesian networks have the intrinsic ability to perform deductive, abductive and intercausal

reasoning (Kjærulff & Madsen 2006). Deductive (causal) reasoning considers the direction of

causal links, edges, arcs or arrows between variables of the network, i.e., from cause to effect.

For example, observing a cause increases our belief about a possible effect. Abductive

reasoning is the opposite of deductive reasoning, i.e., from effect to cause, where observing an

effect increases our belief about a possible cause. Hence reasoning follows, and goes against,

the direction of causal links. Intercausal reasoning, sometimes referred to as intercausal

74

inference or the explaining away effect, is a powerful property of graphical models, i.e.,

Bayesian networks. Intercausal inference occurs when evidence on one possible cause

disconfirms, or explains away, another possible cause. For example, suppose there are two

possible causes for a person not arriving at work: (1) the employee is ill, and (2) the employee

has been delayed by road works. If we now get evidence that the employee was ill yesterday

and that there are no road works today, then it becomes more likely that illness is the reason for

the employee’s non-attendance, and less likely that road works are responsible. Hence, road

works as a cause for the employee not arriving at work has been explained away. Intercausal

reasoning is an inherent property of Bayesian networks, whilst its implementation in a rule-

based system would require the specification of numerous and complex rules.

3.4. An example Bayesian network
To further illustrate Bayesian networks we will consider an example network given in Pfeffer

(2000). The simple Bayesian network discussed in Pfeffer (2000), shown in Figure 3.1, can be

used to predict the performance of a student on a course.

Figure 3.1: Example Bayesian network (Pfeffer 2000)

Six nodes are used in the Bayesian network in Figure 3.1: Smart, Hard working, Good Test

Taker, Understands Material, Exam Grade and Homework Grade. The nodes Smart, Hard

Working, Good Test Taker and Understands Material all take Boolean values of True or False.

Both Exam Grade and Homework Grade have a set of grades {A, B, C, D, F} as their type. The

node Smart is a parent of Good Test Taker to reflect the fact that being a good test taker

depends on smartness. Causal relations within the domain are further indicated by the arrows

from Smart and Hard Working nodes to the Understands Material node, i.e., it is believed that

smartness and the fact that a student is hardworking have influence over the student’s

Smart Hard working

Understands
Material Good Test Taker

Exam Grade
Homework Grade

75

understanding of the learning material. The student’s understanding of the material has an

influence over both the homework grade and the exam grade. Good Test Taker is also a parent

of Exam Grade to model the fact that some students may perform better in exams than others.

The conditional probability functions of this example network are shown in the tables in Figure

3.2.

Smart

True False

0.5 0.5

Good Test

Taker

Understands

Material

Exam Grade

A B C D F

True True 0.7 0.25 0.03 0.01 0.01

True False 0.3 0.4 0.2 0.05 0.05

False True 0.4 0.3 0.2 0.08 0.02

False False 0.05 0.2 0.3 0.3 0.15

Understands

Material

Homework Grade

A B C D F

True 0.7 0.25 0.03 0.01 0.01

False 0.2 0.3 0.4 0.05 0.05

Figure 3.2: Conditional Probability Tables for student grades example (Pfeffer 2000)

The tables in Figure 3.2 represent conditional probability functions of the domain. For example,

the function CPFHG, Conditional Probability Function for Homework Grade node, specifies

that, if the student understands the learning material, he/she will get a grade A with a

probability of 0.7, but if the student does not understand the material then the probability that

Hard Working

True False

0.5 0.5

Smart Good Test Taker

True False

True 0.75 0.25

False 0.25 0.75

Smart
Hard

Working

Understands Material

True False

True True 0.95 0.05

True False 0.6 0.4

False True 0.6 0.4

False False 0.2 0.8

76

the student will get a grade A is reduced to 0.2. Note that, for each of the tables in Figure 3.2,

the sum of every row is equal to unity.

3.5. Influence diagrams
Influence diagrams are essentially Bayesian networks extended to include decision and utility

nodes, in addition to the standard chance nodes. A decision node is represented as a square and

contains states that describe the choices available to the decision-maker. The utility (value)

node is shown as a diamond and represents the expected utility or value of a particular decision.

An influence diagram may contain multiple decision nodes, as is the case in the oil wildcatter

example discussed in Hugin (2009). The influence diagram for this example is depicted in

Figure 3.3.

Figure 3.3: Example influence diagram (Hugin 2009)

There are two decisions in this example: whether or not to test for oil using seismic soundings

and whether or not to drill for oil. The cost of testing is $10,000, whilst the cost of drilling for

oil is $7,000. Note that, in the influence diagram in Figure 3.3, the arrow from Seismic to Drill

does not represent a causal relation. This is because a decision node does not have a conditional

probability table assigned to it. The arrow from Seismic to Drill does however indicate that,

when the decision must be made on whether or not to drill, the state of Seismic is known. The

chance node Oil has three states: “dry”, “wet” and “soak”. The chance node Seismic also has

three states: “closed” (closed reflection pattern – suggesting much oil is present), “open” (open

pattern – suggesting that some oil is present) and “diff” (diffuse pattern – highly unlikely that

there will be any oil). The Test node of the influence diagram in Figure 3.3 has two states (or

actions): “test” and “not”. Tables 3.1 and 3.2 show the utility tables for the Pay and Cost utility

nodes respectively. Similarly, the Drill decision node has “drill” and “not” as its actions.

77

Drill = “drill” Drill = “not”

Oil = “dry” Oil = “wet” Oil = “soak” Oil = “dry” Oi l = “wet” Oil = “soak”

-70 50 200 0 0 0

U(Pay)

Table 3.1: Utility tables for Drill decision node (Hugin 2009)

Test = “test” Test = “not”

-10 0

U(Cost)

Table 3.2: Utility tables for Test decision node (Hugin 2009)

Tables 3.1 and 3.2 present the potential financial gains and costs associated with the decisions

to test and drill for oil. As shown, deciding to drill for oil when Oil = “dry” would cost $70,000,

whilst drilling when Oil = “soak” would yield a profit of $200,000. Of course, the influence

diagram takes into consideration the probabilities of the Oil and Seismic variables, i.e. P(Oil)

and P(Seismic | Oil, Test). Running the network in Figure 3.3 using the Hugin decision engine

processes these probabilities, along with the potential value and cost, before recommending

whether or not it is advisable to drill for oil.

3.6. Challenges in constructing Bayesian networks

Bayesian networks can be constructed either manually, (semi-) automatically from data, or

through a combination of both approaches. Whilst it is relatively easy to quickly construct a

Bayesian network for a given problem domain, ensuring that the network correctly represents

causal dependence and independence relations within the domain can be a difficult and time-

expensive task. The process of constructing a Bayesian network frequently involves several

iterations of the design, implementation, analysis and testing phases. The iterative process of

constructing a Bayesian network is illustrated in Figure 3.4. The design phase of construction

requires the identification of variables of the problem domain, defining the relationship between

the variables and performing verification of the Bayesian model, i.e., the qualitative component.

This requires a detailed knowledge of the problem domain and can often require close

collaboration with problem domain experts. The implementation phase involves eliciting the

parameter values, i.e., the quantitative component. Eliciting the values, i.e., completing the

conditional probability tables, is often a labour intensive task. It is important, therefore, that one

is satisfied that the qualitative component, i.e., the graphical structure, is correct before

78

proceeding to the quantitative part. The third phase in the Bayesian model construction process

is running test cases with known outcomes. The final stage is to analyse the Bayesian network

to confirm correctness. As illustrated in Figure 3.4, these four phases are iterated until the

designer is satisfied that the network is correct.

Figure 3.4: Iterative process of Bayesian network construction (Kjærulff & Madsen 2006)

Correctly identifying the variables of a given problem domain can sometimes be difficult. It is

important to focus on two aspects: (1) the problem to be solved and (2) the information required

to solve it. Information not related to the problem and its solution should not be captured in the

Bayesian network. Kjærulff & Madsen (2006, p. 132) point out that, “defining variables

corresponding to the (physical) objects of a problem domain is a common mistake made by

most novices. Instead of focusing on objects of the problem domain, one needs to focus on the

problem (e.g. possible diagnoses, classifications, predictions, decisions to be made) and the

relevant pieces of information for solving the problem”.

Another major challenge in the construction of Bayesian networks is the correct

modelling of causality. Whilst the notion of causality is easily understood by humans, care is

needed to ensure that the causes and effects in a problem domain are correctly identified. As

discussed in Kjærulff & Madsen (2006, p. 16), “it is a common modeling mistake to let arrows

point from effect to cause, leading to faulty statements of (conditional) dependence and

79

independence and, consequently, faulty inference”. As an example, consider the Bayesian

network shown in Figure 3.5. At a glance, the network in Figure 3.5 may look correct, i.e., if a

person is laughing and/or smiling then the person is happy. However, the directed links from

the Laughing and Smiling nodes suggest that the fact that a person is laughing or smiling causes

that person to be happy. This is obviously incorrect, it is the fact that the person is happy that

causes the person to laugh or smile. Reversing the links of the network in Figure 3.5 gives

correct modelling of causality in this problem domain as shown in Figure 3.6. This very simple

example illustrates how mistakes can easily be made when modelling causal relations in a

problem domain. Careful consideration therefore needs to be given to the causes and effects

before attempting to construct a Bayesian network to model a particular problem domain.

Figure 3.5: Incorrect modelling of causality

Figure 3.6: Correct modelling of causality

It should be noted that it is not essential that the links of a Bayesian network follow a causal

interpretation (Kjærulff & Madsen 2006, p. 11), but doing so makes model construction much

more intuitive. Implementation of the causal relations using a graphical model also helps ensure

correct representation of the dependence and independence relationships existing between

variables of the problem domain. The graphical structure encodes these relationships and a very

compact representation of the dependence and independence relations amongst problem-

domain variables is obtained. A more in-depth discussion on the subject of causal relations may

be found in Pearl (2000).

80

3.7. Advantages of Bayesian networks
Bayesian networks are increasingly becoming the paradigm of choice for reasoning under

uncertainty. Their increased popularity is due to a number of factors. As discussed in Kjærulff

& Madsen (2006, p. v), “the graphical-based language for probabilistic networks is a powerful

tool for expressing causal interactions while in the same time expressing dependence and

independence relations among entities of a problem domain”. The notion of causality sits easily

with the human mind and we can therefore very quickly construct useful networks that are

capable of human-like reasoning under conditions of uncertainty. Representing exactly the

causal dependence and independence relations within a problem domain may prove difficult.

However, as Kjærulff & Madsen (2006, p. 136) observe, “it is important to bear in mind that all

models are wrong, but that some might be useful”.

 Due to Bayesian networks’ ability to handle causal independence, inference can be

efficiently performed on models containing a very large numbers of variables. The inference

that is performed by Bayesian networks is based on a deep-rooted theoretical foundation that is

centuries old. Bayesian networks have a major advantage over rule-based systems, in that they

can perform deductive, abductive and intercausal reasoning; the latter, according to Kjærulff &

Madsen (2006, p. 4), being the property that sets Bayesian networks apart from other reasoning

paradigms. It is also advantageous that many efficient algorithms exist for learning and

adapting Bayesian networks from data. According to Zou and Bhanu (2005, p. 7), a Bayesian

network is, “an attractive framework for statistical modeling, as it combines an intuitive

graphical representation with efficient algorithms for inference and learning.” The marriage of a

compact intuitive graphical representation with a powerful reasoning mechanism make

Bayesian networks a popular choice for a plethora of applications.

Bayesian networks offer a lot of flexibility to the developer in modelling a problem

domain. As observed by Kjærulff & Madsen (2006, p. vi), “probabilistic networks are “white

boxes” in the sense that the model components (variables, links, probability and utility

parameters) are open to interpretation, which makes it possible to perform a whole range of

different analyses of the networks (e.g., conflict analysis, explanation analysis, sensitivity

analysis, and value of information analysis)”. A key benefit of Bayesian networks, as observed

by Zou and Bhanu (2005), is their ability to be extended in order to handle time series data, e.g.,

dynamic Bayesian networks. Another advantage of Bayesian networks over other approaches to

decision-making is their capability to handle missing data. When a Bayesian network has been

constructed it will always run with or without data, or evidence, being added. As new

information becomes available it can be added on the fly to the network and the accuracy of the

conclusion reached by the network can be improved. The compact graphical nature of Bayesian

81

networks also renders them useful in communicating ideas about a problem domain amongst

different members of a development team, e.g., knowledge engineers and problem domain

experts.

3.8. Limitations of Bayesian networks
Whilst Bayesian networks are suitable for, and have been successfully applied in, a wide variety

of application domains there are problem domains where they are not ideal and where other

modelling paradigms may be a better choice. A problem domain where it is particularly

difficult to define the variables would be less suitable for Bayesian networks. For example, as

discussed in Kjærulff & Madsen (2006, p. 119), in the medical application domain the set of

possible symptoms for a particular illness are normally well-defined, e.g., sore throat, headache,

fever, but the variables relevant in modelling a person’s like or dislike for a painting are likely

to be harder to define. Problem domains where it is hard to identity the causal relations are less

suitable to the deployment of Bayesian networks. Similarly, where there is no uncertainty about

the cause-effect relationships, e.g., the conditional probabilities are deterministic, i.e., they take

the value 1 or 0, a better approach for decision-making probably exists.

For some problems of pattern recognition, e.g. of fingerprints, there may be no clearly

defined mechanism that controls the layout of the pattern. It would therefore be difficult to

build Bayesian networks that would be of significant use in this problem area. Finally, in order

that the time and effort spent in constructing a Bayesian network is justified, it is important that

the problem solving is repetitive in nature. Examples of problems that need to be solved

repeatedly include deciding whether or not to offer car insurance to a driver or deciding if

rainfall is likely, whilst the decision on the best location for a new national sports stadium is not

likely to be needed more than once. It is worth noting that the majority of real-world decisions

are repetitive in nature. Whilst there are situations where Bayesian networks may not be the

most suitable choice for decision-making, the proliferation of applications that they have been

applied to highlights their importance.

3.9. Applications of Bayesian networks
The greatest testament to any technology is the extent to which it is used. There are numerous

practical applications of Bayesian decision-making across a wide range of different and diverse

areas. Microsoft’s Lumiere project (Horvitz et al. 1998; Lumiere 1998) developed an

architecture for reasoning about the goals and needs of software users. In Lumiere, Bayesian

networks model relationships between the goals and needs of a user and observations about the

current program state. The user’s intentions and needs are inferred based on the current context,

previous actions and queries. Additionally, the system also computes the likelihood that the

82

user would like help completing their current task. The technology developed in Lumiere was

applied in the design of the Bayesian help system in the Office 1997 and Office 2003 product

suites. Microsoft also used Bayesian networks in the design of Microsoft Pregnancy and Child

Care (Haddawy 1999), which provides online heath information to parents. This involved the

construction of Bayesian networks for common symptoms in children. The appropriate model is

then chosen at run-time based on the primary complaint.

 The VISTA project (Horvitz & Barry 1995) focused on providing online decision

support for space shuttle flight controllers. A key aspect of this work was the management of

the time-critical, complex information that is displayed to the flight controller. Bayesian

networks are used to interpret live telemetry and determine the likelihood of problems in the

propulsion systems in the space shuttle. A list of problems ordered by criticality and likelihood

are presented. The level of detail displayed is controlled by a model of time criticality, enabling

the flight controller to focus on the most important information at any given time. Lockheed

Martin’s Marine Systems have developed an Autonomous Control Logic (ACL) system for use

in an Unmanned Underwater Vehicle (UUV) (Haddawy 1999). The ACL architecture applies

both rule-based and Bayesian decision-making to guide the UUV. The rule-based component is

concerned with real-time response, whilst the Bayesian model-based component focuses on

diagnosis, analysis and decision-making about unexpected events. A Bayesian network models

both the capabilities of the vehicle and the uncertainty on the current state of these capabilities,

before deciding on the best possible response to the event.

 Pathfinder (Heckerman et al. 1992) is an expert system for providing advice to surgical

pathologists to assist the diagnosis of lymph-node diseases. Pathfinder is, “one of a growing

number of normative expert systems that use probability and decision theory to acquire,

represent, manipulate, and explain uncertain medical knowledge” (Heckerman et al. 1992, p.1).

The Pathfinder technology evolved into the commercialised Intellipath group of systems. The

Intellipath modules present competing diagnoses of possible diseases based on histological

features that are input to the system. The user can then identify the features that best distinguish

between competing diagnoses, whilst considering the cost and potential benefits of each

observation or test. Another example of Bayesian networks being applied in medical diagnosis

is discussed in Milho & Fred (2000) which presents a Web supported development tool for

medical diagnostic applications. More information on the application of abductive inference

models to medical diagnosis can be found Peng & Reggia (1990), whilst Browne et al. (2006)

discuss the application of Bayesian network approaches to predict Protein-Protein Interactions

(PPI) in biological systems. Bayesian network have also been applied in the areas of machine

vision (Levitt et al. 1990), story understanding (Charniak & Goldman 1989, 1991), economic

83

forecasting (Abramson 1991) and risk analysis (Agena 2009). Hugin (2009) gives case studies

of where Bayesian networks have been applied in many different areas, including business

intelligence, earthquake risk management, crime control planning, food production design,

customer support operations and mobile robotics.

3.10. Bayesian networks in multimodal systems
Bayesian networks are becoming utilised increasingly in the field of multimodal systems.

XWand (Wilson & Shafer 2003), as discussed in Chapter 2, Section 2.8.17, is a wireless sensor

package enabling natural interaction within intelligent environments. XWand implements a

dynamic Bayesian network for action selection within an intelligent space - focussing on the

home environment. XWand can be used to turn a lamp off and on, control a media player, and

act as a mouse - controlling the windows curser. XWand uses a dynamic Bayesian network (see

Figure 3.7) to perform multimodal integration. The network in Figure 3.7 makes decisions

based on sensors, referent, i.e., what the user is believed to be referring to, and a command that

corresponds to the referent.

Figure 3.7: Dynamic Bayesian network in XWAND (XWAND 2009)

The Bayesian network in Figure 3.7 enables the referent to be identified in two ways: (1) it is

determined by where the wand is pointing, and (2) it may be identified using speech recognition

events. There are three ways to issue a command: (1) performing a wand gesture, (2) clicking a

button or (3) issuing a spoken command. It is therefore possible for the same action to be

84

specified in different ways, e.g., speech, gesture, pointing, clicking. For example, as discussed

in Wilson & Shafer (2003), all the following are possible ways of turning on a lamp:

• Uttering “turn on the desk lamp”

• Pointing at the desk lamp and saying “turn on”

• Pointing at the lamp and performing the “turn on” gesture with the wand

• Uttering “desk lamp” and performing the “turn on” gesture

The mechanism also ensures that spurious speech recognition results are ignored, e.g., “volume

up” while the wand is pointing at the desk lamp. As an example of how the Bayesian network

in Figure 3.7 works in practice, suppose that the wand is pointing at a light. This causes the

PointingTarget variable to be set to Light1. The Action node assigns equal probability to its two

possible states: TurnOnLight and TurnOffLight. If the user says “turn on”, the speech node is

then set to TurnOn; the probabilities of the Light1 node are dynamically updated, i.e., the

probability of TurnLightOn drastically increases whilst the probability of TurnLightOff is

decreased. Based on the new probability distribution the system then decides to turn the light

on.

Greta (de Rosis et al. 2003), as discussed in Chapter 2, Section 2.9, is an Embodied

Conversational Agent (ECA) that can engage in natural and believable conversation with both

real users and other agents. Greta denotes both a real user and another agent as an Interlocutor

(I). Greta implements Bayesian networks for computing probabilities of all possible gaze states

of the agent. Bayesian networks have been developed to represent the triggering of emotional

states for the agent such as ‘envy’ and ‘happy-for’. More specifically, Bayesian networks are

used to represent the uncertainty in the agent’s belief about the possibility of achieving certain

goals and the utility assigned to achieving these goals. Bayesian networks model the

relationships between the beliefs in Greta’s mind by using nodes to represent goal achievement.

Figure 3.8 shows the Bayesian network for triggering ‘envy’. In the triggering of ‘envy’ the

goal is to not have less power than others (or to dominate others). As stated in de Rosis et al.

(2003, p. 90), “the Agent’s belief about the probability of achieving this goal is influenced by

her belief that some desirable event occurred to some other agent I and that the same event

cannot occur to itself because the two events are ‘exclusive’: when some desirable event occurs

to I, envy towards I may then increase, in Greta”. The Bayesian network depicted in Figure 3.8

consists of two sub-networks which represent the state of Greta’s mind at time T and time T+1.

Considering the left sub-network first, we see that Greta (G) believes that the Interlocutor (I)

will gain more power over her (represented by Bel G (MPow I G i)) if I is in possession of an

object i (Bel G (Has I i)) that Greta wants to get (Goal G (Has G i)) and if she is unable to get

85

the same object herself (Bel G n(Has G i)). The sub-network on the right models the state of

Greta’s mind at time T+1. As shown at time T+1, the Interlocutor (I) saying he/she has the

winning lottery ticket increases Greta’s belief that I has the winning ticket (indicated by the

directed edge from the Say I G “I’ve got the winning ticket” node to the p (Bel G (Has I i)

node). This, coupled with Greta’s desire to dominate others ((Bel G Ach (Domin G I)) increases

the likelihood that Greta will be jealous of I (Feel G (Envy I)). As discussed in de Rosis (2003),

the intensity of the ‘envy’ emotion is dependent upon whether or not Greta is a ‘dominant’

agent. A counteracting event may cause the intensity of the emotion to decrease. For example,

if Greta learns in the time interval T+2 that the prize for the winning ticket is very small, then

Greta’s envy will decrease.

Figure 3.8: Bayesian network for triggering ‘envy’ (de Rosis et al. 2003)

In Vybornova et al. (2007), Bayesian networks are applied to multimodal fusion using

contextual information. An initial application of the technology is an intelligent diary that

assists elderly people who live alone. The intelligent diary aims to help the elderly, “perform

their daily activities, prolong their safety, security and personal autonomy, and support social

cohesion” (Vybornova et al. 2007, p. 61). In order to allow more natural interaction with human

users the research focuses on the interpretation of human behaviour and the recognition of the

user's intentions. This requires both low level (signal) and high level (semantic) multimodal

fusion. Vybornova et al. (2007, p. 61) observe that, “everything said or done is meaningful only

in its particular context”, and therefore, to perform semantic fusion, information is taken from

at least three contexts: (1) domain context, (2) linguistic context and (3) visual context.

Bayesian networks are utilised for analysing and combining the modalities. Robust contextual

86

fusion is achieved by applying probabilistic weighting of the multimodal data streams. This

enables recognition of user intention, prediction of human behaviour and interpretation and

reasoning about the user’s cognitive status.

 A Bayesian network approach to fusion within a multimodal automated surveillance

system is discussed in Zou and Bhanu (2005, p. 4) who explain that automated surveillance,

“addresses real-time observation of people, vehicles and other moving objects within a

complicated environment, leading to a description of their actions and interactions”. Zou and

Bhanu (2005) compare two approaches to multimodal fusion in the human detection and

tracking application domain: time-delay neural networks and Bayesian networks. Two signal

modalities, visual and audio are fused in order to detect a person walking in a scene. The fusion

mechanism is motivated by their investigation of the relationship between step sounds and

visual motions. These relationships are subsequently modelled with Bayesian networks.

 IM2 (Interactive Multimodal Information Management) (IM2 2009) aims to develop

innovative technologies that support multimodal human-computer interaction. This objective is

pursued through research in computer vision, multimedia indexing, speech understanding and

multi-channel fusion. Multimodal input modalities include speech, pen, gesture and head/body

movements, whilst multimedia system output includes speech, sound, animation, images and

3D graphics. One of the main applications of the work developed by IM2 is smart meeting

rooms. Bayesian networks have been proposed by IM2 researchers as a means of addressing

problems associated with dynamic data fusion.

Cohen-Rose and Christiansen (2002) discuss a storytelling system (called Guide) that

assists the user by answering queries about where to eat and drink. Guide’s interface combines

speech, text, graphics, mouse-based and pen-based pointing and positional input (e.g. GPS).

Guide is inspired by the science fiction novel, “The Hitchhikers Guide to the Galaxy” (Adams

1979), which is based on the existence of an electronic guide to absolutely everything. Cohen-

Rose and Christiansen (2002) suggest that the Internet could be viewed as being similar to the

fictional guide envisaged in Adams (1979) and discuss the limitations of existing search

engines. The authors explain how Guide uses Bayesian decision-making to present more

relevant information from a variety of sources in a contextual setting.

3.11. Tools for implementing Bayesian networks
This section reviews tools for performing Bayesian decision-making. Such tools enable the

implementation of Bayesian networks using a Graphical User Interface (GUI), an Application

Programming Interface (API), or both. The use of a GUI enables networks to be constructed

87

using the familiar notion of cause and effect, whilst the use of an API is necessary to access the

decision-making capabilities of the networks from within a software program.

3.11.1. MSBNx
MSBNx (Kadie et al. 2001, MSBNx 2009) is a Windows application for creating and

evaluating Bayesian networks. It is available at no cost for non-commercial use and can be

downloaded from MSBNx (2009). Components of this Microsoft application can be integrated

into programs, enabling them to perform inference and decision-making under uncertainty. In

addition to the components provided by MSBNx, developers and researchers can create their

own add-in components that can be used within MSBNx. The package itself includes an add-in

for editing and evaluating Hidden Markov Models. Bayesian networks are encoded in an XML-

based format and the application will run on any Windows operating system from Windows 98

to XP. The MSBNx Model Diagram Window is shown in Figure 3.9.

Figure 3.9: Model Diagram Window in MSDNx Editor (Kadie et al. 2001)

MSBN3, an ActiveX DLL, is the most important component of MSBNx. MSBN3 provides

developers with a powerful COM-based API for creating and evaluating Bayesian networks.

The API is particularly suited for use with COM-friendly programming languages such as

Visual Basic and JScript. If Bayesian networks have been developed with machine learning

tools, MSBNx can edit and evaluate the results. The WinMine Toolkit (WinMine 2009), also

developed by Microsoft, can create Bayesian networks with machine learning and statistical

methods. Models created by WinMine can be loaded, edited and evaluated with MSBNx.

3.11.2. GeNIe
The GeNIe GUI (Genie 2009) is shown in Figure 3.10. GeNIe is the graphical user interface to

SMILE (Structural Modelling, Inference, and Learning Engine) (Genie 2009). GeNIe supports

88

all major file types, including Bayesian networks developed using the Hugin (Hugin 2009) and

Netica (Norsys 2009) software tools. GeNIe is implemented in Visual C++ and only runs under

the Windows family of operating systems (98, NT, 2000, XP).

Figure 3.10: GeNIe GUI (Genie 2009)

GeNIe can learn the structure of Bayesian networks from data. It also contains a background

knowledge editor which enables the developer to force or forbid arcs between variables and

assign variables to temporal tiers. Background knowledge can be saved and previous

knowledge loaded to influence the learning process. GeNIe also enables the parameters of an

existing network to be learned from a data file. SMILE (Genie 2009) is a platform independent

library of functions that can be used by programmers and developers to implement Bayesian

networks and influence diagrams. SMILE is implemented in C++ and defines functions for

creating, editing, saving and loading graphical models for probabilistic reasoning and decision-

making under uncertainty. The SMILE library acts as a set of tools that can be used by the

application program, which has full control over the model building and reasoning process.

3.11.3. Netica
Netica (Norsys 2009) enables problem solving with Bayesian networks and influence diagrams.

A demo version can be downloaded at no cost from Norsys (2009). The demo version has full

functionality, but is limited in model size. The complete application enables the building,

editing and learning of Bayesian networks and influence diagrams. Netica compiles belief

89

networks into junction trees of cliques to enable fast probabilistic reasoning. Netica’s GUI is

shown in Figure 3.11.

Figure 3.11: Netica GUI (Norsys 2009)

Netica also offers the Netica Programmers Library, or the Netica API, to enable programmers

to embed the functionality of Netica within their own applications. The API is available in C,

C++, C#, Java, Visual Basic, Matlab and CLisp. Versions of the API are available for

Windows, Solaris and Macintosh. The interface for each of these operating systems is identical,

so code is fully portable across all of the platforms. To facilitate learning from data (EM and

gradient descent learning) Netica can be connected to a database or a Microsoft Excel

spreadsheet.

3.11.4. Elvira
Elvira (Elvira 2009) (see Figure 3.12) is a tool for constructing and evaluating Bayesian

networks and influence diagrams. Elvira is the product of a joint program of research and

development by a consortium of Spanish researchers. The Elvira program is written in Java and

can therefore run on different operating systems, including Windows, Linux and Solaris. Figure

3.12 shows the Elvira GUI in edit mode for a simple Bayesian network containing 2 nodes:

Disease and Test. The program is switched to Inference mode, i.e., run mode, by selecting

Inference from the drop down menu on the top toolbar. This causes the Bayesian network to be

compiled (see Figure 3.13) and, in this example, computes the values of the Test node based on

the values of the Disease node. As shown in Figure 3.13, in inference mode Elvira shows the

probability of each value using both a number and a pair of horizontal bars. Elvira offers exact

90

and approximate algorithms for both discrete and continuous variables. Explanation methods

and decision-making algorithms are also available, as is the ability to learn from a database.

Figure 3.12: Elvira’s main screen (Elvira 2009)

Figure 3.13: Elvira in inference mode (Elvira, 2009)

3.11.5. Hugin
Hugin (HUGIN 2009; Jensen 1996) offers both a Graphical User Interface (GUI) and an

Application Programming Interface (API) for constructing and running Bayesian networks. The

Hugin GUI (Graphical User Interface) is a tool for creating and implementing Bayesian

networks and influence diagrams for decision-making. The GUI provides an intuitive interface

to the Hugin decision engine. APIs are available in C, C++ and Java. There is also an ActiveX

server for use with Visual Basic for Applications. Hugin is compatible with the Windows

2000/XP/Vista, MAC, Linux and Solaris operating systems. Hugin can also learn the structure

91

of a Bayesian network from a database of cases. When the Hugin GUI is started the main

window is displayed, as shown in Figure 3.14.

Figure 3.14: Main window of Hugin GUI (Hugin 2009)

As shown in Figure 3.14, the main window contains a toolbar, a node edit pane and a document

pane. The GUI automatically starts up in edit mode, enabling developers to immediately start

constructing their Bayesian networks. Nodes can be added to the network by selecting the

Discrete chance tool from the toolbar and clicking anywhere on the network pane. Links are

added between nodes by selecting the Link tool button from the toolbar and dragging a link

from the influencing node to the influenced node. Figure 3.15 shows a simple example of a

Bayesian network implemented in the Hugin GUI. Note from Figure 3.15, that the nodes Diet

and Exercise both have influence over the Weight Loss node, as indicated by the causal arrows.

Diet and Exercise nodes are therefore influencing nodes, while Weight Loss is the influenced

node.

Figure 3.15: Simple example of a Bayesian network in Hugin

92

The next step in this example is to specify the states for each of the nodes. This requires that we

open the tables pane by clicking on the Show node tables button. To specify the states of Diet,

we must do the following:

• Select the Diet node by left clicking inside the node. This causes the table for Diet to

appear in the tables pane, as shown in Figure 3.16.

• We can now rename the “State 1” and “State 2” states to more meaningful names such

as “Good” and “Bad”.

• We now enter values into the Conditional Probability Table (CPT) for the Diet node.

Note that, by default, the Hugin GUI has given all entries in the CPT a value of 1.

The previous procedure would then be repeated for the Exercise and Weight Loss nodes. To

continue this example we will assign 0.5 to the “Good” and “Bad” states of the Diet node, and

to the “Yes” and “No” states of the Exercise node. We then assign appropriate values to the

states of Weight Loss as illustrated in Figure 3.17. Note from Figure 3.17, that the CPT of

Weight Loss is larger since it accounts for the parent nodes of Diet and Exercise. Pressing the

Switch to Run Mode button on the toolbar causes the network to be compiled. This involves

checking for errors, for example, making sure that the probabilities of each state has a sum of 1.

Figure 3.18 shows the weight loss example in run mode.

 We now add evidence to the network. To do this we can double-click on a state in the

tree structure to assert 100% belief, or we can right click and select, ‘Enter Likelihood …’,

which enables us to enter a value between 0 and 100. To assert the belief that Diet is definitely

good we double-click on the “Good” state causing it to turn red, indicating that evidence has

been added.

Figure 3.16: View of table for Diet node

93

Figure 3.17: CPT of Weight Loss node

Figure 3.18: Example of run mode

Note from Figure 3.19, that a red coloured letter ‘e’ appears beside the Diet node in the

Bayesian network, indicating that evidence has been added to the node.

Figure 3.19: Evidence added to the Diet node

94

As shown in Figure 3.19, when evidence has been added that Diet is “Good”, the probability of

weight loss has risen from 55% to 82.5%. If we now add evidence that we are certain that the

person does regular exercise, the probability of weight loss rises to 100% (see Figure 3.20).

Figure 3.20: Evidence of a good diet and exercise

To continue the example we will remove the evidence from the Exercise node, by right clicking

and selecting ‘Retract Evidence’, and change the evidence on the Diet node to indicate the

certainty that the diet is definitely bad. This, as expected, causes the probability that there will

be weight loss to reduce drastically. This is illustrated in Figure 3.21, where the probability of

weight loss has become 27.5%. If we now assert the belief that there is a bad diet and no

exercise, then the probability of weight loss changes to 0%, as shown in Figure 3.22. Therefore

we are absolutely certain that a bad diet and no exercise will not result in any weight loss.

Thus, the Hugin software tools enable the creation of Bayesian networks to model real

world scenarios. The simple weight loss example discussed here did not involve any decisions,

but it could be easily changed to do so. For example, the Weight Loss node could be replaced

with a Join a Gym or a Make changes to Lifestyle decision node. When our Bayesian network

has been constructed, we can enter evidence into the model and view the results dynamically.

Hugin automatically performs all the mathematical calculations and computes new probabilities

whenever additional information has been added. The Hugin API is implemented in the form of

a library written in the C, C++ and Java programming languages. The API can be used like any

other library and can be linked to applications, enabling them to implement Bayesian decision-

making. The Hugin API encloses a high performance inference engine that, when given

descriptions of causal relationships, can perform fast and accurate reasoning. Full

documentation is provided for the C, C++ and Java versions of the API (Hugin 2009). The

Hugin API allows a flexible approach to error handling. When errors occur, the API informs the

application program and lets it decide on an appropriate action. Thus the developer is given

95

maximum freedom regarding how to deal with errors. Errors are communicated to the user of

the API using the h_error_t enumeration type. All of the API functions return a value.

Functions that don’t return anything, i.e., void return type, have a return type h_status_t. In

such cases, if a zero is returned then the function has run successfully, while a non-zero result

indicates failure, i.e., an error has occurred.

Figure 3.21: Evidence of a bad diet added

Figure 3.22: Evidence of bad diet and no exercise added

Within the Hugin API, all objects are represented as opaque pointers. An opaque pointer points

to data that is not further defined. Opaque pointers enable the references to data to be

manipulated, without requiring knowledge of the structure of the actual data. The Hugin API

enables several data types including integer, string and boolean. Functions exist for creating

new domains, inserting nodes and adding directed edges between nodes. Functions are also

provided for removing parents from a node, replacing one parent with another parent, reversing

a directed edge between two nodes and numerous other operations such as retrieving the current

parents and children of a node and specifying the number of states associated with a node.

96

Hugin can facilitate two types of learning: structural learning and parametric learning.

Structural learning is performed using the PC algorithm and can be accessed via the File menu

and the structural learning icon. The PC (Peter-Clark) algorithm (Spirtes et al. 2000) is an

extension of the IC (Inductive Causation) algorithm (Pearl 2000, p. 50) that tests for conditional

independence, or partial correlation, between variables. Therefore, in structural learning, Hugin

learns the dependencies between variables in the data and, based on these relations, determines

the structure of the Bayesian network. Consider the segment of the data file presented in Figure

3.23.

Figure 3.23: Data file for structural learning (Hugin 2009)

Running the structural learning algorithm on the data file illustrated in Figure 3.23 enables

Hugin to learn the structure of a Bayesian network that represents the cause-effect relationships

embedded in the data, as shown in Figure 3.24.

Figure 3.24: The Bayesian network learned (Hugin 2009)

X,B,D,A,S,L,T
no,no,no,no,no,no,no
yes,yes,yes,no,yes,yes,no
yes,yes,yes,no,yes,yes,no
no,no,yes,no,no,no,no
no,no,no,no,no,no,no
no,yes,yes,no,yes,no,no
no,yes,no,no,N/A,no,no
no,no,no,yes,yes,no,no
no,yes,yes,no,yes,no,no
no,no,no,no,no,no,no
no,yes,no,no,N/A,no,no
no,no,no,no,yes,no,no
no,no,no,no,no,no,no
no,yes,yes,no,yes,no,no
no,no,no,no,no,no,no

97

The previous example discusses only learning the structure of a Bayesian network. To learn the

parameters of a network, or Conditional Probability Tables (CPTs), parametric learning is used.

There are two types of parametric learning supported by Hugin: Adaptive learning and EM

(Estimation-Maximum) learning. Adaptive learning can adapt the CPTs of a Bayesian network

to a new dataset. Experience tables are used to perform adaptation. Experience nodes can be

added to some or all of the discrete chance nodes in a Bayesian network. The adaptation

process involves entering evidence, propagating the evidence through the Bayesian network and

updating (or adapting) the CPTs and experience tables. Following adaptation the experience

nodes can be deleted and the current values of the CPTs will then form the new conditional

distribution probabilities of the nodes in the Bayesian network. EM learning uses data stored in

a database to generate CPTs in a Bayesian network. The EM learning facility is accessed via the

‘EM Learning’ icon. Clicking on this icon opens the EM Learning window shown in Figure

3.25.

Figure 3.25: EM Learning window (Hugin 2009)

Selecting the data file and clicking OK runs the EM algorithm and computes new conditional

distribution probabilities for each of the nodes based on the case set given in the data file.

3.11.6. Additional Bayesian modelling software
The Bayes Net Toolbox (BNT) (Murphy 2009) is an open source Matlab package for

developing probabilistic graphical models for use in statistics, machine learning and

engineering. Although BNT is marketed as an ‘open-source’ package, it can be argued that it is

not truly open-source due to its reliance on Matlab. BNT was initially designed for use with

Bayesian networks (hence the name Bayes Net), but it has since been extended to deal with

influence diagrams. Bayesian networks are represented within BNT as a structure containing

the graph as well as the Conditional Probability Distributions (CPDs). One of the main

advantages of BNT is the wide variety of inference algorithms that it offers. It also offers

98

multiple implementations of the same algorithm, e.g. Matlab and C versions. Bayesian and

constraint-based structure learning are both supported in BNT. Several methods of parameter

learning are also supported, including EM (Estimation-Maximum), and additional methods of

structure and parameter learning can be easily added.

 BUGS (Bayesian inference Using Gibbs Sampling) (BUGS 2009) can perform Bayesian

analysis of complex statistical models using Markov Chain Monte Carlo (MCMC) Methods

(Neal 1993). Since its development began in 1989, several versions of BUGS have been

released. WinBUGS 1.4.1, released in September 2004, aims to make practical MCMC

methods available for use in probabilistic inference. Although WinBUGS does not provide an

API, it is possible to call WinBUGS from other programs. The package allows graphical

representations of Bayesian models through the use of its DoodleBUGS facility. JavaBayes

(CMU 2009) is a set of software tools for creating and manipulating Bayesian networks using

Java. JavaBayes offers a graphical Interface, an inference engine, a collection of parsers and is

freely available under the GNU General Public License. JavaBayes can be run both as an

application and as an applet within a HTML document. A more comprehensive list of available

Bayesian network software can be found in Murphy (2009).

3.11.7. Summary
This chapter has discussed a definition and brief history of Bayesian networks. This was

followed by a discussion on the structure of Bayesian networks and on their ability to perform

intercausal reasoning. An example Bayesian network was presented, before influence diagrams

were discussed. Consideration was then given to the challenges, advantages and limitations of

Bayesian networks. Previous applications of Bayesian networks were reviewed, with particular

focus on their use in multimodal systems. Finally, a review of existing software and tools for

implementing Bayesian networks was presented.

99

Chapter 4 Bayesian Decision-making in Multimodal Fusion and
Synchronisation

Decision-making in multimodal systems is a complex task (Thórisson 2002), involving the

representation and understanding of input and output semantics, distributed processing and

maintenance of dialogue history along with domain-specific information, e.g., the number of

movies currently showing, the coordinates of an office. Decision-making in such systems is

becoming increasingly complex as advances in technology enable a much wider range of

modalities to be captured and generated. The hub of a multimodal distributed platform must be

capable of processing information relating to the various input/output modalities. The hub is

primarily concerned with three key problems: (1) Semantic storage - often using a blackboard,

(2) dialogue management – often involving fusion and synchronisation, and (3) decision-

making. It must also act as a conduit between the various components of the system and the

outside world and it must deploy an appropriate decision-making mechanism that enables the

interaction between the system and user to be as intelligent and natural as possible. Decision-

making must consider the current context and domain, the dialogue history and the beliefs

associated with the various modalities.

This chapter presents a Bayesian approach to multimodal decision-making in a distributed

platform hub. First, a generic architecture for a multimodal platform hub is presented. Then a

discussion on the key problems and the nature of decision-making within multimodal systems is

considered, with decisions categorised into two areas: (1) synchronisation of multimodal data

and (2) multimodal data fusion. The problem of synchronisation is only partially addressed. The

focus here is on decision-making with respect to multimodal semantic fusion. Semantic

representation and ambiguity resolution are also considered in the context of decision-making.

Features of a multimodal system that aid decision-making are discussed including distributed

processing, dialogue history, domain-specific information and learning. A list of necessary and

sufficient criteria required for a multimodal distributed platform hub is then presented. Finally,

the rationale for a Bayesian approach to multimodal decision-making is proposed with a

discussion on its advantages.

100

4.1. Generic architecture of a multimodal distributed platform hub
A typical architecture of a multimodal distributed platform hub is presented in Figure 4.1. The

key functions, dialogue management, semantic representation and storage, decision-making and

domain knowledge, of the platform hub are represented by separate modules in the conceptual

architecture in Figure 4.1.

Figure 4.1: Generic architecture of a multimodal distributed platform hub

The Dialogue Management module of Figure 4.1 is responsible for coordinating the dialogue

between the user and the multimodal system, and the communication between its internal

modules. The Decision-making module is a crucial component of a multimodal system. The

decision-making mechanism would typically use dialogue history and domain-specific

information to make intelligent decisions that support multimodal interaction with the user.

Examples of domain-specific information are the titles of movies currently showing in a

cinema, the location and occupant of an office and the number of emergency exits in an

auditorium. Examples of context information are the current speaker in a multimodal dialogue,

the fact that a car is moving or stationary, and the current intentional state of a user. Multimodal

semantics is usually stored in a shared space and a full dialogue history is maintained in this

shared space to support future decision-making during a multimodal dialogue. Maintenance of

dialogue history is the primary function of the Semantic Representation and Storage (SRS)

module depicted in Figure 4.1. The SRS module is usually implemented in the form of a

blackboard, as discussed in Chapter 2, Section 2.3. Multimodal semantics stored in the SRS

module is processed by input and output processing modules such as NLP, eye-gaze tracking

and image processing modules. Contextual knowledge is also stored in the SRS module.

Information on the current context is used in conjunction with domain-specific information

from the Domain Knowledge module to support intelligent multimodal decision-making. The

generic architecture depicted in Figure 4.1 could take a number of alternative forms. For

101

example, since decision-making is normally the responsibility of the Dialogue Management

module, the Decision-making module may not be explicitly represented. It is also possible that

the functionality of the distributed platform hub may be spread across different machines.

Whatever the exact setup of the hub, it will always need to have mechanisms in place to support

the key functionalities of dialogue management, domain knowledge retention and retrieval,

semantic representation and storage, and decision-making.

4.2. Decision-making in multimodal systems
Although much has been achieved in the development of intelligent multimodal systems in

recent years, many challenges still remain. Whilst recent research has resulted in systems

capable of multimodal communication, this communication is very much on the computer’s

terms. The user must learn to use the system and the communication is constrained to suit the

application. If we are to achieve truly human-like communication with computers, then the user

must be able to dictate the terms of communication, i.e., the system must learn to meet the

needs of the user instead of the user learning to use the system. In order to realise such systems

we must investigate new, more intelligent, methods of representing multimodal input/output,

communication and decision-making in multimodal systems.

Humans use a vast array of modalities to interact with each other including speech,

gesture, facial expression, eye-gaze and touch. In order to achieve truly natural human-

computer interaction, multimodal systems must be able to process these modalities in an

intelligent and complementary manner. Such systems should be flexible, enabling the user to

have appropriate control over the interaction modality. They must adapt to the changing needs

of user interaction, switching from one modality to another as required. Communication must

not be restricted to a particular modality, but should be facilitated using a variety of interaction

modalities. Multimodal systems must also facilitate communication using a combination of

modalities in parallel, e.g., speech and gesture, speech and gaze.

4.3. Semantic representation and understanding
Various approaches to semantic representation were discussed in Chapter 2, Section 2.2.

Representing and understanding the semantics of multimodal input and output is an important

task that must be performed in multimodal systems. Whilst the method of representing and

understanding semantic content varies from system to system, the basic principle of

representing information, using either frames (Minsky 1975) or XML, is prevalent within the

majority of approaches. The marked-up semantics contains contextual information that is

crucial to the decision-making process such as the current context, the current speaker, the

module that produced the semantics, the module that should receive the semantics, the time the

102

input was received, the time the output semantics was generated, the time at which the

input/output becomes invalid (time to live), the confidence relating to multimodal recognition

and the confidence associated with a decision or conclusion.

4.3.1. Frame-based semantic representation
An example semantic representation frame of multimodal input is shown in Figure 4.2. The

example semantics given in Figure 4.2 contains frame-based semantic information sent from a

posture recogniser to a dialogue manager of an intelligent in-car information presentation

system. The first slot in the POSTURE frame is called CONTEXT:. Context information is

important in enabling multimodal systems to behave differently depending on the current

context. In this example, the value of the CONTEXT: slot is CarMoving and this information

can be used by the in-car information presentation system to adapt its multimodal output

accordingly, e.g., audio output only instead of an animated agent or graphical display.

Figure 4.2: Example semantic representation of multimodal input

The second and third slots of the frame in Figure 4.2, FROM: and TO:, contain the module that

produce the semantics and the module(s) which receive it. In this case, the semantics is

produced by the PostureRecogniser module and is being sent to the DialogueManager module.

The fourth slot of the example frame is INPUT TYPE: which in this case is simply posture. The

INTENTION: slot is used here to indicate the purpose of the recognised input, i.e., to warn that

the driver of the vehicle looks tired or angry. The sixth slot of the frame in Figure 4.2 is called

HYPOTHESES: which contains one or more hypothesis about the mental state of the driver. In

this case, there are two hypotheses: (1) that the driver is tired and (2) that the driver is angry.

Note that each hypothesis slot also contains a CONFIDENCE: slot that identifies the

confidence associated with each hypothesis. The TIMESTAMP: slot contains the time at which

[POSTURE
CONTEXT: CarMoving
FROM: PostureRecogniser
TO: DialogueManager
INPUT TYPE: posture
INTENTION: warning
HYPOTHESES [
HYPOTHESIS 1 [
 POSTURE: tired
 CONFIDENCE: 56.04%
]
HYPOTHESIS 2 [
 POSTURE: angry
 CONFIDENCE: 43.96%
]
]
TIMESTAMP: 011237432
TIMETOLIVE: 011239432
]

103

the input was detected. In this example, the format of the timestamp is a continuous string

containing hour, minute, second, thousandth of a second, i.e., 011237432 represents 1:12 am

and 37.432 seconds. Note that any format of timestamp can be used, provided it is

understandable by the system and of a sufficient level of accuracy. Some applications may not

need to be accurate to one thousandth of a second and, in these cases, a simpler timestamp

would suffice. The final slot in the example frame of Figure 4.2 is TIMETOLIVE: and this

contains the time at which the information contained in the frame becomes invalid. In this

example, the input is valid for 2 seconds, after which time it may be discarded by the system.

Whilst much work is focused on representing the semantic content at the input of a

multimodal system, representing the semantics of output is equally important. As observed by

Wahlster (2003, p. 12), for a system to understand the semantics of its own output there should

be, “no presentation without representation”. Adherence to this principle is critical if a

multimodal system is to handle commands such as, “show me a list of similar recipes to this

one”, “can you compare the features of this mobile phone to the previous two that I looked at?”,

and, “can I book two tickets to see the second movie you showed me?”. These are examples of

only a few requests that would become impossible to process if the system does not understand

and keep a record of previous input/output.

4.3.2. XML-based semantic representation
Figure 4.3 shows an example semantic representation of multimodal output marked up in XML.

Figure 4.3: Example semantics for multimodal output presentation

 <output>
 <id>4454-1211-8754-3342</id>
 <from>DialogueManager</from>
 <to>PresentationPlanner</to>
 <text>The following movies are now showing:</te xt>
 <list>
 <item>

<title>The Whole Nine Yards</title>
<no>1</no>

 </item>
 <item>
 <title>The Green Mile</title>
 <no>2</no>
 </item>
 <item>

<title>The Life of David Gale</title>
 <no>3</no>
 </item>
 </list>
 <speech>Which movie would you like to reserve?< /speech>
 <timestamp>153421569</timestamp>
 </output>

104

Figure 4.3 contains a segment of XML-based semantic representation sent from the dialogue

manager to the presentation planning module of a cinema ticket reservation system. As with the

example frame in Figure 4.2, the semantics encodes the sending and receiving modules, only

this time using the <from> and <to> XML tags. Additionally, in this example an <id> tag is

used to delimit an identification number for the segment. The semantic representation contains

information relating to two output modalities: text and speech. The <text> tag contains the text

to be presented on screen. The <list> tag is used to identify the items to appear in a list on the

display. Each item in the list is delimited by the <item> tag and within this tag are the <title>

and <no> tags, which contain the title of the film and its order in the presented list. The

<speech> tag contains text that the presentation planner can forward to a text-to-speech module.

In this example, not all the information needed by the presentation planning module is

contained in the semantic representation. For example, there is no information on the font size

of the text, the colour of the background screen or the exact positioning of the films list.

Obviously this information is important but, in this example, it is being obtained from another

source by the PresentationPlanner. Semantic representations should only contain information

that is strictly necessary to reduce the processing time and effort in the sending and receiving

module and to minimise the strain on system resources. If information is already available in,

for example, a domain model or semantic storage then it is not necessary to include this

information in the semantics.

4.4. Multimodal data fusion
Multimodal data fusion requires several problems to be addressed including establishing criteria

for fusing the information chunks, determining the abstraction level at which the fusion will be

done and what to do if there is contradiction between the different information chunks. Often

temporal information (timestamps) becomes important in the fusion process, e.g., to fuse the

speech segment, “whose office is this?”, with the corresponding deictic gesture. As an example,

consider the following dialogue between a user and an intelligent agent:

1 U: Whose office is this [�] 2?

2 S: That is Paul’s office.

The semantics of the speech input of turn 1 can be encoded in the segment of XML mark-up

shown in Figure 4.4. The <speech> tag of the semantic representation shown in Figure 4.4 is

used to delimit four tags containing information on the speech input: (1) the <stype> tag

contains the speech type query-partial which tells the multimodal system that the speech is one

2 [�] is used here to indicate a deictic gesture.

105

part of a multimodal query, (2) <category> contains the text who which gives more

information on the meaning of the speech input, (3) the <subject> tag identifies the subject of

the query and (4) <stimestamp> contains a timestamp for the speech segment.

Figure 4.4: XML semantic representation of “Whose office is this?”

The corresponding gesture input of turn 1 can be encoded, this time using a frame-based

approach, as presented in Figure 4.5.

Figure 4.5: Frame-based semantic representation of deictic gesture

Here, the information on the gesture input is marked up in the GTYPE:, COORDINATES: and

GTIMESTAMP: slots. The timestamps are important so that the pointing gesture can be fused

with the corresponding speech input. The value of GTIMESTAMP: would be particularly

important if a gesture recognition module recognises another deictic gesture input several

milliseconds after the first deictic gesture. The temporal information can then be used to discard

the least likely gesture input or to assign probabilities to each of the two possible gesture

hypotheses.

 It is important to appreciate that multimodal input processing modules, e.g., for

speech/images, may take different amounts of time to analyse various input data. This can mean

that the marked up information will arrive in the wrong order. It is therefore common that

timestamps are assigned to the individual multimodal information chunks. These timestamps

can then be used to determine the exact order of several potentially corresponding inputs, to

decide whether a separate information chunk corresponds to the current or different input and to

discard input not relevant to the current situation, e.g., a third pointing gesture with the speech

input, “check room availability and pricing at these two hotels”. As an example, consider the

XML semantic representation segments shown in Figure 4.6. The marked-up speech segment of

Figure 4.6 (a) has been generated by a speech understanding component after analysing the

utterance, “Please check room availability at these two hotels”. The gesture recogniser has

recognised three deictic gestures in close proximity to the speech input and the semantics of

<speech>
<stype>query-partial</stype>
<category>who</category>
<subject>office</subject>
<stimestamp>10345</stimestamp>
</speech>

[GESTURE

GTYPE: pointing

COORDINATES: 1155, 2234

GTIMESTAMP: 10312]

106

each of these is shown in Figure 4.6 (b) - (d) respectively. Clearly, one of these deictic gestures

is not related to the spoken utterance represented in Figure 4.6 (a) and may be unintentional or

related to a later utterance. In this example, the deictic gesture represented in Figure 4.6 (d) may

be discarded since it was detected over four seconds after the deictic gesture marked-up in

Figure 4.6 (c). The deictic gestures represented by Figure 4.6 (b) and (c) are both detected

within 2 seconds of the speech input and are therefore deemed more likely to have been related

to the speech utterance. The system could also use domain-specific information to discard the

erroneous gesture if, for example, there is no hotel at or near the coordinates given in the

semantics.

Figure 4.6: Semantic representations for ‘hotel availability’ example

As discussed in Chapter 2, Section 2.1, decisions on the synchronisation of modalities are often

required at the output of a multimodal system where, for example, the system may need to

synchronise the movement of a pointing laser with corresponding speech output. A decision

may also need to be made on what is the best modality to use at the output, i.e., language or

vision? For example, the directions from one office to another may be best presented visually

using a laser, whilst a response to a user’s query may be better presented using speech output.

Another example could be when the driver of a car asks an in-car intelligent information system

for directions to the nearest petrol station. Here the system could respond by presenting a map

to the driver or by dictating directions using speech output. The system response in this case

would depend on whether or not the car was moving. That is, if the car is stopped in a lay-by

the response could be given via the map. If however the car is moving, i.e., the driver’s eyes are

pre-occupied on the road, then the system would respond using speech output.

<speech>
 <type>booking-query</type>
 <category>hotel</category>

<subject>availability</subject>
 <noOfHotels>2</noOfHotels>
 <timestamp>101453232</timestamp>
</speech>

(a)

<gesture>
 <type>deictic</type>
 <coordinates>
 <x>700</x>
 <y>893</y>
 </coordinates>
 <timestamp>101453231</timestamp>
</gesture>

(b)

<gesture>
 <type>deictic</type>
 <coordinates>
 <x>1232</x>
 <y>543</y>
 </coordinates>
 <timestamp>101454561</timestamp>
</gesture>

(c)

<gesture>
 <type>deictic</type>
 <coordinates>
 <x>1454</x>
 <y>678</y>
 </coordinates>
 <timestamp>101458683</timestamp>
</gesture>

(d)

107

Multimodal semantic fusion, as discussed in Chapter 2, Section 2.1, can be performed at

a number of levels. Whilst the level of fusion that is necessary depends on the application,

fusion is a key problem that must be addressed in multimodal decision-making. It is important

that the correct level of fusion is chosen for a particular application. It would be pointless

performing low level fusion of signals if this is not a requirement of the system. For example, if

an intelligent space recognises simple commands such as, “turn the heating on”, “turn off the

television”, “draw the curtains” and “dim the lights”, a low level analysis of the intonation of

the speaker’s voice is not necessary. It would be equally unhelpful if high level semantic fusion

was being applied when a high level interpretation is not important to the multimodal system.

For, example, a high level interpretation of a user’s facial expressions and body language is not

necessary if the system only needs to know the user’s head orientation and gaze direction

within an intelligent space. It is often the case that best results are achieved when a combination

of low level (signal) and high level (semantic) fusion is performed. That is, the first stage of the

fusion process combines low level multimodal events such as speech and lip movement and the

second stage of the fusion process extracts the high level meaning of the multimodal

combinations.

4.5. Multimodal ambiguity resolution
Ambiguity does not necessarily always occur in multimodal systems but, when it does, it

presents a difficult challenge that needs to be addressed. Where ambiguity occurs in one input

modality, e.g. speech, information from other input modalities, e.g., gesture, eye-gaze, facial

expression and touch, may be used to resolve the ambiguity. An example of ambiguity at the

input could be when a user’s deictic gesture is accidentally logged as input. Consider the

following example dialogue:

1 User: Show me the route from this office [�] to that [�] office.

2 User: [�]

3 System: This is the route from Sheila’s office to Tom’s office.

In this example, the user has pointed three times but has only referred to two offices. The third

deictic gesture of turn 2 was unintentional and has been detected as input by the multimodal

system. Here, synchronisation information in the semantic representation, e.g., timestamps, as

discussed in Section 2.2, can be used to determine which two offices the user is referring to.

The third deictic gesture can then be discarded if it has occurred considerably later than the

second referent in the user’s utterance. Another example of input ambiguity is in an industrial

environment where a control technician points at two computer consoles saying, “copy all files

from the ‘process control’ folder of this computer to a new folder called ‘check data’ on that

108

computer.” In this example, synchronisation of the visual and audio input is needed to

determine exactly which two computers the control technician is referring to. Ambiguity could

also occur in an intelligent space or smart room when a person says, “turn that on”. If there is

more than one device in the room that can be turned on, ambiguity could arise in determining

which device is the referent. Here, recognition of an accompanying deictic gesture could be

used to determine which device the user is referring to. If no gesture input is received, then the

system may need to ask the user to clarify which device he/she wants to turn on. Only three

examples of ambiguity were given in this section, however there are many ways in which

ambiguity can occur during decision-making in multimodal systems. Resolving ambiguity is

thus a key problem for the decision-making component of a multimodal platform hub.

4.6. Uncertainty
Representing and dealing with uncertainty, as discussed in Chapter 2, Section 2.5.1, is a key

problem in multimodal systems. Everyday decisions are seldom taken with 100% certainty that

they are correct. During the course of a dialogue humans continuously make judgements about

the mental state of other dialogue participants and anticipate the future actions of others.

Decisions on when to speak, when to listen and where to look are taken all the time. Such

decisions are never taken with absolute certainty. When humans make assumptions about the

mental state of another person they adapt their dialogue strategy and plan future actions based

on these beliefs. Additionally, when new information becomes available, people can

dynamically adapt their dialogue strategy appropriately.

Given the uncertainty that frequently exists in multimodal dialogues between human

users, it would be naive to assume that a multimodal system could take dialogue management

decisions with absolute certainty. Regardless of how many multimodal inputs are considered, or

how these inputs are weighted and analysed, there will always be a degree of uncertainty.

Beliefs held by a multimodal system will often have confidence scores associated with them,

which are subject to change if new evidence becomes available. The ability of Bayesian

networks to perform intercausal reasoning enables the strengths of the beliefs in competing

hypotheses to be reduced when new evidence is observed supporting a particular hypothesis.

This is a desirable property for the decision-making component of a multimodal system, since it

makes decision-making easier through the reduction of uncertainty. As an example, assume that

the beliefs listed in Table 4.1 are held by an intelligent travel agent system and that, at this

juncture in the multimodal dialogue, the intelligent travel agent system needs to narrow down

the possible holiday destinations to recommend to the user. Also assume that the system can

only select a certain category, e.g., hot destinations, if the confidence associated with the

109

corresponding belief in Table 4.1 is greater than 65% and at least 20% greater than its

competing hypothesis.

Hypotheses Confidence
1. User wants to book a holiday for two people 100%
2. User wants a hot destination 53%
3. Sunshine or heat is not important 47%

Table 4.1: Example hypotheses held by an ‘intelligent travel agent’ system

Next assume that input from the speech recognition, facial expression and gaze tracking

modules causes the confidence associated with hypothesis 2 (user wants a hot destination) to

rise from 53% to 66%. The system is still not in a position to decide to show holidays from the

hot destination category since the belief in hypothesis 2 is not 20% greater than the competing

hypothesis 3 (sunshine or heat is not important). However, an intelligent system should be able

to determine that, if there is increased evidence that a user prefers a hot destination, then it is

less likely that sunshine or heat is not important. It would be helpful if there was some

mechanism that the intelligent travel agent system could use to lower the confidences of

competing hypotheses when the belief in a certain hypothesis increases and vice versa. This

exact capability is an inherent property of Bayesian networks, i.e., intercausal reasoning. If

Bayesian networks were applied to decision-making in the intelligent travel agent system,

obtaining evidence on one hypothesis would explain away competing hypotheses.

To conclude this example, assume now that Bayesian networks are being used in the

decision-making component of the intelligent travel agent system. By performing intercausal

reasoning, when the belief in hypothesis 2 is increased from 53% to 66%, the belief in

hypothesis 3 is decreased from 47% to 34%. The system is now in a position to display more

information on hot destinations, since the belief in hypothesis 2 is at least 20% greater than the

belief in hypothesis 3. This is just one example of how the use of Bayesian networks and, in

particular, their ability to perform intercausal reasoning has reduced the uncertainty in decision-

making within a multimodal system. The probabilistic nature of Bayesian networks enable them

to easily represent and dynamically adapt the beliefs associated with the semantics of

multimodal data.

4.7. Missing data
Missing data is also a potential cause of ambiguity in multimodal decision-making. The

decision-making mechanism must therefore be able to handle missing information. For

example, if a multimodal system allows the user to move a file to the Recycle Bin using speech,

hand gestures, facial expressions, touch and mouse input, then the user should be able to do this

110

using just one modality, a combination of modalities, or all of the available modalities. The

absence of one or more of these modalities should not create a problem. Equally the presence of

all of these modalities should not make the decision more difficult. The aim in multimodal

decision-making is always to reduce ambiguity using different modalities. Careful decision-

making design is needed to ensure that ambiguity is reduced, not increased, by the presence of

multiple modalities.

As an analogy, consider an investor who seeks financial advice as to whether or not

he/she should buy shares in a company in times of economic uncertainty. If the investor goes to

just one financial advisor, then the decision may be easier to make. However, the decision being

easier is no guarantee that the decision will be correct. Conversely, if the investor goes to five

different financial advisors with each making recommendations with varying degrees of

certainty, the decision becomes more complex. It is arguable, however, that the latter option is

better since the multiple inputs to the decision allow for a more balanced, intelligent decision to

be made. The same is true for decision-making in multimodal systems. The presence of

multiple modalities can make the decision more complex but, by considering all of the available

modalities, the system can come to a more intelligent conclusion. In order to ensure that

ambiguity is reduced, and not increased, the decision-making mechanism must be able to assign

appropriate weighting to the relevance of each modality and dynamically adjust the weighting

at run-time. Consider an intelligent car safety system that monitors the posture, head position,

eye-gaze and facial expression of a driver with the aim of warning the driver should he/she

show signs of tiredness. Table 4.2 presents some of the beliefs held by the system:

Hypotheses Confidence
1. Driver is tired based on posture recognition 23%
2. Driver is not tired based on posture recognition 77%
3. Driver is tired based on head tracking 71%
4. Driver is not tired based on head tracking 29%
5. Driver is tired based on eye-gaze tracking 67%
6. Driver is not tired based on eye-gaze tracking 33%
7. Driver is tired based on facial expression 12%
8. Driver is not tired based on facial expression 88%

Table 4.2: Example hypotheses held by an ‘intelligent car safety’ system

Here, if we are to assume that a hypothesis with a confidence greater than 65% is deemed true,

the following four hypotheses are all true:

• Driver is not tired based on posture recognition.

• Driver is tired based on head tracking.

• Driver is tired based on eye-gaze tracking.

111

• Driver is not tired based on facial expression.

We now have two overall competing beliefs held by the system: (1) the driver is tired and (2)

the driver is not tired. The intelligent car safety system now needs some way of deciding

whether or not the driver is actually tired. What is necessary in this example is some means of

weighting the significance of the posture, head, eye-gaze and face recognition modules. This

can easily be done using a conditional probability table (CPT) of a Bayesian network. The

overall belief in a driver being tired or not could be represented by a single node in the network,

e.g. called DriverTired, that is influenced by Posture, Head, Eye-gaze and FacialExpression

nodes. The CPT of the DriverTired node would appropriately weight the inputs to ensure that

an intelligent conclusion could be reached as to the tiredness of the driver.

 To continue this example further, let’s assume that there is no input to the

FacialExpression node because glare from the sun has distorted the system’s recognition of the

driver’s facial expressions. Now assume that the intelligent car safety system implements a

rigid rule-based method of decision-making and uses the following rule to decide if the driver is

tired:

IF the belief that the driver is tired based on posture recognition is greater than 55%

AND the belief that the driver is tired based on head tracking is greater than 55%

AND the belief that the driver is tired based on eye-gaze tracking is greater than 50%

AND the belief that the driver is tired based on facial expression is greater than 70%

THEN the driver is tired

Here, the absence of the facial expression input will mean that the decision on the driver’s

tiredness cannot be made. Of course, the previous rule could easily be adapted to make the

facial expression input optional but this would reduce the intelligence of the system. The

inclusion of the semantics of facial expressions in the rule suggests it is important and therefore

excluding it from the decision, under any circumstances, is not ideal and would only serve to

reduce the accuracy of the system. A better approach would be to implement a Bayesian

network that considers all available inputs at all times in the decision-making process and,

where evidence is observed to support or disconfirm a particular hypothesis, adjust the beliefs

of that hypothesis accordingly, i.e., update the values of the states on that node. Where no

evidence is observed to support a particular hypothesis, as is the case in the example above, the

system does not update the belief in that hypothesis but continues to recognise its, albeit

limited, influence within the Bayesian network and on the decision as to the tiredness of the

driver. Missing data can be handled by a multimodal system using Bayesian networks for

decision-making. Where evidence is observed on the node of a Bayesian network, all nodes in

112

the network are updated. It is not an essential requirement that all, or indeed any, nodes of a

Bayesian network are updated before a conclusion can be reached.

4.8. Aids to decision-making in multimodal systems
This section considers features of a multimodal system that aid the decision-making process.

This includes a discussion on distributed processing, dialogue history, context knowledge,

domain information and learning.

4.8.1. Distributed processing
Decision-making in any situation often requires the decision-maker to process information from

a variety of sources arriving at different times. This is particularly true in an intelligent

multimodal system which needs to process information from various input modalities, e.g.,

speech recognition, face recognition, gesture recognition and haptic modules. The multimodal

information from the different sources will invariably arrive at different times, i.e., haptic input

via a touch-screen will arrive before speech input. It is therefore important that the multimodal

system has mechanisms in place to deal with distributed processing. For example, consider a

cinema ticket reservation system. Suppose that the system enables user input using speech, eye-

gaze and mouse input. The system uses the eye-gaze input to aid decision-making where mouse

input is not detected and ambiguity or uncertainty arises in the understanding of the speech

input. Assume that the speech input is processed in a speech recognition module running on a

medium specification Linux machine, whilst a much faster, more powerful Windows computer

is used to host the gaze-tracking module. The processing of mouse input, where present, is

conducted on the local Windows PC, which is of relatively low specification in comparison to

the other two computers. The remaining modules of the system are also running on the local

PC. Hence, three separate computers, all with different hardware specifications, are used to

implement the cinema ticket reservation system.

In this example, both Windows PCs are present in the same building, whilst the Linux

machine is located in another building. It should be obvious to the reader why the ability to

perform distributed processing is an essential requirement of the cinema ticket reservation

system. Because the system is distributed across three machines and two buildings, there needs

to be some mechanism in place to process the inputs from both the speech recognition and

gaze-tracking modules as they arrive in the main application on the local PC. The distributed

nature of the system discussed in this example would also leave timestamps, as discussed in

Section 2.2, important to the correct interpretation of the different inputs. The varying

processing speeds of the three computers and the time taken to process the different multimodal

inputs will mean that the inputs from the recognition modules will all arrive at different times

113

and not necessarily in the correct order. It would therefore be important to know the exact time

that each input was detected. It should also be noted that distributed processing can be

advantageous, and often a requirement, for a multimodal system with its modules running on a

single machine.

 To continue this example further, assume that during the development stage the cinema

ticket reservation system is distributed across seven computers, again all with different

hardware specifications. There are now three speech recognition modules and three gaze-

tracking modules and each of these recognition modules is running on a separate machine. The

remaining modules of the system are located on the local PC. The three speech recognition

modules are each running a different speech recognition algorithm and are being monitored for

speed and accuracy. The speed and accuracy of the gaze-tracking modules are also being

monitored. The purpose of the current phase of development is to determine which speech

recognition and gaze-tracking modules to implement in the final version of the cinema ticket

reservation system. Here, not only temporal information, but also the source of the information

and the confidence associated with the recognition results needs to be captured in order that the

fastest and most accurate recognition modules can be identified. All this information can be

contained in the semantic representation sent from the recognition modules. A possible frame-

based semantic representation for the speech recognition information is shown in Figure 4.7,

whilst Figure 4.8 gives an XML segment that represents the semantics of the gaze input.

Figure 4.7: Frame-based semantic representation of speech recognition result

Figure 4.8: XML-based semantic representation of gaze input semantics

[SPEECH
FROM: SpeechRecogniser2
INPUT TYPE: speech
INTENTION: film_selection
HYPOTHESIS1 [
 SPEECH: “the first film”
 CONFIDENCE: 76.76%
]
HYPOTHESIS2 [
 SPEECH: “the third film”
 CONFIDENCE: 23.24%
]
TIMESTAMP: 0112374323
]

<eye-gaze>
 <from>GazeRecogniser3</from>
 <inputType>film_selection</inputType>
 <coordinates>1234,900 </coordinates>
 <timestamp>0112301234</timestamp>
</eye-gaze>

114

The semantic frame in Figure 4.7 has two slots, HYPOTHESIS1: and HYPOTHESIS2:, that

represent the beliefs that the user uttered, “the first film”, and, “the third film”, respectively.

Since the gaze of the user will continuously change as he/she is speaking, the exact timing of

the eye-gaze input in relation to the speech input is crucial in this example. Another piece of

information that may be beneficial is the amount of time the user’s gaze is fixed on a particular

part of the screen. This information could be contained in a <duration> tag and could be used

to identify, and where appropriate discard, short and long eye-gaze fixations. The coordinates of

the corresponding eye-gaze input are also marked up in the XML segment in Figure 4.8. For the

purposes of identifying the most effective speech recognition and eye-gaze modules, a FROM:

slot is included in Figure 4.7 and a <from> tag is contained in the semantics in Figure 4.8.

4.8.2. Dialogue history, context and domain information
During the course of a dialogue, humans automatically keep track of what they and the other

dialogue participants say and do. They then use this information to dictate their future speech,

actions and dialogue acts. It is also important that context-specific information is maintained by

the multimodal system. The system needs to have the capability of behaving differently

depending on the current context. For example, an in-car multimodal presentation system may

need to switch from video to text output if bandwidth becomes limited and the car is not

moving or the system may opt to use speech output only when a car is moving. Sometimes a

change in context can reduce or increase the significance of a multimodal input. For example,

if the environment suddenly becomes noisy, speech input may be less important and its

accompanying visual input, e.g. lip movement, may become more important. Depending on the

complexity of the decision-making domain a multimodal system may need to handle one, some

or many different contexts. For example, numerous different contexts need to be considered to

handle turn-taking between an intelligent agent and a human user (e.g. GiveTurn, TakeTurn,

Speaking, Listening), whilst only two contexts might suffice in an intelligent in-car information

presentation system (e.g. CarMoving, CarStopped). In order to perform intelligent context-

aware decision-making, multimodal systems need to constantly monitor the current context and

dynamically adapt its behaviour based on the changing context.

4.8.3. Learning
The intelligence of a multimodal system can be greatly enhanced if it has the ability to learn

from past experience. It is impossible for humans to prepare themselves for every eventuality in

real life situations and dialogues. It is equally impossible for decision engineers to design a

dialogue strategy that will be prepared for every possible combination of multimodal input.

Whilst people cannot prepare themselves for every situation they will face, they do have the

115

ability to learn from past experiences so that they may know what to do if they encounter a

similar situation in the future. Therefore, whilst the ability to learn from data and past

experience is not an essential requirement of a multimodal system it does allow for more

intelligent human-like decision-making. Bayesian networks, as discussed in Chapter 3, Section

3.11.5, can support both structural learning and parametric learning. Structural learning learns

dependencies between variables in a set of data. This can be useful if data has been collected for

a particular application domain which contains typical outputs, decisions or conclusions for

certain combination of inputs or evidence. As an example, suppose 100 users are monitored

interacting with a multimodal system in a Wizard-of-Oz3 experiment and that the data is

collected and stored in a case file. The case file contains the states of five inputs (A, B, C, D,

and E) and the corresponding conclusions (X, Y and Z). Assume that the inputs A-E are captured

by the following multimodal processing modules:

• A - Speech recognition module.

• B - Lip reading module.

• C - Facial expression recognition module that tries to ascertain users’ intention based on

their facial expressions.

• D - eye-gaze tracking module that detects where the user what part of a computer screen

the user is looking at.

• E - Posture recogniser that monitors posture and body language of the user and makes

judgments on the user’s emotional state.

X, Y, and Z in this example are variable each with a number of states that represent conclusions

on the intentional state of the user. Now, suppose we have a data file populated during the

Wizard-of-Oz experiment, a segment of which is shown in Figure 4.9. Structural learning can

take the data file shown in Figure 4.9 and learn the structure of a Bayesian network that

represents the causal dependencies implicit in the data. Parametric learning is used to learn the

parameters, or Conditional Probability Tables (CPTs), of a Bayesian network. This can involve

the adaptation of an existing Bayesian network to a new data set (adaptive learning) or

generating the CPTs of a Bayesian network from a database, i.e., Estimation-Maximum (EM)

learning.

3 A Wizard-of-Oz experiment is one where a person, i.e., the wizard, simulates the behaviour of an intelligent
system.

116

Figure 4.9: Segment of data file for structural learning of a Bayesian network

4.9. Key example problems in multimodal decision-making
This section discusses multimodal processing example problems that highlight the benefits of a

Bayesian approach to decision-making within multimodal systems.

4.9.1. Anaphora resolution
Consider the following dialogue:

1 A: Can you tell me how to get to Mary's office?

2 B: Yes, go down that [�] corridor and take the 3rd door on the left.

3 A: And how do I get from her office to the school office?

4 B: The school office is directly opposite Mary's office. The one with the red door. But it is

currently closed for lunch and will not be open until 2:00pm.

Here, because B has kept a record of dialogue history, he/she knows that ‘her’ in turn 3 refers to

Mary. This kind of decision-making is easy for humans but, in order to replicate this in a

computer, a multimodal system needs mechanisms in place to keep track of dialogue history. If

we were to replace B in the previous dialogue with an intelligent agent, we would need to

ensure that a dialogue history is maintained that keeps track of the name and gender of the last

person mentioned. We would also need domain-specific information such as the current

position of A, the location of Mary's office and the school office, the colour of the school office

A, B, C, D, E, X, Y, Z

TRUE, FALSE, command, A2, neutral, TRUE, FALSE, FAL SE

TRUE, TRUE, question, B3, happy, FALSE, FALSE, TRUE

FALSE, TRUE, comment, C24, happy, FALSE, TRUE, TRUE

TRUE, FALSE, comment, A18, angry, TRUE, TRUE, FALSE

TRUE, FALSE, question, D11, sad, TRUE, FALSE, FALSE

FALSE, TRUE, question, A17, neutral, TRUE, TRUE, TR UE

FALSE, TRUE, undefined, A5, neutral, TRUE, FALSE, F ALSE

TRUE, FALSE, comment, G9, happy, FALSE, FALSE, FALS E

TRUE, TRUE, comment, L3, frustrated, TRUE, FALSE, T RUE

FALSE, TRUE, question, L6, neutral, TRUE, FALSE, FA LSE

TRUE, FALSE, undefined, L1, happy, FALSE, TRUE, TRU E

FALSE, FALSE, undefined, X23, happy, FALSE, FALSE, FALSE

TRUE, TRUE, comment, Y24, neutral, TRUE, FALSE, FAL SE

FALSE, FALSE, question, X23, neutral, FALSE, TRUE, TRUE

TRUE, TRUE, question, C24, frustrated, FALSE, FALSE , FALSE

TRUE, FALSE, undefined, S21, happy, TRUE, FALSE, FA LSE

FALSE, TRUE, comment, Z23, frustrated, TRUE, TRUE, TRUE

117

door, the current time and the opening hours of the school office. This simple example gives an

indication of the amount of domain-specific information and dialogue history that must be

maintained to support decision-making in a multimodal system. The multimodal dialogue

history needs to be stored as fused semantic representations, often on a blackboard or

whiteboard, within the multimodal system. As the complexity and scope of the dialogue

increases, so too does the amount of dialogue information that must be maintained.

4.9.2. Domain knowledge awareness
Often partial frames or information chunks are encoded by a multimodal system during the

course of a dialogue. Consider an intelligent bus ticket reservation system. Assume that the

semantics of Figure 4.10 is created in response to the following utterance:

1 User: I want to book a bus from Dromore to Dublin on Sunday 21st of September.

Figure 4.10: Partial frame for intelligent bus ticket reservation system

Note that the frame in Figure 4.10 is only partially complete. The TIME: slot is empty since the

user did not mention a departure time. Also assume that, after querying the domain model to

check the correctness of the recognised source and departure locations, the system realises that

there are several different places called Dromore. Turns 2 to 4 below are then necessary to

resolve this ambiguity by asking the user which Dromore he/she is referring to and to confirm

the departure time.

2 System: Which Dromore are you departing from?

3 User: Dromore, County Tyrone.

4 System: And, at what time would you like to leave?

5 User: The first bus in the morning.

After turn 3 the semantics of the input will be interpreted by the system and the domain model

will be queried to check that there is a place called Dromore in County Tyrone that is serviced

[BookingPartial
FROM: SpeechRecogniser
TO: DialogueManager
INPUT TYPE: Speech
INTENTION: BookingRequest
DEPART: Dromore
DESTINATION: Dublin
DATE: 21/09/08
TIME:
TIMESTAMP: 011237432
]

118

by the bus. The system will also need to query the domain model after analysing the semantics

of turn 5 to determine the earliest bus from Dromore to Dublin on the date specified. After the

disambiguation steps taken in turns 2 to 5, the semantic frame in Figure 4.10 will be updated

with the correct information. Essentially this step will involve the fusion of several semantic

frames containing the required information to book the bus ticket. In this example, domain-

specific information is crucial to resolving the ambiguity present in the dialogue. Careful

consideration is needed in the design of a multimodal platform to ensure that it can fully utilise

the valuable information contained in the semantic representation. The hub of a multimodal

platform must process the semantic content from the various sources of multimodal input,

where appropriate route the semantics to other system modules, generate semantics for

multimodal output and coordinate multimodal presentation.

4.9.3. Multimodal presentation
Consider a multimedia presentation system for monitoring the driver of a car for signs of

tiredness. Assume that the semantics of the following modalities are available to support the

decision-making:

• Facial expression

• Eye gaze

• Head movement

• Posture

The system also considers driver behaviour, i.e., steering and braking. A Bayesian network for

this example is presented in Figure 4.11.

Figure 4.11: Bayesian network for multimodal presentation

As shown in Figure 4.11, four nodes represent the beliefs relating to the multimodal inputs, i.e.,

Face, EyeGaze, Head and Posture. The Steering and Braking nodes represent driver behaviour.

119

CPTs elicit the parameters of the Bayesian network. An example CPT for the Face node is

given in Table 4.3, whilst Table 4.4 shows a CPT for the SpeechOutput node. As illustrated by

Table 4.4, the SpeechOutput node recommends simulated speech output based on the driver’s

behaviour, represented by the Steering and Braking nodes.

Table 4.3: CPT of Face node

Table 4.4: CPT of SpeechOutput node

4.9.4. Turn-taking
Consider the problem of coordination of turn-taking in an intelligent agent. In this example, the

multimodal system processes the semantics of speech, gaze and posture multimodal inputs.

Figure 4.12 presents a Bayesian network for this example.

Figure 4.12: Bayesian network for turn-taking

As indicated by the directed edges in the Bayesian network, the Turn node has influence over

the Speech, Gaze and Posture nodes. Each of the nodes in the Bayesian network in Figure 4.12

has the states Give and Take as shown in the CPTs for the Bayesian network given in Tables 4.5

- 4.8.

Face

Tired OK Tired

Tired 0.5 0.5

Normal 0.5 0.5

SpeechOutput

Braking Normal Abrupt

Steering Normal Abrupt Normal Abrupt

None 0.3333 0.3333 0.3333 0.3333

FancyBreak? 0.3333 0.3333 0.3333 0.3333

Warning 0.3333 0.3333 0.3333 0.3333

120

Table 4.5: CPT of Speech node

Table 4.6: CPT of Gaze node

Table 4.7: CPT of Posture node

Table 4.8: CPT of Turn node

In the Speech, Gaze and Posture nodes the states Give and Take represent the belief that the

user wishes to give or take the turn. The Give and Take states of the Turn node recommend

whether or not the intelligent agent should give or take the next turn in the dialogue.

4.9.5. Dialogue act recognition
Consider a multimodal system that supports the decision-making of an intelligent agent through

dialogue act recognition. The system considers the semantics associated with speech, voice

intonation and the recognition of eyebrow and mouth movements, before making decisions on

the dialogue acts being performed by the user. A Bayesian network for this example is shown in

Figure 4.13. The directed edges between the nodes of the Bayesian network in Figure 4.13

indicated that the DialogueAct node has influence over the Speech, Intonation, Eyebrows and

Mouth nodes. This influence is also evident in the CPTs for the Bayesian network. Tables 4.9 –

4.11 gives the CPTs for the Intonation, Eyebrows and Mouth nodes. Tables 4.12 and 4.13 give

the CPTs for the Speech and DialogueAct nodes respectively.

Speech

Turn Give Take

Give 0.8 0.2

Take 0.2 0.8

Gaze

Turn Give Take

Give 0.8 0.2

Take 0.2 0.8

Posture

Turn Give Take

Give 0.8 0.2

Take 0.2 0.8

Turn

Give 0.5

Take 0.5

121

Figure 4.13: Bayesian network for dialogue act recognition

Table 4.9: CPT of Intonation node

Table 4.10: CPT of Eyebrows node

Table 4.11: CPT of Mouth node

Table 4.12: CPT of Speech node

Intonation

Turn Give Take

Give 0.8 0.2

Take 0.2 0.8

Eyebrows

Turn Give Take

Give 0.8 0.2

Take 0.2 0.8

Mouth

Turn Give Take

Give 0.8 0.2

Take 0.2 0.8

Speech

DialogueAct Greeting Comment Request Accept Reject

Greeting 0.80 0.05 0.05 0.05 0.05

Comment 0.05 0.80 0.05 0.05 0.05

Request 0.05 0.05 0.80 0.05 0.05

Accept 0.05 0.05 0.05 0.80 0.05

Reject 0.05 0.05 0.05 0.05 0.80

122

Table 4.13: CPT of DialogueAct node

4.9.6. Parametric learning
Suppose the data file shown in Figure 4.14 has been used to learn the structure of a Bayesian

network. However, following analysis of the Bayesian network, it is felt that its performance

could be improved if a larger set of data is considered in the learning process. A Wizard-of-Oz

experiment is conducted monitoring 1000 users interacting with the system.

Figure 4.14: Segment of data file for structural learning of a Bayesian network

Parametric (adaptive) learning is performed to learn the parameters, i.e., the CPTs, of the

Bayesian network. As a result, the existing Bayesian network is adapted to the new, much

larger, data set. This adapted Bayesian network can now be analysed to determine if the

DialogueAct

Greeting 0.2

Comment 0.2

Request 0.2

Accept 0.2

Reject 0.2

A, B, C, D, ES

happy, neutral, relaxed, happy, happy

neutral, neutral, happy, relaxed, neutral

open, happy, happy, neutral, happy

defensive, open, confused, happy, neutral, confused

defensive, defensive, confused, defensive, defensiv e

open, neutral, happy closed, open

happy, neutral, relaxed, happy, happy

confused, relaxed, neutral, neutral, neutral

happy, relaxed, neutral, happy, neutral

happy, happy, happy, relaxed, happy

happy, relaxed, relaxed, happy, neutral

open, happy, happy, neutral, happy

defensive, happy, confused, defensive, defensive

open, open, neutral, neutral, neutral

happy, happy, relaxed, happy, happy

open, closed, open, closed, closed

happy, happy, happy, relaxed, happy

relaxed, neutral, neutral, relaxed, relaxed

123

increase in learning data has improved the accuracy of its conclusions. Parametric learning was

discussed in greater detail in Chapter 3, Section 3.11.5.

 This section has discussed six key example problems in multimodal decision-making,

including anaphora resolution, domain knowledge awareness, multimodal presentation, turn-

taking, dialogue act recognition and parametric learning.

4.10. Requirements criteria for a multimodal distributed platform hub
Having considered key problems in decision-making within a multimodal system, a set of

necessary and sufficient criteria for the decision-making mechanism in a multimodal hub can

now be drafted. These criteria list the core requirements for the hub of a multimodal distributed

platform. The criteria are categorised into the following two categories:

• Essential criteria

• Desirable criteria

Essential criteria (denoted by E) must be met in order that the hub is capable of performing

and/or coordinating the type of decision-making commonly required within a multimodal

system. Desirable criteria (denoted by D) are not essential but would enhance the effectiveness

of the decision-making mechanism. Essential criteria for a multimodal distributed platform hub

are summarised in Table 4.14.

4.11. Bayesian decision-making in multimodal fusion and synchronisation
In this section the rationale for a Bayesian approach to decision-making within a multimodal

distributed platform hub is detailed and how this approach addresses a number of key problems

in multimodal decision-making discussed.

4.11.1. Rationale
There are a number of properties of Bayesian networks that leave them particularly suited to

decision-making over multimodal data. First, intercausal reasoning, or the explaining away

effect, can greatly simplify decision-making in multimodal systems by disconfirming, or

explaining away, other hypotheses in the light of new evidence supporting a particular

hypothesis. As discussed in Chapter 3, Section 3.3, intercausal reasoning is an intrinsic property

of Bayesian networks. An example of intercausal reasoning is where evidence supporting the

hypothesis that a person wants to take the next dialogue turn decreases the belief in the

competing hypothesis that the person wants to give the turn to another dialogue participant, i.e.,

the competing hypothesis is explained away. Another example is where a multimodal ‘building

data’ system detects three deictic gestures in close proximity to a user utterance, “show me

route from that office to this office”. If timestamp information increases the belief that the user

124

intentionally referred to two particular offices using the first two deictic gestures, then the belief

that the third deictic gesture was intentional will subsequently decrease. The ability to

automatically perform intercausal inference is a key contributor to the reasoning power of

Bayesian networks.

Criterion Capability

E1 The decision-making mechanism must be able to operate over semantic

representations of both multimodal input and output.

E2 The hub must be able to fuse semantics at both input and output of a

multimodal system.

E3 There should be, “no presentation without representation” (Wahlster

2003, p. 12).

E4 The decision-making mechanism should be able to dynamically update

the beliefs associated with multimodal input and output at run-time.

E5 The hub should be capable of distributed processing in recognition of the

inherently distributed nature of multimodal systems.

E6 Multimodal dialogue history should be stored for use in decision-making.

E7 The decision-making process should consider the current context when

making decisions.

E8 The decision-making mechanism should be capable of resolving

ambiguity in one modality using information from other modalities.

E9 Domain-specific information should be available to enable intelligent

interaction with human users.

E10 Missing data should not create a problem for the decision-making

process.

E11 The decision-making mechanism must be able to make decisions on the

optimum combination of output modalities in a multimodal system.

E12 It should be possible to learn a decision-making strategy based on sample

data for a particular problem domain.

D1 The hub should operate as multi-platform.

D2 The hub should be able to learn and adapt the decision-making based on

previous experience.

D3 The decision-making mechanism should have the ability to learn from

real data.

Table 4.14: Requirements criteria for a multimodal distributed platform hub

Second, as discussed in Chapter 3, Section 3.3, the compact graphical nature of Bayesian

networks is advantageous whilst attempting to model a large and complex multimodal decision-

125

making domain consisting of many random variables. As an example, consider the case where

there are several discrete random variables representing the probabilities of beliefs associated

with various multimodal inputs. Here, if we were to specify the joint probability distribution, its

size would grow exponentially with the number of variables, i.e., one probability would be

needed for every possible configuration of the variables. Bayesian network provide a compact

representation of such a complex domain by using a graphical structure to encode dependence

and independence relations between the random variables.

Third, there are inherent cause-effect relationships in multimodal decision-making. For

example, if a person is observed shaking his/her head, then this causes us to believe that the

person disagrees with what is being said, whilst facial expressions can influence our belief

about a person’s mental state. Similarly, our knowledge of past events and dialogue history may

cause us to adapt our future actions and dialogue strategy. In order to engage in natural human-

like communication, the ability to model causation in multimodal systems is desirable.

Bayesian networks can explicitly represent cause-effect relationships within any decision-

making domain. Furthermore, Bayesian networks are an intuitive graphical means of

representing causality within a domain. As discussed in Chapter 3, Section 3.1, humans

frequently consider causation in their everyday lives and this is evident in the choice of words

humans use in situations where uncertainty exists. Phrases such as, “John will be late for the

meeting because of the harsh driving conditions”, “if Mary does not call today, then she must

be satisfied that the issue is resolved”, and, “there was definitely someone at home since the

lights and TV were on”, are all examples of causation being used in speech under uncertain

conditions, i.e., the speaker cannot be certain that John will be late, that Mary’s issue is

resolved or that there was anyone at home. Hence, causation is a phenomenon that humans deal

with frequently during the course of a dialogue. It is therefore appropriate that Bayesian

networks be used to model the cause-effect relations that arise in multimodal decision-making.

The fact that causation sits easily with people’s reasoning processes simplifies the construction

of Bayesian networks that model the causal dependencies between variables of a problem

domain.

Fourth, decision-making within multimodal systems frequently involves the resolution

of uncertainty and ambiguity. The interpretation of multimodal input and the weightings

assigned to multimodal output are most naturally handled using confidence or probability

scores. The careful weighting of all available inputs enables Bayesian networks to deal with the

complexity of decision-making within multimodal systems. The more modalities that are

considered, the more complex the decision-making becomes. In order that one or more

modality may be used to resolve ambiguity and uncertainty arising in another modality, a

126

flexible and intuitive means of representing the beliefs associated with modalities is needed. It

is difficult for people to make absolute certain judgements about the emotional states of others,

just as it may be difficult to be 100% certain that a person has pointed to a particular office and

not an adjacent office. Even when humans are almost completely certain about something, they

are reluctant to express certainty. For example, we frequently choose to say we are, “nearly

sure”, or, “almost certain”, or, “99.9% certain”. Where uncertainty is present, however small

the uncertainty may be, it is important that it is represented. Probabilities, i.e., percentages, are

an intuitive means of representing uncertainty. As discussed in Section 4.6, Bayesian networks

are proficient at dealing with the beliefs assigned to various multimodal inputs. Furthermore,

the probabilistic nature of Bayesian networks renders them useful for representing competing

hypotheses on the semantics of multimodal input. For example, a speech recogniser may

believe a user has said, “the first film”, with a probability of 46%, “the third film”, with a

probability of 32%, and, “the fourth film”, with a probability of 22%. These competing

hypotheses can be easily represented in a Bayesian network, which can use additional

multimodal information, e.g., mouse or eye-gaze input, to overcome the uncertainty regarding

the user’s intention.

Fifth, missing information does not create a problem for a Bayesian network. There is

no requirement to update all, or indeed any, nodes in a Bayesian network. Acquiring more

information on the variables of a problem domain does lead to more intelligent decision-

making, but missing data will not prevent the Bayesian network from running and reaching a

conclusion. Missing data is common in multimodal systems, since often the multimodal inputs

are optional. It is also possible that certain inputs may only be considered if there is uncertainty

or ambiguity present. For example, consider a multimodal system for downloading music from

the Web. If the speech recognition module believes with a high degree of certainty that the user

has said, “download the first song in the list”, and there are no competing hypotheses with a

confidence score above a certain threshold, then the system may not consider eye-gaze or

mouse input. Here, the only data, or evidence, applied to the Bayesian network would be that

relating to the speech input. Of course, there would still be nodes relating to the eye-gaze and

mouse input but, in the absence of any evidence on these nodes, they would have minimal

influence on the conclusions reached by the Bayesian network.

Finally, Bayesian networks possess the ability to learn and update their conditional

probability tables based on previous experience. The conditional probability tables (CPTs),

used to specify the quantitative part of a Bayesian network are updated dynamically at run-time

when new evidence is propagated through the network. Additionally, both structural and

parametric learning can derive or refine a Bayesian network from a data set. The ability to learn

127

from data is particularly advantageous when attempting to develop Bayesian networks to model

the causal relationships between variables of a new decision-making domain. If data has been

collected for a new application domain a Bayesian network can learn the cause-effect

relationships between the variables in the data. The learning capability of Bayesian networks

was discussed in Chapter 3, Section 3.11.5.

To summarise, Bayesian networks are deemed particularly suited to multimodal decision-

making for the following reasons:

• They can automatically perform intercausal reasoning which is advantageous when

modelling complex multimodal problem domains.

• They constitute a compact, intuitive means of representing large and complex decision-

making domains.

• Their graphical structure is an intuitive way to represent the cause-effect relations that

are inherently present in multimodal decision-making.

• Probabilities, and hence Bayesian networks, provide a flexible and intuitive means of

representing uncertainty and ambiguity, thereby meeting the essential criteria E4 and E8

in Table 4.14.

• Missing data does not create a problem. There is no requirement to add evidence on the

node of a Bayesian network in order that the network can be run and produce useful

conclusions (criterion E10 in Table 4.14).

• Their ability to learn from past experience and data. Bayesian networks dynamically

adapt their CPTs at run-time as new evidence is propagated through the network.

Bayesian networks can also learn from data through, for example, structural and

parametric learning (desirable criterion D2 in Table 4.14).

4.12. Summary
This chapter presented a Bayesian approach to decision-making within a multimodal distributed

platform hub. Key problems within multimodal systems were highlighted before the

characteristics of multimodal decision-making were discussed. Distributed processing, dialogue

history, context/domain-specific information and learning where considered with regard to their

role in aiding multimodal decision-making. Essential and desirable criteria for a multimodal

distributed platform hub were then presented. Finally, the motivation and advantages of

applying Bayesian networks to multimodal decision-making were discussed. In summary, this

chapter presented the thesis that Bayesian networks fulfil the requirements associated with

decision-making over multimodal data within a multimodal distributed platform hub. The next

128

chapter discusses the implementation of a multimodal distributed platform hub called

MediaHub.

129

Chapter 5 Implementation of MediaHub

This chapter discusses the implementation of MediaHub, a multimodal distributed platform hub

for Bayesian decision-making over multimodal input/output data. First, we present the

architecture of MediaHub and then its key modules are discussed in detail. A discussion follows

on semantic representation and storage, before Psyclone (Thórisson et al. 2005), which

facilitates distributed processing in MediaHub, is described. Next, five decision-making layers

in MediaHub are outlined: (1) psySpec and contexts, (2) message types, (3) document type

definitions (DTDs), (4) Bayesian networks and (5) rule-based. The role of Hugin (Jensen 1996)

in implementing Bayesian networks for decision-making in MediaHub is then discussed.

Multimodal decision-making in MediaHub is then demonstrated through six worked examples

investigating key problems in various application domains.

5.1. Constructionist Design Methodology
The Constructionist Design Methodology (CDM) (Thórisson et al. 2004), discussed in Chapter

2, Section 2.7.11, was used in designing MediaHub. As the development of MediaHub did not

involve a large team not all aspects of CDM were directly relevant. The key steps of CDM that

were particularly relevant are listed below:

1. Define the project’s goal, i.e., implement Bayesian decision-making in a

multimodal distributed platform hub.

2. Define the project’s scope, i.e., the key problems and application domains

discussed in Chapter 4.

3. Modularisation – MediaHub is constructed using modules that communicate

through MediaHub Whiteboard.

4. Test the system against scenarios, i.e., MediaHub is tested against a number of

decision-making scenarios that illustrate its capabilities in multimodal decision-

making.

5. Iterate – Steps 2 to 4 were repeated until the desired functionality was achieved.

6. Early testing of system modules – all MediaHub modules were tested at an early

stage in their implementation.

130

7. Build all modules to their full specification – all MediaHub modules were

iteratively developed to full specification.

8. Tune the system – MediaHub was then tested with all its modules running.

The step that was not relevant was step 6 in Chapter 2, Section 2.7.11, ‘Assign modules to

suitable team members (based on their strengths and areas of interest)’. This step was not

necessary since MediaHub was developed by a single researcher.

5.2. Architecture of MediaHub
MediaHub, developed in the Java programming language, takes as input marked up multimodal

data in XML format. These XML segments represent potential output of recognition modules,

e.g., speech, haptic, gaze and facial expression. Figure 5.1 shows the architecture of MediaHub,

consisting of the following key modules:

• Dialogue Manager

• MediaHub Whiteboard

• Decision-Making Module

• Domain Model

• MediaHub psySpec

MediaHub’s architecture closely resembles the generic architecture of a multimodal distributed

platform hub given in Figure 4.1, Chapter 4. As shown in Figure 5.1, MediaHub utilises

Psyclone for distributed processing and tracking the current context. Psyclone, discussed in

Chapter 2, Section 2.7.10, is a message-based middleware that enables large distributed systems

to be developed. Bayesian decision-making is performed by the Hugin decision engine,

discussed in Chapter 3, Section 3.11.5, which is accessed through a Hugin API (Hugin 2009).

Input/output recognition modules are not implemented, only the XML representation of the

input/output is generated/interpreted. Some additional processing is conducted for testing

purposes, e.g., a terminal window displays the coordinates of recognised offices, names of

recognised individuals and coordinates for laser output.

5.2.1. Dialogue Manager
The Dialogue Manager, in conjunction with MediaHub Whiteboard, coordinates the following:

(1) interaction between MediaHub and other system modules, (2) fusion and synchronisation of

multimodal input/output and (3) communication between the modules of MediaHub. Each of

these functions, with examples, will now be considered.

131

Interfacing to MediaHub

Assumed output from various input modules of a multimodal system marked up in XML format

is encapsulated within messages that are posted to MediaHub Whiteboard. Dot-delimited

message types specify the content of messages passed within MediaHub.

Figure 5.1: Architecture of MediaHub

All message types pertaining to input/output are automatically routed by Psyclone’s whiteboard

to the Dialogue Manager. Upon receiving input, the Dialogue Manager then decides, again

based on the message type, how to process the input. The majority of input messages are

processed and repackaged as new messages, with new message types, and posted back to

MediaHub Whiteboard, where they are routed to the Decision-Making Module. When output

messages are received the Dialogue Manager must decide which output modules should receive

the output.

Semantic fusion

The Dialogue Manager coordinates the fusion of multimodal input/output. For example, fusion

of speech input with its corresponding deictic gesture input or fusing the selection of a menu

item with corresponding speech output. The problem of synchronisation is not fully addressed

in the current implementation of MediaHub. The processing of multimodal input involves

invoking a JDOM (Java Document Object Model) parser to retrieve only the relevant

132

information from the semantic representation XML mark-up. Document Type Definitions

(DTDs) determine when all the required information has been received for a particular scenario,

based on message type, and to ensure correctness of the XML data received. One such DTD is

given in Figure 5.2.

Figure 5.2: MediaHub example Document Type Definition (DTD)

The DTD in Figure 5.2 ensures that both speech and corresponding gesture input are received

before proceeding with processing. Effectively, the DTD acts as a delay mechanism and the

Dialogue Manger will not proceed to the next stage of processing until the XML mark-up

contains all the required information as specified in the DTD. Message types invoke the correct

DTD to validate an XML segment. Note that the DTDs can also specify optional information

that may appear in the XML segment. A subset of MediaHub’s DTDs is given in Appendix A.

Communication between MediaHub modules

The Dialogue Manager, as illustrated in Figure 5.1, communicates directly with MediaHub

Whiteboard. All communication is achieved by exchanging semantic representations through

MediaHub Whiteboard. Any messages posted to MediaHub Whiteboard with the text “input” or

“output” in the message type are automatically routed to the Dialogue Manager which must

then decide what future processing is required. Often this involves extracting the relevant

information from the XML mark-up for the current situation and repackaging it in another

message, with a new message type, which is posted back to MediaHub Whiteboard. It is usually

necessary to acquire domain-specific information. As an example, consider the following

dialogue segment:

<!-- speech and gesture can be in any order-->
<!ELEMENT multimodal ((speech, gesture)|
(gesture, speech))>
<!ELEMENT speech (stype, category, subject,
stimestamp)>
<!ELEMENT stype (#PCDATA)>
<!ELEMENT category (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT stimestamp (#PCDATA)>
<!ELEMENT gesture (gtype, coordinates,
gtimestamp)>
<!ELEMENT gtype (#PCDATA)>
<!ELEMENT coordinates (x, y)>
<!ELEMENT x (#PCDATA)>
<!ELEMENT y (#PCDATA)>
<!ELEMENT gtimestamp (#PCDATA)>

133

1 U: Whose office is this [�] 4?

2 S: That is Paul’s office.

3 U: Ok. Whose office is that [�]?

4 S: That’s Sheila’s office.

Here, in order to respond to turns 1 and 3 MediaHub must determine which office the user is

pointing to. The XML representation of turns 1 and 3 will contain both the speech segment and

the coordinates of the pointing gesture. These coordinates will then facilitate querying the

Domain Model in order to determine whose offices are at those locations, i.e., Paul’s and

Sheila’s office.

5.2.2. MediaHub Whiteboard
MediaHub Whiteboard has two primary functions: (1) communication and (2) semantic storage.

A publish-subscribe mechanism for communication is achieved by means of the MediaHub

Whiteboard, implemented with Psyclone’s patent-pending Whiteboards™ (Thórisson et al.

2005). During processing, input/output semantics is stored on MediaHub Whiteboard in XML

format. Modules subscribe to dot-delimited message types. Some examples of message types in

MediaHub are listed below:

building.query.office.occupant.speech.input

building.query.office.occupant.gesture.pointing.input

building.query.office.occupant.repdoc

movies.gesture.pointing.input

The MediaHub messages types are listed in Appendix B. Modules can subscribe to message

types within the XML specification file (psySpec). A psySpec is an XML configuration file read

by Psyclone at invocation which defines the operation of all system modules. In addition to

being triggered by message types defined in MediaHub’s psySpec, a module may also retrieve

information dynamically at run-time. When a message is posted to MediaHub Whiteboard, a

copy of the message is automatically delivered to all modules subscribing to that message type.

A copy of the message remains on MediaHub Whiteboard to facilitate future processing.

Semantic storage is another key function of MediaHub Whiteboard. All previous messages are

stored on MediaHub Whiteboard and can be retrieved later for decision-making. It is possible to

query MediaHub Whiteboard and retrieve the last message of a certain type, i.e., a dialogue

4 [�] is used here to indicate a deictic gesture.

134

history is maintained. MediaHub can also access the last X messages of a certain type and parse

the XML content to assist the decision-making process.

5.2.3. Domain Model
The Domain Model contains data specific to a given application domain, e.g., building data,

cinema ticket reservation, in-car safety. This data is stored in an XML format which can be

parsed by a JDOM parser for XML. Figure 5.3 shows a segment of an XML file stored in the

Domain Model.

Figure 5.3: Segment of XML file containing data on offices

The XML segment in Figure 5.3 contains domain-specific information for the ‘building data’

domain. It contains the ID (room number), occupant name, gender of occupant and the

coordinates for each of the offices in the building. Without such information it would be

impossible to answer queries such as, “Whose office is that [�]?”, or, “How do I get from this

<Offices>
 <Office>
 <ID>MG221</ID>
 <Person>
 <FirstName>Paul</FirstName>
 <Surname>McKevitt</Surname>
 <Gender>Male</Gender>
 </Person>

 <Coordinates>
 <From>
 <X>1100</X>
 <Y>2150</Y>
 </From>
 <To>
 <X>1311</X>
 <Y>2323</Y>
 </To>
 </Coordinates>
 </Office>
 <Office>
 <ID>MG203</ID>
 <Person>
 <FirstName>Sheila</FirstName>
 <Surname>McCarthy</Surname>
 <Gender>Female</Gender>
 </Person>
 <Coordinates>
 <From>
 <X>1400</X>
 <Y>5300</Y>
 </From>
 <To>
 <X>1525</X>
 <Y>5500</Y>
 </To>
 </Coordinates>
</Office>

135

office [�] to that office [�]?”. Upon receiving the coordinates of a pointing gesture, a JDOM

parser can query the Domain Model to determine the office being referred to. The Domain

Model code shown in Figure 5.4 checks the coordinates received in the XML mark-up of a

deictic gesture against data in the Domain Model. When the correct office has been identified in

the Domain Model the office ID, first name and gender of the occupant is extracted for use in

the current dialogue, e.g., “That’s Paul’s office”. The Domain Model is accessed via the

DomainModel Class.

Figure 5.4: Segment of Domain Model code

5.2.4. Decision-Making Module
A key component of MediaHub is the Decision-Making Module. The Decision-Making Module

manages Bayesian decision-making by accessing the Hugin Decision Engine via the Hugin

API, as shown in Figure 5.1. The Decision-Making Module deploys, where necessary,

appropriate Bayesian networks and supplies these networks with data contained in the XML

segments. The decision on which Bayesian network to access is determined by the message

type. Where necessary, data relating to dialogue history is accessed via the History class. When

a network is accessed by the Decision-Making Module the results or conclusions are interpreted

with simple rules within it and a message is posted to MediaHub Whiteboard. All messages

posted to MediaHub Whiteboard from the Decision-Making Module are automatically delivered

to the Dialogue Manager.

 The Decision-Making Module has at its disposal a collection of Bayesian networks

developed with the Hugin GUI. For each decision-making scenario there exists a collection of

Bayesian networks that can be deployed depending on context and message type. The Bayesian

networks are accessed by the Hugin API for Java. The Java API for the Hugin Decision Engine

offers a comprehensive array of methods for creating and accessing Bayesian networks. All of

the Bayesian networks utilised by MediaHub were developed with the Hugin GUI and are

if(intX >= xFrom && intX <= xTo && intY >= yFrom && intY <= yTo){

//retrieve the office number and occupant name

String strOfficeNo = ((Element)offices.get(x1))
 .getChild("ID").getText();

String strOccupantName = ((Element)offices.get(x1)) .getChild("Person")
 .getChild("FirstName").g etText();

String strOccupantGender = ((Element)offices.get(x1)).getChild("Person")
 .getChild("Gender").getT ext();

136

opened, supplied with evidence (or input), and run by the Decision-Making Module in

MediaHub.

5.3. Semantic representation and storage
MediaHub generates and interprets semantic representations of multimodal input/output data to

support the fusion and synchronisation of multimodal data. MediaHub’s Dialogue Manager

receives marked up multimodal semantics in XML format which is parsed for data to support

decision-making. The accuracy and completeness of XML semantics is checked by Document

Type Definitions (DTDs), as discussed in Section 5.2.1. XML was chosen due to its

compatibility with Java, its portability and the fact that it is easily extensible. Portability is

important so that MediaHub can be integrated with existing multimodal systems that are

deployed on different operating systems. The extensibility of XML affords flexibility in dealing

with the varied and complex nature of multimodal semantics. Additionally, XML is a standard

mark-up language used extensively for semantic representation within multimodal systems.

XML is therefore deemed a practical choice for MediaHub which aims to be easily integrated

with existing multimodal systems.

Multimodal systems frequently use a shared space, or blackboard, to maintain a record of

dialogue history. The blackboard keeps track of all interactions over time so that semantic

information on dialogue history may be accessed to perform more intelligent decision-making.

MediaHub has a whiteboard, as discussed in Section 5.2.2, to maintain a history of all messages

passed within MediaHub. Psyclone’s whiteboards enable heterogeneous systems, hosted on

different computers, to be connected together. The whiteboards in Psyclone effectively act as

publish/subscribe servers. Information is both posted to, and dispatched from, the whiteboard to

all modules subscribed to that type of information. The semantics of all multimodal

input/output data is stored on MediaHub Whiteboard and is accessible at later stages of a

multimodal dialogue, i.e., dialogue history is maintained on MediaHub Whiteboard.

5.4. Distributed processing with Psyclone
The nature of multimodal systems means that inputs to the decision-making process will

typically arrive at different times from various distributed recognition and interpretation

modules. The hub of a multimodal system must be capable of performing distributed

processing, i.e., receiving input from the various system modules and routing this information

to the appropriate destination modules within the system. Psyclone facilitates distributed

processing in MediaHub. The architecture of Psyclone is shown in Figure 5.5. When Psyclone

is invoked, it first reads the psySpec as shown by step (1) in Figure 5.5. Then, any internal or

external modules are invoked, such as speech recognition (2) and computer graphics (3).

137

Psyclone then sets up appropriate subscription mechanisms for the modules and can be

configured to automatically invoke other Psyclone servers as indicated by step (4). Step (4), a

powerful feature of Psyclone, was not utilised in the current implementation of MediaHub.

Psyclone is invoked with an executable file stored in MediaHub’s working directory. Deploying

the psyclone.exe file launches Psyclone which automatically initialises MediaHub’s modules, as

shown in Figure 5.6. Messages posted to MediaHub Whiteboard are automatically routed to the

appropriate modules based on a dot-delimited message type. OpenAIR (Mindmakers 2009;

Thórisson et al. 2005), implemented within Psyclone, is a communication protocol based on a

publish-subscribe system architecture and is the protocol for communication within MediaHub.

Figure 5.5: Architecture of Psyclone (Thórisson et al. 2005)

Figure 5.6: Psyclone running in command window

5.4.1. MediaHub’s psySpec
Psyclone has a central XML specification file (psySpec) for defining the setup of all system

modules. The functionality of Psyclone’s psySpec was discussed in Section 5.2.2. Although the

138

psySpec can set a number of advanced configuration options, MediaHub’s psySpec primarily

starts MediaHub Whiteboard and registers modules to receive, or be triggered by, messages of a

certain type. A module is subscribed to messages of a certain type with the type attribute of the

<trigger> tag in the psySpec. A segment of MediaHub’s psySpec is shown in Figure 5.7.

Figure 5.7: Segment of MediaHub’s psySpec.XML file

As shown in Figure 5.7, the Domain Model is registered to be triggered by messages of certain

types with the <trigger> tag. Also included in the psySpec configuration of the Domain Model

is the operating system type and a Java command to automatically invoke the module. Note that

the host value is typically localhost and the default port is 10000 if not specified. The from

attribute of the <triggers> tag defines the module that can send a message to the Domain

Model. In this case, a message from any module can trigger the Domain Model, provided it is of

a message type listed in the psySpec. The allowselftriggering tag here stops the Domain Model

from being triggered by messages it has posted itself to MediaHub Whiteboard.

5.4.2. JavaAIRPlugs
Note that it is possible to override the settings specified in the psySpec. For example, a module

can be registered to receive messages of a certain type at run time with a JavaAIRPlug

connected to Psyclone. The Java code which makes a connection to Psyclone with a

JavaAirPlug is shown in Figure 5.8.

Figure 5.8: Java code for establishing a connection to Psyclone

 plugDMM = new JavaAIRPlug("DMM", host, port);

if (!plugDMM.init()) {
 System.out.println("Could not connect to the Serv er on " + host
 + " on port " + port + "...");
 System.exit(0);
 }

 System.out.println("Connected to the Server on " + host +
 " on port " + port + "...");
}

<module name="DomainModel">
<description>Used to access domain-specific informa tion</description>
 <executable name="DomainModel" consoleoutput="yes" >
 <sys ostype="Win32">
 java -cp .;JavaOpenAIR.jar DomainModel psyclone=%h ost%:%port%
 name=%name%
 </sys>
 </executable>
 <spec>
 <triggers from="any" allowselftriggering="no">
 <trigger type="MediaHub.shutdown"/>
 <trigger type="building.query.office.occupan t.intdoc"/>
 <trigger type=" cinema . request . reservation .int doc"/>

139

Once the connection to Psyclone has been established, the JavaAIRPlug then posts messages to,

and retrieve messages from, MediaHub Whiteboard.

5.4.3. psyProbe
Psyclone enables developers to ‘see inside the system’ at run-time through a web-based

interface called a psyProbe. A psyProbe is a built-in monitoring system that enables developers

to monitor all activities of the system. Figure 5.9 shows the psyProbe viewing the messages

posted to MediaHub Whiteboard.

Figure 5.9: Viewing messages on MediaHub Whiteboard with psyProbe

psyProbe defaults to port 10000 of localhost and is usually accessed by browsing

http://localhost:10000. A Psyclone server running on another machine can be accessed over the

network by browsing http://machine:10000, where machine is the name of the computer

running Psyclone. psyProbe can facilitate viewing time-stamped information on MediaHub

Whiteboard and the content of individual messages with a standard web browser.

5.4.4. Psyclone contexts
Contexts in Psyclone are globally announced system states that manage the runtime behaviour

of a system’s modules. MediaHub’s modules are context-driven in that they are only active

when a certain context is active. MediaHub’s modules primarily operate in the default context

of Psyclone.System.Ready. Each of the modules in Psyclone is assigned at least one context and

the module will not run until one of its contexts becomes true. Contexts enable individual

modules to change their behaviour to meet the overall requirements of the system. Modules can

140

be configured to perform different tasks in different contexts, thus reducing the number of

separate modules that a system will need to implement.

5.5. Decision-making layers in MediaHub
The granularity of the decision-making necessary in a multimodal system varies considerably

across different application domains. MediaHub implements a five layer approach in order to

increase the resolution of its decision-making. The five layers of decision-making are illustrated

in Figure 5.10.

Figure 5.10: MediaHub’s five decision-making layers

Layer 1 represents the decisions undertaken when MediaHub initialises. This type of decision-

making is performed when Psyclone reads the psySpec.XML configuration file, as discussed in

Section 5.4.1. Decisions in Layer 1 relate to determining what modules in MediaHub should

receive which message types when the messages are posted to MediaHub Whiteboard. The

psySpec can also set the context in which a module becomes active.

 The second layer of decision-making analyses message types of received messages to

determine their purpose and apply appropriate processing. Message types in MediaHub are dot-

delimited strings that indicate the purpose of the message. The second layer is the most

commonly used layer of decision-making in MediaHub since it facilitates all decisions across

141

all application domains, regardless of whether or not Bayesian decision-making is applied. A

collection of MediaHub message types is given in Appendix B.

 The third layer of decision-making shown in Figure 5.10 is that performed with

Document Type Definitions (DTDs). DTDs, as discussed in Section 5.2.1, are used by

MediaHub modules to check: (1) that the XML received is syntactically correct and (2) that all

the required information, e.g., semantics of speech, deictic gesture, eye-gaze, has been received

at a particular stage in the decision-making.

 The fourth layer of decision-making in MediaHub is the Bayesian networks layer. This

is the layer concerned with the resolution of uncertainty and ambiguity in multimodal decision-

making. It is this layer that deploys Bayesian networks to represent the cause-effect relations

inherently present in multimodal decision-making. Note that ambiguity or uncertainty is not

always present in multimodal decision-making and therefore Bayesian networks are only

applied within MediaHub when they are deemed necessary.

 The final layer of decision-making in MediaHub addresses rule-based decisions. This

layer involves decisions at various stages of processing, e.g., what to do if the message type is

of the form x.y.z, which DTD to check an XML segment against, how to proceed if a check

against a DTD fails, how to interpret the results from a Bayesian network and how to proceed

based on the results read from a Bayesian network.

It should be noted that the layers shown in Figure 5.10 are not mutually exclusive but

interleave with each other. It is possible that all layers can contribute to a given decision. For

example, a message may be automatically delivered to the Decision-making Module based on

the triggering information in the psySpec read by Psyclone (i.e. Layer 1) and, depending on its

message type (i.e. Layer 2), the XML contents may be checked against a particular DTD to

ensure all the relevant information has been received (i.e. Layer 3). Then, based on the message

type and/or semantic content, an appropriate Bayesian network can be invoked for a particular

application domain (i.e. Layer 4). Finally, the result of running the Bayesian network can be

interpreted with rule-based decision-making (i.e. Layer 5). An example rule is: if the confidence

of the state of a certain node is greater than 60%, then perform a certain action and, if it is less

than 60%, ask for clarification from the user.

5.6. Bayesian decision-making using Hugin
MediaHub deploys Hugin to perform Bayesian decision-making over multimodal data. The

Hugin software tools, consisting of the Hugin Graphical User Interface (GUI) and the Hugin

Decision Engine or inference engine, enable the implementation of Bayesian networks as

Causal Probabilistic Networks (CPNs). The functionality of the Hugin Decision Engine, or

142

inference engine, is accessed through a set of Application Programming Interfaces (APIs) or

through the Hugin GUI. MediaHub uses Hugin’s Java API to access Bayesian networks for

different application domains constructed using the Hugin GUI.

5.6.1. Hugin GUI
Bayesian networks for MediaHub are developed with the Hugin GUI and the API for Java

opens, supplies evidence to, and runs the networks at run-time. The Hugin GUI, in run mode, is

shown in Figure 5.11. The right pane of Figure 5.11 shows the Bayesian network, while the left

pane shows the probabilities for all states of each of the nodes. It is possible to add evidence to

the network by clicking on the input nodes in the left pane. The Hugin Decision Engine then

automatically recalculates the new conditional probabilities for each of the nodes in the

Bayesian network. The Hugin GUI is thus an invaluable tool for constructing and tuning a

Bayesian network. When the iterative design process of a network has been completed, Java

code is then written to open and run the network through the Hugin API.

Figure 5.11: Hugin Graphical User Interface (GUI)

5.6.2. Documentation of Bayesian networks
The Hugin GUI offers a useful feature that enables automatic generation of HTML

documentation for Bayesian networks developed with the GUI. Provided a description has been

given for each of the states and nodes of a Bayesian network, the generated document provides

a concise summary of all nodes in the Bayesian network and the relationships between them.

The generation of documentation can be accessed by selecting Network | Generate

Documentation in the Hugin GUI. Doing so allows the developer to save a HTML file

containing documentation of the current Bayesian network. Appendix C shows an example of

143

HTML documentation automatically generated for a Bayesian network implemented in

MediaHub.

5.6.3. Use of Hugin API (Java)
This section discusses the use of the Hugin API (Java) to access Bayesian networks developed

with the Hugin GUI.

Accessing Bayesian networks

The following code creates a new domain and opens an existing Bayesian network with the

Hugin API for Java:

For example, the following code opens a Bayesian network called CinemaTicketReservation in

the cinema ticket reservation domain:

Since Bayesian networks are developed with the Hugin GUI, names of nodes in these networks are

already defined and the following syntax accesses a node by its name:

The following line of code accesses the EyeGaze node of the CinemaTicketReservation Bayesian

network:

Supplying evidence

There are two steps involved in supplying evidence to a Bayesian network with the Hugin API:

(1) retrieve the conditional probability table (CPT) for the node and (2) enter evidence to the

states of the node. The following segment of code retrieves the CPT of a node in a Bayesian

network:

Hence, the following line of code gets the CPT of the EyeGaze node of a Bayesian network:

table = EyeGaze.getTable();

[Table Name] = [N odeName] .getTable();

LabelledDCNode EyeGaze = (LabelledDCNode) domain.ge tNodeByName ("EyeGaze");

Domain domain = new Domain ("CinemaTicketReservatio n.net", new

DefaultClassParseListener());

domain.openLogFile("CinemaTicketReservation" + ".lo g");

Domain domain = new Domain (" [Filename]. net", new

DefaultClassParseListener());

domain.openLogFile(" [Filename]." + ".log");

LabelledDCNode [Node Name] = (LabelledDCNode) domain.getNodeByName
(" [Node Name] ");

144

The following syntax enters evidence on the node of a Bayesian network:

Note that states are numbered from 0, so the first state of a node has an index of 0, the second

has an index of 1 and so on. The EyeGaze node in the CinemaTicketReservation Bayesian

network has four states: First, Second, Third and Fourth that indicate which film on the list an

eye-gaze tracking module believes the user is looking at. The following segment of code enters

65%, 25%, 5% and 5% on the First, Second, Third and Fourth states of the EyeGaze node:

The following code propagates the evidence and calculates updated beliefs for all the nodes in

the Bayesian network:

Note that triangulation is the process of converting a graph of a domain into a triangulated

graph. The triangulated graph forms the basis for the construction of the JunctionTree of the

Domain. In this example, H_TM_FILL_IN_WEIGHT is the specified triangulation method. The

propagate method propagates the evidence through the domain and has the equilibrium and

evidence mode parameters, Domain.H_EQUILIBRIUM_SUM, representing the sum

equilibrium state, and Domain.H_EVIDENCE_MODE_NORMAL, representing the normal

mode for propagating evidence in Hugin.

Reading updated beliefs

On propagation of evidence in a Bayesian network the following syntax reads the updated

beliefs of the states of a node:

The following segment of code reads the four states of the ChosenMovie node of the

CinemaTicketReservation Bayesian network:

first = ChosenMovie.getBelief(0);
second = ChosenMovie.getBelief(1);
third = ChosenMovie.getBelief(2);
fourth = ChosenMovie.getBelief(3);

[Variable Name] = [Node Name] .getBelief([State Number]);

domain.triangulate(Domain.H_TM_FILL_IN_WEIGHT);

domain.compile();

domain.propagate(Domain.H_EQUILIBRIUM_SUM, Domain.H _EVIDENCE_MODE_NORMAL);

EyeGaze.enterFinding(0, 0.65);
EyeGaze.enterFinding(1, 0.25);
EyeGaze.enterFinding(2, 0.05);
EyeGaze.enterFinding(3, 0.05);

[Table Name] . enterFinding ([State Number] , [Probability Value]);

145

Saving a Bayesian network

The code below saves a network:

The following line of code saves the CinemaTicketReservation Bayesian network in the cinema

ticket reservation domain:

5.7. Example decision-making scenarios in MediaHub
In order to demonstrate MediaHub’s approach to decision-making, a number of scenarios are

considered that address the key problems of anaphora resolution, domain knowledge awareness,

multimodal presentation, turn-taking, dialogue act recognition and parametric learning with

application domains of building data, cinema ticket reservation, in-car safety, intelligent agents

and emotional state recognition. The nature of the decision-making in each of these problems

demonstrates various capabilities of MediaHub.

5.7.1. Anaphora resolution
This example focuses on anaphora resolution in MediaHub using dialogue history. Consider the

following sequence of turns taken from a dialogue between a user and an intelligent ‘building

data’ system:

1 U: Whose office is this [�]?

2 S: That is Paul’s office.

3 U: Ok. Whose office is that [�]?

4 S: That’s Sheila’s office.

5 U: Show me the route from her office to this [�] office.

Note that, in turns 1, 3 and 5, it is necessary to use domain-specific information to determine

which offices the user is referring to. Additionally, in turn 5, it is necessary to use dialogue

history to determine who ‘her’ refers to. An extract from the Domain Model is shown in Figure

5.12. Note that each office or room has a set of X-Y coordinates that define its boundary on a 2D

building plan. To illustrate MediaHub’s approach to resolving this ambiguity, we can look

closer at turns 1, 3 and 5 of the example dialogue and describe the corresponding actions taken

within MediaHub. Semantic representations relating to turn 1 are packaged in two XML

segments: (1) an XML segment containing the semantics of the speech input and (2) an XML

segment containing the semantics of the deictic gesture, i.e., the coordinates of the pointing

gesture. The semantics of the speech input is shown in Figure 5.13.

domain.saveAsNet("CinemaTicketReservation.net");

domain.saveAsNet(" [File name] ");

146

Figure 5.12: Domain Model XML file for ‘anaphora resolution’

Figure 5.13: Semantics of speech input for ‘anaphora resolution’

The semantics of the speech input is posted from the Dialogue Manager to MediaHub

Whiteboard in a message of the following type:

 building.query.office.occupant.speech.input

<speech>
 <stype>query-partial</stype>
 <category>Who</category>
 <subject>office</subject>
 <stimestamp>10345</stimestamp>
</speech>

<?xml version="1.0"?>
<!DOCTYPE Offices SYSTEM
"C:\Psyclone2\DomainModel\BuildingInformation.dtd"
>
<Offices>
 <Office>
 <ID>MG221</ID>
 <Person>
 <FirstName>Paul</FirstName>
 <Surname>McKevitt</Surname>
 <Gender>Male</Gender>
 </Person>
 <Coordinates>
 <From>
 <X>1100</X>
 <Y>2150</Y>
 </From>
 <To>
 <X>1311</X>
 <Y>2323</Y>
 </To>
 </Coordinates>
 </Office>
 <Office>
 <ID>MG203</ID>
 <Person>
 <FirstName>Sheila</FirstName>
 <Surname>McCarthy</Surname>
 <Gender>Female</Gender>
 </Person>
 <Coordinates>
 <From>
 <X>1400</X>
 <Y>5300</Y>
 </From>
 <To>
 <X>1525</X>
 <Y>5500</Y>
 </To>
 </Coordinates>
</Office>
</Offices>

147

The posting of the speech input using Psyclone psyProbe is shown in Figure 5.14.

Figure 5.14: Use of Psyclone psyProbe for ‘anaphora resolution’

The corresponding semantics of the deictic gesture, shown in Figure 5.15, is posted from the

Dialogue Manager to MediaHub Whiteboard in a message of type:

building.query.office.occupant.gesture.deictic.input

Figure 5.15: Semantics of deictic gesture for ‘anaphora resolution’

MediaHub Whiteboard is configured to automatically route messages of type building.query*5

to the Decision-making Module. This configuration is implemented in the PsySpec.XML file

which configures Psyclone, and hence MediaHub Whiteboard, at initialisation. The segment of

XML enabling this is shown in Figure 5.16.

5 The asterisk here acts as a wildcard.

<gesture>
 <gtype>pointing</gtype>
 <coordinates>
 <x>1155</x>
 <y>2234</y>
 </coordinates>
 <gtimestamp>10312</gtimestamp>
</gesture>

148

Figure 5.16: Segment of PsySpec.XML configuring MediaHub Whiteboard

When the speech segment is received in the Decision-making Module, an if-else statement

identifies the purpose of the message. The XML content is then retrieved, as shown in Figure

5.17.

Figure 5.17: Segment of if-else statement in Decision-Making Module

If the corresponding gesture input has been received, this is appended to the speech segment to

form an integration document (IntDoc) that is stored in a string variable called strIntDoc (see

Figure 5.18). This new XML segment is then checked against a Document Type Definition

(DTD), SpeechGesture.DTD, which checks if all the required information is present in the

XML segment. The DTD for this example is shown in Figure 5.19. If the check against

SpeechGesture.DTD returns no errors, the integration document is packaged in a message and

posted to MediaHub Whiteboard as follows:

Domain Model

The Domain Model is configured to receive all messages of type

building.query.office.occupant.intdoc. Again, this triggering is configured in the PsySpec.XML

file. Note that, if the corresponding deictic gesture has not been received, the check against

SpeechGesture.DTD fails and the Decision-Making Module continues to wait for the gesture

input. Again, an if-else statement in the Domain Model applies appropriate processing to the

XML integration document. The X and Y coordinates of the deictic gesture are then extracted

from the XML, as shown in Figure 5.20.

…
<module name="DMM">
…
<spec>
…
 <triggers from="any" allowselftriggering="no">
 <trigger type="building.query*"/>
 <trigger type="MediaHub.shutdown"/>
 </triggers>
 <posts>
 <post to="MediaHub_Whiteboard" type="dmm.registe r"/>
 </posts>
</spec>
…

boolean posted = plugDMM.postMessage("MediaHub_Whit eboard","building.query
 .office.occupant.intdoc", strIntDo c, "English", "");

 else if (strMsgType.equals(" building.query.office.occupant.speech.input "))
{
 strSpeechPart = retrievedMsg.content; //retriev e speech semantics

149

Figure 5.18: Checking XML segment against a Document Type Definition

Figure 5.19: SpeechGesture.DTD for ‘anaphora resolution’

Figure 5.20: Extracting coordinates from XML Integration Document

A similar approach opens and parses the BuildingData.XML file, before checking which two

offices the coordinates relate to. The X and Y coordinates of each office in the building are

selected with the code given in Figure 5.21.

<!-- speech and gesture can be in any order-->
<!ELEMENT multimodal ((speech, gesture)| (gesture, speech))>
<!ELEMENT speech (stype, category, subject, stimest amp)>
<!ELEMENT stype (#PCDATA)>
<!ELEMENT category (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT stimestamp (#PCDATA)>
<!ELEMENT gesture (gtype, coordinates, gtimestamp)>
<!ELEMENT gtype (#PCDATA)>
<!ELEMENT coordinates (x, y)>
<!ELEMENT x (#PCDATA)>
<!ELEMENT y (#PCDATA)>
<!ELEMENT gtimestamp (#PCDATA)>

//convert the string to an xml document
doc = builder.build(new InputSource(new StringReade r(strIntDoc)));

List allChildren = rootElement.getChildren();
 //Get the x coordinates of pointing gesture
 String strX = ((Element)allChildren.get(1)).getChi ld("coordinates")
 .getChild("x").getText();
 int intX = Integer.parseInt(strX);

//Get the x coordinates of pointing gesture
String strY = ((Element)allChildren.get(1)).getChil d("coordinates")
 .getChild("y").getText();
int intY = Integer.parseInt(strY);

strSpeechGestureDTD = "\u003C!DOCTYPE multimodal SY STEM
\"C:/Psyclone2/DomainModel/SpeechGesture.dtd\"\u003 E";

 if(strGesturePart != null){
 strIntDoc = strSpeechGestureDTD + strSpeechPart + strGesturePart;
 }
 else
 strIntDoc = strSpeechPart;
 System.out.println(strIntDoc);

 SAXBuilder builder = new SAXBuilder(true);
 Document doc;
 try {
 //convert the string to an xml document
 doc = builder.build(new InputSource(new
StringReader(strIntDoc)));

150

Figure 5.21: Extraction of coordinates for each office

Then, each set of coordinates is compared against the coordinates contained in the semantics.

When a match has been found, the office ID and the name and gender of its occupant are

extracted as shown in Figure 5.22. A replenished document (RepDoc) is then created containing

this information and is forwarded to the Dialogue Manager via MediaHub Whiteboard. The

RepDoc is now replenished with the data necessary for turn 2 of the dialogue. A segment of the

RepDoc, containing the new data, is shown in Figure 5.23.

Figure 5.22: Parsing Domain Model for ‘anaphora resolution’

Figure 5.23: Segment of Replenished Document (RepDoc)

The RepDoc is posted to MediaHub Whiteboard with the following message type:

building.query.office.occupant.repdoc

...
<gender>Male</gender>
<occupant>Paul</occupant>
<tts>That's Paul's office.</tts>
...

if(intX >= xFrom && intX <= xTo && intY >= yFrom && intY <= yTo){

// Get the office ID
String strOfficeNo = ((Element)offices.get(x1)).get Child("ID").getText();

// Get the name of occupant
String strOccupantName =
((Element)offices.get(x1)).getChild("Person").getCh ild("FirstName").getText();

// Get the gender of occupant
String strOccupantGender =
((Element)offices.get(x1)).getChild("Person").getChild("Gender").getText();

for(x1 = 0; x1 < intElementCount; x1++)
 {
int xFrom =
Integer.parseInt(((Element)offices.get(x1)).getChil d("Coordinates")
.getChild("From").getChild("X").getText());

int xTo =
Integer.parseInt(((Element)offices.get(x1)).getChil d("Coordinates")
.getChild("To").getChild("X").getText());

int yFrom =
Integer.parseInt(((Element)offices.get(x1)).getChil d("Coordinates")
.getChild("From").getChild("Y").getText());

int yTo =
Integer.parseInt(((Element)offices.get(x1)).getChil d("Coordinates")
.getChild("To").getChild("Y").getText());

151

All messages of type *repdoc are automatically routed to the Dialogue Manager. Turn 3 of the

example ‘building data’ dialogue is dealt with in exactly the same manner as turn 1.

Dialogue History

In order to respond to turn 5 (“Show me the route from her office to this [�] office.”)

MediaHub must access dialogue history on MediaHub Whiteboard to determine who the user is

referring to by uttering the word ‘her’. Here the gender of the occupant is relevant and, before

the speech semantics can be combined with the semantics of the corresponding deictic gesture,

the speech segment (see Figure 5.24) is checked against a different DTD, namely

SpeechGender.DTD.

Figure 5.24: Speech segment for turn 5 of ‘anaphora resolution’

The request for dialogue history is packaged in a new type of MediaHub XML document called

History Document (HisDoc) and this XML document is stored in a string variable called

strHisDoc. As with all XML segments passed within MediaHub, the HisDoc is converted back

into an XML document for parsing. In the Decision-Making Module, the History class is called

with two parameters: (1) QueryType contains either Building.Occupant.Male or

Building.Occupant.Female depending on gender and (2) strSpeechFrom which contains the

relevant XML speech segment. The code which invokes the History class is shown in Figure

5.25.

Figure 5.25: Retrieval of dialogue history from MediaHub Whiteboard

Checking MediaHub Whiteboard in the History class

In the History class the last three messages of type building.occupant.hisdoc are retrieved from

MediaHub Whiteboard as shown in Figure 5.26. Next, the contents of each message is

converted to an XML document and parsed for information, e.g., occupant name, office ID,

else if (QueryType == "Building.Occupant.Male"){

 strXML = "<retrieve from=\"MediaHub_Whitebo ard\"
type=\"building.occupant.hisdoc\"> <latest>3</lates t> </retrieve>";
 coll = plugHistory.retrieveMessages(strXML) ;

<!DOCTYPE speech SYSTEM "C:/Psyclone2/DomainModel/S peechGender.dtd">
<speech>
 <type>request-partial</type>
 <category>show-route</category>
 <subcategory>from-to</subcategory>
 <subject>office</subject>
 <gender>female</gender>
 <stimestamp>10345</stimestamp>
</speech>

152

gender and timestamp. The timestamp then facilitates finding the last male referred to by the

user, as shown in Figure 5.27.

Figure 5.26: Calling History class from Decision-Making Module

Figure 5.27: Finding the last male referred to in a dialogue

When the last male referred to in the dialogue has been identified, this information is

repackaged in an XML speech segment as shown in Figure 5.28.

Figure 5.28: Repackaging speech segment in the History class

The speech segment in Figure 5.24 is then posted to MediaHub Whiteboard with the single line

of code shown in Figure 5.29.

Figure 5.29: Posting speech segment from the History class to MediaHub Whiteboard

boolean posted = plugHistory.postMessage("MediaHub_ Whiteboard","building
 .request.route.speech.from.office", strSpeechP art, "English", "");

strHeader = "<multimodal><speech><stype>query-route partial</stype>
<category>from-to</category><subject>from-office</s ubject>";
 strNameTag = "<from-occupant>" + lastMale + "< /from-occupant>";
 strOfficeNoTag = "<no>" + lastOfficeNo + "</no >";
 strGenderTag = "<gender>male</gender>";
 strTimestampTag = "<stimestamp>" + strLatestTi mestamp +
 "</stimestamp>"; strFooter = "</speech>";

strSpeechPart = strHeader + strNameTag + strOfficeN oTag + strGenderTag +
strTimestampTag + strFooter;

if(strGender.equals("Male")){
 if(timestamp > latest){
 latest = timestamp;
 strLatestTimestamp = strTimestamp;
 lastMale = strName;
 lastOfficeNo = strOfficeNo;
 }

if(strGender.equals("male")){
 QueryType = "Building.Occupant.Male";

 strSpeechFrom = retrievedMsg.content;

 new History(QueryType, strSpeechFrom);
 }

else if(strGender.equals("female")){
 QueryType = "Building.Occupant.Female";

 strSpeechFrom = retrievedMsg.content;

 new History(QueryType, strSpeechFrom);
 }

153

This message is automatically routed, based on its message type, to the Decision-Making

Module which then waits for the corresponding deictic gesture. This is performed in exactly the

same manner as before at turn 1 by checking the IntDoc against a Document Type Definition –

a check that will only succeed when all the required information, i.e., semantics of speech and

deictic gesture, is present.

 This anaphora resolution example has focused on distributed processing and the

resolution of internal ambiguity using dialogue history on MediaHub Whiteboard. In this

example it was not necessary to utilise Bayesian decision-making. The next example focuses on

the use of the Domain Model to support multimodal decision-making in MediaHub.

5.7.2. Domain knowledge awareness
Consider domain knowledge awareness in a multimodal system for booking cinema tickets. The

system presents a list of four films to the user who selects the desired film with speech and eye-

gaze input. Figure 5.30 shows the Bayesian network, called CinemaTicketReservation, for this

example.

Figure 5.30: Bayesian network for ‘domain knowledge awareness’

The Bayesian network in Figure 5.30 has one node, ChosenMovie, which has influence over

four other nodes, namely Watch, MoreDetail, StartTime and EyeGaze. All nodes have the states

first, second, third and fourth, which relate to a list of four movies that are currently showing at

the cinema complex. The Watch node represents the belief, based on speech input, that the user

wants to reserve tickets for a movie on the list. The MoreDetail node represents the fact that the

154

user has previously asked for more information on the first, second, third and fourth movies on

the list. The MoreDetail node accepts hard, or instantiation, evidence, i.e., either the user has

asked for more details (indicated by 1) or not (indicated by 0). Unity on one or more states of

the MoreDetail node indicates that the user has previously acquired more information about the

movie.

MediaHub checks the dialogue history on MediaHub Whiteboard to determine if the

user has previously requested more information about a particular movie. The StartTime node,

again contains hard evidence, and represents the certain belief that the user has, or has not,

enquired about the start time of a movie. The EyeGaze node represents the belief that that user

is looking at each movie on the list based on input from a gaze-tracking module. The EyeGaze

and Watch nodes primarily have soft, or likelihood, evidence applied (e.g., 0.1, 0.45, 0.67).

Document Type Definition (DTD)

Two of the input nodes, MoreDetail and StartTime, in the Bayesian network shown in Figure

5.29 are populated following a query of MediaHub Whiteboard to establish whether or not the

user had inquired about the start time or asked for more information about any of the movies.

Note that information on all nodes is mandatory and this is reflected in the Document Type

Definition (DTD) shown in Figure 5.31. As the speech, eye-gaze and dialogue history segments

arrive in the Decision-Making Module, they are appended to an integration document (IntDoc).

The IntDoc is checked against the CinemaTicketReservation DTD after each relevant input is

received in the Decision-Making Module. As discussed in Section 5.7.1, the check against the

DTD will not succeed until all the required information is present. When all the required

information has been received, the IntDoc contains all the parameters to be supplied to the

Bayesian network as shown in Figure 5.32. The IntDoc is then posted to MediaHub

Whiteboard, which automatically delivers it to the Domain Model to be replenished with

domain-specific information, i.e., the titles of the first, second, third and fourth movies in the

list and the movie that is believed to be the focus of the user’s eye-gaze. In this example, the

Domain Model accesses domain-specific information from the MoviesCurrentlyShowing.XML

file. This file contains a list of movies currently being shown, including their title, the start time,

a link to a .wav file containing more information, a value indicating their position in the list and

their coordinates on the display. A segment of this XML file is shown in Figure 5.33 and its

corresponding DTD file is shown in Figure 5.34.

155

Figure 5.31: DTD for ‘domain knowledge awareness’

Figure 5.32: Complete IntDoc for ‘domain knowledge awareness’

<!DOCTYPE multimodal SYSTEM
"C:/Psyclone2/DomainModel/CinemaTicketReservation.d td">
<multimodal>
<Speech>
 <sType>request</sType>
 <category>reservation</category>
 <subject>movie</subject>
 <sTimestamp>10354</sTimestamp>
</Speech>
<MoreDetail>
 <mdFirst>1.0</mdFirst>
 <mdSecond>0.0</mdSecond>
 <mdThird>0.0</mdThird>
 <mdFourth>0.0</mdFourth>
</MoreDetail>
<StartTime>
 <stFirst>1.0</stFirst>
 <stSecond>0.0</stSecond>
 <stThird>0.0</stThird>
 <stFourth>0.0</stFourth>
</StartTime>
<EyeGaze>
 <coordinates>
 <x>1155</x>
 <y>2234</y>
 </coordinates>
 <gTimestamp>10312</gTimestamp>
</EyeGaze>
</multimodal>

<!ELEMENT cinemaTicketReservation (speech, eyeGaze, moreDetail, startTime)>
<!ELEMENT speech (sFirst, sSecond, sThird, sFourth, sTimestamp)>
<!ELEMENT sFirst (#PCDATA)>
<!ELEMENT sSecond (#PCDATA)>
<!ELEMENT sThird (#PCDATA)>
<!ELEMENT sFourth (#PCDATA)>
<!ELEMENT sTimestamp (#PCDATA)>
<!ELEMENT eyeGaze (coordinates, belief, eTimestamp) >
<!ELEMENT coordinates (x, y)>
<!ELEMENT x (#PCDATA)>
<!ELEMENT y (#PCDATA)>
<!ELEMENT belief (#PCDATA)>
<!ELEMENT eTimestamp (#PCDATA)>
<!ELEMENT moreDetail (mFirst, mSecond, mThird, mFou rth, mTimestamp)>
<!ELEMENT mFirst (#PCDATA)>
<!ELEMENT mSecond (#PCDATA)>
<!ELEMENT mThird (#PCDATA)>
<!ELEMENT mFourth (#PCDATA)>
<!ELEMENT mTimestamp (#PCDATA)>
<!ELEMENT startTime (stFirst, stSecond, stThird, st Fourth, stTimestamp)>
<!ELEMENT stFirst (#PCDATA)>
<!ELEMENT stSecond (#PCDATA)>
<!ELEMENT stThird (#PCDATA)>
<!ELEMENT stFourth (#PCDATA)>
<!ELEMENT stTimestamp (#PCDATA)><!ELEMENT gTimestam p (#PCDATA)>

156

Figure 5.33: Domain-specific information for ‘domain knowledge awareness’

Figure 5.34: DTD for ‘domain knowledge awareness’

In the Domain Model, the IntDoc is first parsed for the coordinates of the user’s eye-gaze.

These are then checked against the position coordinates of each of the movies in the

MoviesCurrentlyShowing.XML file using the code in Figure 5.35. When a match has been

found the contents of the following XML tags are read:

<!ELEMENT movies (movie+)>
<!ELEMENT movie (title, starttime, moredetails, no, coordinates)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT starttime (#PCDATA)>
<!ELEMENT moredetails (#PCDATA)>
<!ELEMENT no (#PCDATA)>
<!ELEMENT coordinates (x,y)>
<!ELEMENT x (from, to)>
<!ELEMENT y (from, to)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT to (#PCDATA)>

<?xml version="1.0"?>
<!DOCTYPE movies SYSTEM "C:\Psyclone2\DomainModel\M oviesCurrentlyShowing.dtd">
<movies>
 <movie>
 <title>The Whole Nine Yards</title>
 <starttime>2015</starttime>

<moredetails>"C:\Psyclone2\DomainModel\TheWholeNine YardsSummary.wav"
</moredetails>

 <no>1</no>
 <coordinates>
 <x>
 <from>900</from>
 <to>1200</to>
 </x>
 <y>
 <from>1800</from>
 <to>1900</to>
 </y>
 </coordinates>
 </movie>
 <movie>
 <title>The Green Mile</title>
 <starttime>2115</starttime>
 <moredetails>"C:\Psyclone2\DomainModel\TheGreenMil eSummary.wav"
 </moredetails>
 <no>2</no>
 <coordinates>
 <x>
 <from>900</from>
 <to>1200</to>
 </x>
 <y>
 <from>1600</from>
 <to>1700</to>
 </y>
 </coordinates>
 </movie>

157

• <title> which contain the name of the movie.

• <starttime> containing the start time in twenty-four hour format.

• <moredetails> which contains a URL to a .wav file.

• <no> which holds a number indicating the movie’s position in the list presented to the

user.

This information is then repackaged into two XML documents that are posted to MediaHub

Whiteboard: (1) RepDoc, i.e., replenished document, which is the IntDoc instantiated with

additional domain-specific data, i.e., the movie the user is believed to be looking at based on

eye-gaze input, and (2) HisDoc, i.e. history document, which is a more concise document stored

on MediaHub Whiteboard for the purpose of dialogue history retrieval (see Figure 5.36).

Figure 5.35: Matching coordinates of eye-gaze in the Domain Model

Figure 5.36: Code which posts RepDoc and HisDoc to MediaHub Whiteboard

To conclude this example the remaining key interactions in MediaHub are as follows:

• When the IntDoc is received in the Decision-Making Module, it is checked against

another DTD before the domain-specific data (movie title, position in list, name of the

movie the user is looking at) is extracted.

// Send RepDoc to MediaHub Whiteboard

boolean posted = plugDomainModel.postMessage("Media Hub_Whiteboard",
"building.request.route.repdoc", strRepDoc, "Englis h", "");

//Send HisDoc with movie title and position in list to Whiteboard (for
dialogue history)

boolean posted = plugDomainModel.postMessage("Media Hub_Whiteboard",
"building.request.route.hisdoc", strHistory, "Engli sh", "");

// intX and intY contain the eye-gaxe coordinates f rom the IntDoc
// xFrom, xTo, yFrom and yTo contain the coordinate vaules in the Domain Model

if(intX >= xFrom && intX <= xTo && intY >= yFrom && intY <= yTo){

String strMovieTitle =
(Element)movies.get(x1)).getChild("title").getText();

String strStartTime =
((Element)movies.get(x1)).getChild("starttime").get Text();

String strMoreDetails =
((Element)movies.get(x1)).getChild("moredetails").g etText();

String strNumber = ((Element)movies.get(x1)).getChi ld("no").getText();
}

158

• The values of each state of the Speech, MoreDetails, StartTime and EyeGaze nodes are

read into variables.

• The CinemaTicketReservation Bayesian network is accessed via the Hugin API.

Evidence, contained in the variables discussed in the previous step, is applied to the

Bayesian network.

• The Bayesian network is run and the resulting values of the First, Second, Third and

Fourth nodes are captured. These are posted to MediaHub Whiteboard and are then

automatically routed to the Decision-Making Module.

• The Decision-Making Module decides whether a conclusion can be reached or not, i.e.,

is there sufficient confidence attached to the winning hypothesis? A decision is taken

subsequently to either confirm the booking of the identified movie or ask the user for

clarification.

• An XML-based representation of the required action is posted to MediaHub

Whiteboard, where it is automatically delivered to the Dialogue Manager.

This ‘domain knowledge awareness’ example has focused on the role of the Domain Model in

supporting multimodal decision-making in MediaHub. This has included detail on how

Document Type Definitions (DTDs) facilitate checking the validity of XML semantic

representations and ensure that all the required data relating to different modalities has been

received. A Bayesian network represents the semantics of speech and eye-gaze input in the

Speech and EyeGaze nodes. Dialogue history determines whether the user had previously asked

for more information about a movie or had inquired about its start time. The semantics of this

dialogue history information is captured in the MoreDetail and StartTime nodes of the Bayesian

network. The actual opening, editing and running of the CinemaTicketReservation Bayesian

network has not been explicitly discussed in this section. In the remaining examples, the focus

is placed entirely on the implementation of Bayesian networks for decision-making in

MediaHub.

5.7.3. Multimodal presentation
Consider the problem of multimodal presentation in an in-car safety system which monitors the

driver’s steering, braking, facial expression, gaze, head movement and posture and gives a

warning if it believes the driver is tired. The Bayesian network for this decision-making

scenario is shown in Figure 5.37. As shown in Figure 5.37, there are four nodes that represent

the belief that the driver is tired based on facial expression (Face), eye-gaze (EyeGaze), head

movement (Head) and posture (Posture). Each of these multimodal nodes has the states Tired

and Normal which represent the belief that the driver looks tired, or not, based on the modality,

159

or evidence, observed. Two nodes, Steering and Braking, monitor the driver’s behaviour. Both

these nodes have two states: (1) Normal – representing the belief that the driver’s steering or

braking is normal and (2) Abrupt – expressing the belief that the driver’s steering or braking is

abrupt or harsh.

Figure 5.37: Bayesian network for ‘multimodal presentation’

The Tired node in the Bayesian network has the states Tired and Normal. The SpeechOutput

node has three states: (1) None – representing the belief that no action on the part of the system

is necessary, (2) FancyBreak? – which represents the belief that the system should suggest that

the driver takes a break and (3) Warning – representing the belief, based on the evidence

observed, that the driver is too tired and a warning should be issued through speech output.

The Bayesian network shown in Figure 5.37 captures a number of cause-effect relations

in the in-car safety application domain. As shown by the directed edges in the Bayesian

network, the Tired node has influence over the Steering, Braking, Face, EyeGaze, Head and

Posture nodes, i.e., the fact that the driver is tired will affect steering, braking, and the signs of

tiredness evident in the facial expression, eye-gaze, head movement and posture of the driver.

Also note that the Steering and Braking nodes have direct influence over the SystemOutput

node, whilst the Face, EyeGaze, Head and Posture nodes have indirect influence over the

SystemOutput node through the Tired node in the Bayesian network. The causal relations

present in the ‘in-car safety’ application domain are encoded in the Conditional Probability

160

Tables (CPTs) of the nodes in the Bayesian network. The CPTs of the ‘multimodal

presentation’ Bayesian network are shown in Figures 5.38 – 5.45.

Figure 5.38: CPT of Steering node

Figure 5.39: CPT of Face node

Figure 5.40: CPT of EyeGaze node

Figure 5.41: CPT of Head node

Figure 5.42: CPT of Posture node

Figure 5.43: CPT of Braking node

Figure 5.44: CPT of Tired node

161

Figure 5.45: CPT of SpeechOutput node

Due to the ability of Bayesian networks to perform abductive reasoning, i.e., from effect to

cause, evidence that a driver is braking abruptly will increase the belief that the person is tired.

Similarly, if the belief that the driver is tired based on his/her facial expression is increased,

then the value of the Tired state of the Tired node in the Bayesian network in Figure 5.37 will

also increase.

 When accessed through the Hugin API, the Bayesian network in Figure 5.37 can

recommend system output depending upon its beliefs about the tiredness of the driver. For

example, if the driver is deemed tired, i.e., the FancyBreak? state of the SystemOutput node has

a value greater than that of the None and Warning states, the system can issue the prompt,

“Would you like a break? You look a little tired.”. If the driver is believed to be very tired, i.e.,

the Warning state of the SystemOutput node has a value greater than that of the None and

FancyBreak? states, then the system could issue the prompt, “ Please pull over for a short break,

as you appear too tired to drive!” . Of course, other information could be used to influence the

decision on the likelihood of the driver being tired. For example, the length of time since the

journey commenced or the time since the last break could be incorporated into the set of rules

applied in interpreting the resulting values of the states in the SystemOutput node. The key

interactions in MediaHub for this example are summarised as follows:

• XML semantics of the driver’s facial expression, eye-gaze, head movement and posture

and an XML file relating to the steering and braking behaviour of the driver are received

in the Dialogue Manager.

• The Dialogue Manager identifies the application domain and purpose of both messages

using their message types.

• A DTD confirms the accuracy and completeness of the XML semantics.

• In the Decision-Making Module, the XML IntDoc is checked against a DTD before the

input values of the states in the ‘multimodal presentation’ Bayesian network are

extracted.

• The Bayesian network is opened with the Hugin API. Available evidence is supplied to

the Steering, Braking, Face, EyeGaze, Head and Posture nodes.

162

• The supplied evidence is propagated through the Bayesian network.

• The resulting values of the states in the SystemOutput node are read and interpreted in

the Decision-Making Module with if-else rules.

• The XML semantics of the recommended system output is sent to MediaHub

Whiteboard for the attention of a speech synthesis module that could interpret the

semantics and produce appropriate speech output.

5.7.4. Turn-taking
In this example we consider the problem of turn-taking strategy for an intelligent agent. The

Bayesian network in Figure 5.46 can support decision-making in respect of turn-taking in an

intelligent agent. The Bayesian network has three nodes that receive input information from

gaze-tracking (Gaze), posture recognition (Posture) and speech recognition (Speech) modules.

These nodes all have the same two states, Give and Take, that represent the belief that the user

wants to give or take a turn. The Turn node relates to the decision of the intelligent agent to

give or take a turn and also has the states Give and Take. The CPTs of each node in the

Bayesian network are given in Figures 5.47 - 5.50.

Figure 5.46: Bayesian network for ‘turn-taking’

Turn-taking in intelligent agents is a complex task and the Bayesian network in Figure 5.46 is

not intended to comprehensively model turn-taking. Rather, the Bayesian network is intended to

163

be used in conjunction with other modules to enable natural turn-taking in an intelligent agent.

In this example, the key decisions are those made by the recognition modules that provide the

input information to the Give and Take states of the Gaze, Posture and Speech nodes. Such

modules are not implemented in MediaHub, although possible outputs from these modules are

assumed and presented in XML format to the Dialogue Manager. The Bayesian network in

Figure 5.46 augments the individual beliefs of the gaze-tracking, posture recognition and

speech recognition modules and decides whether or not it is appropriate for the intelligent agent

to take a turn at a particular stage in a multimodal dialogue.

Figure 5.47: CPT of Gaze node

Figure 5.48: CPT of Posture node

Figure 5.49: CPT of Speech node

Figure 5.50: CPT of Turn node

Whilst the Bayesian network in Figure 5.46 is simplified and is only intended to complement

the decision-making of other modules in an intelligent agent system, an alternative more

powerful Bayesian network for the ‘turn-taking’ example is shown in Figure 5.51. As shown in

Figure 5.51, Speech, Gaze, Posture and Head nodes represent beliefs that the user wishes to

take or give a turn. Each of these nodes has the states Give and Take. Note that such nodes are

not necessary for the system, or intelligent agent, since the agent will already know when it

164

needs to take a turn. The Bayesian network in Figure 5.51 contains nodes that represent the

turn-taking intentions of both the system (S_Turn) and the user (U_Turn). Both the U_Turn and

S_Turn nodes have two states: (1) GiveTurn – representing the belief that the user/system

wishes to give the turn to the system/user and (2) TakeTurn – representing the belief that the

user/system wishes to take the turn from the system/user. Old and new turn-taking states are

represented by the Old_State and New_State nodes.

Figure 5.51: Alternative Bayesian network for ‘turn-taking’

Both these nodes contain the states UserTurn and SystemTurn, and relate to the dialogue

participant who currently holds the turn (Old_State) and the participant that will take the next

turn (New_State). Note that many other possibilities exist for the design of a Bayesian network

to support turn-taking in an intelligent agent. It is likely that several different Bayesian

networks will be needed in this, and other, key problem areas. When the required Bayesian

networks have been implemented, MediaHub can use a combination of message types, DTDs

and basic rules to decide which Bayesian network to invoke for a particular situation.

5.7.5. Dialogue act recognition
Consider the problem of dialogue act recognition in an ‘intelligent travel agent’ that engages in

multimodal communication with users wishing to book a holiday. The understanding of speech

signals and recognition of facial expressions (eyes and mouth) facilitates ambiguity resolution

relating to user dialogue acts. The system’s Bayesian network combines beliefs associated with

multimodal input to make decisions about the intentions of the user. The Bayesian network for

this example is shown in Figure 5.52.

165

Figure 5.52: Bayesian network for ‘dialogue act recognition’

As shown in Figure 5.52 there are four input nodes in the Bayesian network, Speech,

Intonation, Eyebrows and Mouth and one output node, DialogueAct. Note that the Eyebrow

node of Figure 5.52 is not concerned with the focus of user’s gaze, rather it pertains to the

recognition of muscle movement around the eye and, in particular, the eyebrows. Likewise, the

Mouth node is not related to the recognition of lip movement but is populated following the

interpretation of the shape and movement of the mouth, e.g., smile or frown. The Speech node

represents the recognition of utterances from the user, whilst the Intonation node relates to

voice intonation. The CPTs for each of the nodes depicted in Figure 5.52 are shown in Figures

5.53 - 5.57.

Figure 5.53: CPT of Speech node

166

Figure 5.54: CPT of Intonation node

Figure 5.55: CPT of Eyebrows node

Figure 5.56: CPT of Mouth node

Figure 5.57: CPT of DialogueAct node

As shown in Figures 5.53 and 5.57, the Speech and DialogueAct nodes in the Bayesian network

in Figure 5.52 have five states: (1) Greeting, (2) Comment, (3) Request, (4) Accept and (5)

Reject. Figures 5.54 – 5.56 show that the remaining nodes in the Bayesian network have four

states: (1) Unassigned, (2) Request, (3) Accept and (4) Reject. In order to simplify the Bayesian

network, the Request state represents both requests and questions, the latter being a request for

more information. The Bayesian network can resolve ambiguity that occurs in the speech input

by considering the beliefs associated with voice intonation and facial expressions of the user.

167

 An example of ambiguity that can occur in the ‘intelligent travel agent’ application domain is

where the user says “OK” in response to the system utterance, “A seven night stay in Venice

would be great this time of year”. Here the utterance “OK” has three possible interpretations:

(1) the user wants to go to Venice, i.e., the dialogue act is Accept, (2) the user wants more

details on the trip to Venice, i.e., the utterance “OK” constitutes a Request dialogue act, or (3)

the user is just considering the agent’s suggestion, i.e., the dialogue act is Comment. Another

example is where the user says ‘right’ in response to a suggestion made by the agent. Again,

this could be either an acceptance of a proposition, a request for further information or a

comment. In both these situations, recognition of the speech input alone is not sufficient for

resolving the ambiguity. In these cases the voice intonation of the user and, to a lesser degree,

the image processing of facial gestures facilitate resolution of ambiguity.

5.7.6. Parametric learning
Suppose an ‘intelligent interviewer’ multimodal system is being trained to recognise the

emotional state (e.g., happy, nervous, confused, defensive) of a person during an interview

based on voice intonation, facial expression, posture and body language. Assume that, initially,

a team of experts were consulted by decision engineers during the design of the ‘intelligent

interviewer’ and that a Bayesian network has been created that models relationships between

the voice intonation (I), facial expression (FE), posture (P), body language (BL) and emotional

state (ES) of the interviewee. In order to refine the decision-making accuracy of the ‘intelligent

interviewer’, a Wizard-of-Oz experiment is undertaken in the form of 100 live interviews. The

same team of experts who assisted the decision engineers in designing the Bayesian network

now monitor live video of the interviews and are asked to make judgements on the emotional

states of the interviewees at various stages in the interview. As a result of this process a number

of large data files are created containing each expert’s interpretation of the person’s voice

intonation, facial expression, posture and body language at various stages throughout the

interview. For each such set of interpretations, the experts also make a judgement on the

emotional state of the interviewee at that exact time, based on their multimodal interpretations.

A subset of an expert’s data file is shown in Figure 5.58. Finally, all the individual data files

from the experts are combined into one complete data set.

Parametric learning, i.e., Estimation-Maximum (EM), is now performed to learn the

parameters, or the CPTs, of the Bayesian network. Adaptive and EM learning in Hugin were

discussed in greater detail in Chapter 3, Section 3.11.5. The CPTs of the Bayesian network are

now updated to more accurately model the decision-making of the team of experts. In order to

confirm the correctness of the new Bayesian network it is possible to generate a case set of data

168

in the Hugin GUI. This is done by selecting File | Simulate Cases which opens the Generate

Simulated Cases window, as shown in Figure 5.59.

Figure 5.58: Section of data file for ‘parametric learning’

Figure 5.59: ‘Generate Simulated Cases’ window

Selecting Simulate produces a random set of evidence data that is propagated through the

Bayesian network. The resulting generated data file will be of a similar format to that produced

by the team of experts when watching the live video of the interviews. The experts can now

check this data file to ensure that they agree with the conclusions being reached by the Bayesian

network. A better method of evaluating the Bayesian network would be to conduct another

Wizard-of-Oz experiment, this time enabling the ‘intelligent interviewer’ to make judgements

on the emotional state of the interviewee, and have the team of experts monitor these decisions

to ensure their correctness.

5.8. Summary
This chapter discussed the implementation of a multimodal distributed platform hub, called

MediaHub, which performs Bayesian decision-making over multimodal input/output data.

Initially, MediaHub’s architecture and key modules were described. Next, each of MediaHub’s

modules including the Dialogue Manager, MediaHub Whiteboard, Domain Model and

I, FE, P, BL, ES
unassigned, confused, defensive, neutral, confused

relaxed, happy, relaxed, relaxed, relaxed

confused, confused, defensive, neutral, confused

happy, neutral, happy, relaxed, happy

unassigned, neutral, neutral, open, neutral

neutral , neutral , neu tral , closed , neutral

169

Decision-Making Module were discussed in detail. Semantic representation and storage with

MediaHub Whiteboard was then considered, before the role of Psyclone (Thórisson et al. 2005)

in enabling distributed processing within MediaHub was described. Five decision-making

layers were outlined, before Hugin (Jensen 1996), which implements Bayesian decision-making

in MediaHub, was detailed. MediaHub's approach to multimodal decision-making was

demonstrated for six key problems (anaphora resolution, domain knowledge awareness,

multimodal presentation, turn-taking, dialogue act recognition and parametric learning) across

five application domains (building data, cinema ticket reservation, in-car safety, intelligent

agents and emotional state recognition). The next chapter discusses testing and evaluation of

MediaHub.

170

Chapter 6 Evaluation of MediaHub

This chapter details the evaluation of MediaHub. First, the test environment in terms of the

hardware and software specification of the machines on which MediaHub is tested are outlined.

Next, the preliminary testing of MediaHub, with NetBeans IDE, Hugin GUI and Psyclone’s

psyProbe is outlined. Then, the results of testing MediaHub on six key problems in multimodal

decision-making are discussed: (1) anaphora resolution, (2) domain knowledge awareness, (3)

multimodal presentation, (4) turn-taking, (5) dialogue act recognition and (6) parametric

learning across five application domains: (1) building data, (2) cinema ticket reservation, (3) in-

car safety, (4) intelligent agents and (5) emotional state recognition. Next, the performance and

potential scalability of MediaHub is considered. The chapter concludes with a discussion on

how MediaHub meets the essential and desirable criteria required for a multimodal distributed

platform hub outlined in Chapter 4, Section 4.9.

6.1. Test environment systems specifications
MediaHub has been tested on two versions of the Windows Operating System (XP and Vista)

and one Linux distribution (Kubuntu). The hardware and software specifications of each test

machine are given in Table 6.1.

Operating System Windows XP Windows Vista Linux (Kubuntu)

Edition Professional Version
2002 Service Pack 2

Home Premium Service
Pack 1

7.10 (Gutsy Gibbon)

RAM 1024 MB 2046 MB 512 MB

Processor 2.33 GHz 3.20 GHz 2.8 GHz

Version of NetBeans IDE 5.0 5.5.1 5.5.1

Version of Psyclone 1.0.6 1.0.6 1.0.6

Version of Hugin 7.0 7.0 7.0

Table 6.1: Test environment system specifications

6.2. Initial testing
As discussed in Chapter 5, Section 5.6, the implementation and testing of MediaHub Bayesian

networks is completed in two stages: (1) the qualitative part, i.e., the structure, and quantitative

part, i.e., the parameters of the Conditional Probability Tables (CPTs), are defined with the

171

Hugin GUI and (2) the network is accessed and run through the Hugin API. The Hugin GUI

runs the Bayesian network and enables viewing of resulting values of each state of every node

in the network as shown in Figure 6.1.

Figure 6.1: Hugin GUI deploying Bayesian network

In initial testing of MediaHub a set of test values for each of the states in the Bayesian network

is drafted and these are applied to the network by right-clicking on the node in the left pane of

the GUI depicted in Figure 6.1. This invokes the Insert Likelihood window, as shown in Figure

6.2.

Figure 6.2: Entering evidence on a node through the Hugin GUI

When the evidence is entered, the beliefs on all nodes of the Bayesian network are

automatically updated and the resulting values are observed. For each set of test values, the

resulting values of the output node are manually recorded in a table, as shown in Table 6.2.

172

Input Nodes Output Node

Node 1 Node 2 Node 3 Hugin GUI Hugin API

State

1

State

2

State

1

State

2

State

1

State

2

State

1

State

2

State

1

State

2

Table 6.2: Generic structure of initial testing results table

The next stage of initial testing is to open and run the Bayesian network via the Hugin API.

This step is performed with NetBeans IDE, as shown in Figure 6.3. The resulting values of the

nodes in the Bayesian network are then recorded, e.g., in a results table as illustrated in Table

6.2, and compared to the values obtained by the network running through the Hugin GUI.

Hence, the initial testing of MediaHub ensures that identical results are achieved when the

Bayesian network is accessed with the Hugin API and when it is run in the Hugin GUI.

Figure 6.3: NetBeans IDE

 Psyclone’s psyProbe, shown in Figure 6.4, also facilitates initial testing of MediaHub.

The Post Message page of psyProbe facilitates checking that messages of a certain type are

being correctly routed to MediaHub modules subscribed to that message type. The Post

Messages page of the psyProbe is shown in Figure 6.5. The Post Message page enables the

developer to define the sender, e.g., Dialogue Manager, receiver, e.g., MediaHub Whiteboard,

173

message type and XML content of the message. The psyProbe Whiteboard Messages page can

then confirm that these messages have been posted to MediaHub Whiteboard, as shown in

Figure 6.6. Additional information on each message can be viewed by selecting the message in

the Messages page. For example, Figure 6.7 shows more information on a message of type

building.query.office.occupant.gesture.deictic.input. The psyProbe thus proves very useful in

the testing of MediaHub, particularly since it enables specific parts of MediaHub’s processing

to be quickly tested, i.e., functionality that has been previously tested, such as the integration of

speech and gesture input into a single IntDoc, can be bypassed by posting the complete IntDoc

from the Decision-Making Module to MediaHub Whiteboard using the Post Message page of

Psyclone psyProbe.

Figure 6.4: Psyclone’s psyProbe for testing MediaHub

Figure 6.5: psyProbe Post Message page

174

Figure 6.6: psyProbe Whiteboard Messages page

Figure 6.7: Viewing more information on a message with psyProbe

6.3. Evaluation of MediaHub
The evaluation of MediaHub focuses on decision-making scenarios from the six key problem

areas within five application domains, as discussed in Chapter 5, Section 5.7. This section

considers evaluation of MediaHub’s performance with respect to decision-making in each of

the six key problem areas.

6.3.1. Anaphora resolution
Decision-making with regard to anaphora resolution is demonstrated in the ‘building data’

application domain. The ‘anaphora resolution’ example, as discussed in Chapter 5, Section

5.7.1, focuses on MediaHub’s capability of using dialogue history during the course of a

multimodal dialogue. To demonstrate the process of evaluation of MediaHub in this application

domain we will consider the sequence of turns below:

1 U: Whose office is this [�]?
2 S: That’s Paul’s office.
3 U: Ok. Whose office is that [�]?
4 S: That’s Sheila’s office.

175

5 U: Show me the route from her office to this [�] office.

First, the speech semantics of turn 1 is posted from the Dialogue Manager to MediaHub

Whiteboard in a message of type:

building.query.office.occupant.speech.input

This is executed with the Post Message page of psyProbe, as shown in Figure 6.8.

Figure 6.8: Sending speech segment from Dialogue Manager to MediaHub Whiteboard

MediaHub Whiteboard is configured in the psySpec to automatically deliver messages of type

building.query* to the Decision-making Module. NetBeans’ output window, as shown in Figure

6.9, can then enable checking if the speech segment has been received by the Decision-Making

Module.

Figure 6.9: NetBeans’ output window confirming speech input received

176

Next, the corresponding semantics of the deictic gesture in turn 1 is posted from the Dialogue

Manager to MediaHub Whiteboard with a message of type:

building.query.office.occupant.gesture.deictic.input

Again the Post Message page in psyProbe, as shown in Figure 6.8, enables posting of the

message to MediaHub Whiteboard. The NetBeans output window confirms that the

corresponding deictic gesture semantics has been received in the Decision-Making Module and

that a replenished document (RepDoc) has been created and sent to the Dialogue Manager, as

shown in Figure 6.10.

Figure 6.10: RepDoc received in Dialogue Manager

The RepDoc contains data obtained from the Domain Model, e.g., the occupant’s name, gender

and office number. This data is processed in the Dialogue Manager to enable the system to

respond with turn 2 (That’s Paul’s office.). Next, the speech and gesture semantics of turn 3

(Ok. Whose office is that [�]?) is posted from the Dialogue Manager to MediaHub

Whiteboard with messages of the following respective types:

• building.query.office.occupant.speech.input

• building.query.office.occupant.gesture.deictic.input

As with turn 1, both messages are posted to MediaHub Whiteboard with the Post Message page

of psyProbe shown in Figure 6.8 which results in the two XML segments being combined and

the Domain Model being queried for office data. The resulting NetBeans output window trace is

shown in Figure 6.11.

Figure 6.11: Output trace for turn 3 of ‘anaphora resolution’

177

Again, the RepDoc sent from the Domain Model to the Dialogue Manager processes turn 4

(That’s Sheila’s office.). The speech segment for turn 5 is shown in Figure 6.12.

Figure 6.12: Speech segment for turn 5

This XML segment in Figure 6.12 is posted from Dialogue Manager to MediaHub Whiteboard

through the Post Message page of psyProbe as shown in Figure 6.13. The speech segment is

packaged in a message of type building.request.route.speech.from.office.female and all

messages of this type posted on MediaHub Whiteboard are automatically delivered to the

Decision-Making Module.

Figure 6.13: Posting the speech segment of turn 5 to MediaHub Whiteboard

As shown in Figure 6.14, the NetBeans output window confirms that the first component of the

input has been received in the Decision-Making Module and that MediaHub is waiting on the

corresponding deictic gesture.

Figure 6.14: First part of turn 5 received in Decision-Making Module

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE speech SYSTEM "C:/Psyclone2/DomainModel/S peechGender.dtd">
<speech>
 <type>request-partial</type>
 <category>show-route</category>
 <subcategory>from-to</subcategory>
 <subject>office</subject>
 <gender>female</gender>
 <stimestamp>10345</stimestamp>
</speech>

178

Next, the semantics of the corresponding deictic gesture, shown in Figure 6.15, is posted to

MediaHub Whiteboard in a message of type building.request.route.gesture.to.office.

Figure 6.15: Semantics of deictic gesture for turn 5

The semantics of the deictic gesture is combined with that of the speech segment and the

IntDoc is sent to the Domain Model via MediaHub Whiteboard. A RepDoc is then created in the

Domain Model and forwarded to the Dialogue Manager. As shown in Figure 6.16, the RepDoc

contains a text to speech string that is printed to the NetBeans output window to confirm the

correct operation of MediaHub.

Figure 6.16: Final output trace for ‘anaphora resolution’

Hence, a combination of Psyclone’s psyProbe and the NetBeans IDE output window have

facilitated testing the various stages of processing in the ‘anaphora resolution’ example and

have confirmed MediaHub’s capabilities in this problem area.

6.3.2. Domain knowledge awareness
In the ‘domain knowledge awareness’ example discussed in Chapter 5, Section 5.5.2,

MediaHub integrates the semantics of speech and eye-gaze input together with domain-specific

information and dialogue history to determine which movie from a list the user wishes to

reserve cinema tickets for. The Bayesian network implemented to demonstrate MediaHub’s

application in this problem area is given in Figure 6.17.

<gesture>
<gtype>pointing-to-office</gtype>
 <coordinates>
 <x>1155</x>
 <y>2234</y>
 </coordinates>
 <gtimestamp>12150</gtimestamp>
</gesture>
</multimodal>

179

Figure 6.17: Bayesian network for ‘domain knowledge awareness’

As shown in Figure 6.17, the Bayesian network for this example has two nodes that receive

multimodal input, Speech and EyeGaze, and two nodes that are populated as a result of

accessing dialogue history on MediaHub Whiteboard, MoreDetail and StartTime. The initial

stage of testing is completed with the Hugin GUI, as shown in Figure 6.18.

Figure 6.18: Testing of ‘domain knowledge awareness’ Bayesian network in Hugin GUI

Initial testing is part of the iterative process of Bayesian network construction discussed in

Chapter 3, Section 3.6 which includes four steps performed repeatedly until the required

functionality has been received: (1) design, (2) implementation, (3) testing and (4) analysis. As

shown in Figure 3.4 of Chapter 3, the testing phase involves running test scenarios with known

outcomes. To facilitate this testing, a table of test cases was drafted to contain different

combinations of inputs and their corresponding expected outputs. A subset of this table is given

in Table 6.3. The complete test case table is given in Appendix D. Table 6.3 has five columns

for each node in the Bayesian network and one column for checking if the expected results have

been achieved. Note that the numbers 1-4 refer to the states of each node in the Bayesian

180

network, i.e., first, second, third, fourth which in turn relate to the first, second, third and fourth

movie in the list presented to the user. T (true) and F (false) represent whether the user has, or

has not, asked for more details or inquired about the start time of a movie in the list.

 The evidence contained in the test case table shown in Table 6.3 is entered into the

Bayesian network at run-time, as shown in Figure 6.19.

Figure 6.19: Testing of ‘domain knowledge awareness’ Bayesian network

Table 6.3: Subset of test cases for ‘domain knowledge awareness’ Bayesian network

If the desired results are not observed, the parameters of the CPTs of the nodes in the Bayesian

network are adjusted and the test evidence is re-propagated through the network. This iterative

S
pe

ec
h

M
or

eD
et

ai
l

S
ta

rt
T

im
e

E
ye

G
az

e

C
ho

se
nM

ov
ie

OK?

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

65 0 15 20 T F F F F F F F 55 45 0 0 95 3 1 1 Yes

66 0 0 34 T F F F T F F T 80 20 0 0 83 0 0 17

No – % of 1

should be >

83

74 0 26 0 T F F F T F F F 76 24 0 0 89 11 0 0

No – % of 1

should be >

89

181

process of design, implementation, testing and analysis continues until the Bayesian network

correctly models the decision-making in the application domain.

 To demonstrate ambiguity resolution in this example, consider the following scenario.

Based on the semantics of speech input, MediaHub is 40% certain that the user wants to view

the first movie in the list, 20% certain that the user wants to view the second movie in the list

and 40% certain that the user wants to view the fourth movie. Based on the semantics produced

by a gaze-tracking module, MediaHub is 27%, 33%, 18% and 12% certain that the user is

focusing on the first, second, third and fourth movies in the list respectively. Applying this

evidence to the Bayesian network produces beliefs of 46.41%, 0%, 23.51% and 30.08% in the

First, Second, Third and Fourth states of the ChosenMovie node respectively, as shown in

Figure 6.20.

Figure 6.20: Evidence applied to the Speech and EyeGaze nodes

The Decision-Making Module applies rule-based decision-making to decide if the winning

hypothesis is greater than 50% and at least 20% more than the closest competing hypothesis.

Currently this is not the case and therefore a decision on which movie the user wants to view

cannot be made without seeking clarification from the user. Now assume that data from the

domain model facilitates updating the MoreDetails node, i.e., the user asked for more details on

both the first and second movie. This causes a belief of 50% being applied to both the First and

the Second states of the MoreDetails node. The First and Fourth states of the ChosenMovie

node are updated to 48.07% and 51.93%, as shown in Figure 6.21. Next, information from

MediaHub Whiteboard that the user previously only asked about the start time of the first movie

is applied to the Bayesian network, i.e., the belief in the First state of the StartTime node is

182

updated to 100%. This causes MediaHub to believe with absolute certainty that the user wishes

to reserve tickets to see the first movie, as illustrated in Figure 6.22.

Figure 6.21: Further evidence applied to Speech and EyeGaze nodes

Figure 6.22: Evidence applied on the Speech and EyeGaze nodes

Hence, a combination of the semantics of multimodal inputs and information from dialogue

history facilitates resolving ambiguity on the intentions of the user. As discussed in Chapter 5,

Section 5.7.2, domain-specific information is accessed to determine which movies are currently

being shown in the cinema and are therefore presented to the user.

 For testing access to the Bayesian network in MediaHub via the Hugin API, the

semantics of previous queries requesting more details on, and the start times of, certain movies

is first posted to MediaHub Whiteboard through the Post Message page of psyProbe. Then,

183

again using psyProbe, the marked up XML semantics of the speech and eye-gaze is posted to

MediaHub Whiteboard. The output window in NetBeans IDE verifies that the data posted to

MediaHub Whiteboard has been received by the correct MediaHub modules and that the

processing within each module is correct. An example output trace from testing in NetBeans

IDE is shown in Figure 6.23.

Figure 6.23: NetBeans output trace for ‘domain knowledge awareness’

The test scenarios in Table 6.3 facilitate creating the marked-up semantics posted to MediaHub

Whiteboard. The results of propagating the test evidence held in Table 6.3 is output in

NetBeans IDE and checked against the results obtained with the Hugin GUI. To summarise, the

key steps in testing the ‘domain knowledge awareness’ example are:

• Post semantics of dialogue history to MediaHub Whiteboard using psyProbe.

• Post semantics of speech input to MediaHub Whiteboard.

• Post semantics of eye-gaze input to MediaHub Whiteboard.

• Confirm that the messages have been successfully delivered to appropriate modules

through the output window in NetBeans IDE.

• Output the conclusions reached by the Bayesian network, i.e., values of the states in the

ChosenMovie node.

• Check that these results are correct by cross referencing against those obtained when

running the Bayesian network with the Hugin GUI.

6.3.3. Multimodal presentation
The ‘multimodal presentation’ example discussed in Chapter 5, Section 5.7.3, demonstrates

MediaHub’s use in addressing the problem of multimodal presentation in an in-car safety

application domain. In this example, the semantics of facial expression, eye-gaze, head and

posture input are considered along with the inputs derived from monitoring of the steering and

184

braking behaviour of the driver. The Bayesian network for demonstrating MediaHub’s

application to this problem area is shown in Figure 6.24.

Figure 6.24: Bayesian network for ‘multimodal presentation’

As with all Bayesian networks developed in MediaHub, the initial stage of testing is performed

with the Hugin GUI and a table of test cases facilitates verification of correct operation of the

Bayesian network. A subset of this table is presented in Table 6.4. See Appendix D for the full

test case table.

S
te

er
in

g

B
ra

ki
ng

F
ac

e

E
ye

G
az

e

H
ea

d

P
os

tu
re

T
ir

ed

S
pe

ec
hO

ut
pu

t

OK?

N A N A N T N T N T N T N T N F W

88 12 85 15 51 49 55 45 19 81 78 22 85 15 90 5 5
No, value of None state of

SpeechOutput should be lower

10 90 35 65 50 50 45 55 34 66 55 45 23 77 3 20 77
Yes – but try few more test cases

like this!

5 95 30 70 55 45 45 55 40 60 60 40 25 75 2 18 80 Yes

Table 6.4: Subset of test cases for ‘multimodal presentation’ Bayesian network

Table 6.4 has eight columns, one for each of the nodes in the Bayesian network and one field

for recording whether or not correct results have been obtained. Note that the letters N and L

relate to the Normal and Abrupt states in the Steering and Braking nodes of the Bayesian

network. Letters N and T in the Face, EyeGaze, Head, Posture and Tired nodes represent the

belief that the driver looks tired or normal. Note that N in the SpeechOutput node represents that

185

the in-car safety system should not issue any speech output, F represents the FancyBreak? state,

whilst W represents the belief that the system should issue a spoken warning to the driver.

 As with the previous example, the ‘multimodal presentation’ Bayesian network is tested with

test scenarios in the Hugin GUI with known, or expected, outcomes. For example, the process

of entering the first row of data in Table 6.4 is shown in Figure 6.25. The left pane in the Hugin

GUI window shows the values of states in all nodes of the Bayesian network.

Figure 6.25: Entering test evidence into ‘multimodal presentation’ Bayesian network

 Following each iterative test of the Bayesian network, the Tired and SpeechOutput fields of

Table 6.4 are updated. The results are then analysed and the OK? field is completed. Again, the

CPTs of the nodes in the Bayesian network are updated based on the analysis of the Bayesian

network’s performance and the testing is continued until satisfactory performance has been

achieved.

 An example of ambiguity resolution in this example, is where steering is abrupt

(Normal: 35, Abrupt: 65), braking is normal (Normal: 65, Abrupt: 35) and the drivers facial

expression suggest with a confidence of 50% that the driver is tired. Applying these parameters

to the Bayesian network does not reach a conclusion with a sufficient degree of confidence, as

shown in Figure 6.26. As shown in the SpeechOutput monitor window in Figure 6.26, applying

this evidence to the Bayesian network produces the following results in the states of the

SpeechOutput node:

• None: 26.78%

• FancyBreak?: 32.51%

186

• Warning: 40.71%

If we now add evidence to the EyeGaze node, i.e., the driver looks tired with a belief of 74%,

the Head node, i.e., the driver is tired with a belief of 78% and the Posture node, i.e., the driver

is tired with a belief of 80%, the ambiguity is reduced as illustrated in Figure 6.27.

Figure 6.26: Entering test evidence into the ‘multimodal presentation’ Bayesian network

Figure 6.27: Entering test evidence into ‘multimodal presentation’ Bayesian network

 As shown in Figure 6.27, the belief that a warning has been issued has increased from 40.71%

to 50.54%. Also note that as the evidence on each of the nodes is propagated, all nodes are

automatically updated to reflect this new evidence and the degree of influence applied from

parent nodes. For, example, the Tired state of Head node was set to 78%, but when the

influence of the Tired node is taken into account the belief of this state is dynamically updated

187

to 82.45% as shown in Figure 6.27. This dynamic updating of beliefs based on new evidence,

and hence the new weighting of influence between the nodes, is true for all nodes in the

Bayesian network.

 When the Bayesian network is thoroughly tested in the Hugin GUI, the opening, editing

and running of the Bayesian network through the Hugin API is then evaluated. Semantics

pertaining to the various inputs is posted to MediaHub Whiteboard through Psyclone psyProbe

and the conclusions reached by the Bayesian network are observed in the output window of

NetBeans IDE. Figure 6.28 shows the psyProbe posting the semantics of the driver’s facial

expression to from Dialogue Manager to MediaHub Whiteboard.

Figure 6.28: psyProbe testing ‘multimodal presentation’

Figure 6.29 shows the conclusion reached by the Bayesian network being written to the output

window in NetBeans IDE.

Figure 6.29: Results of running ‘multimodal presentation’ Bayesian network

188

6.3.4. Turn-taking
The Bayesian networks in Figures 6.30 and 6.31 demonstrate MediaHub’s application to the

problem of turn-taking in intelligent agents. Decision-making within this problem area was

discussed in greater detail in Chapter 5, Section 5.7.4.

Figure 6.30: ‘Turn-taking’ Bayesian network in Hugin

Figure 6.31: Alternative ‘turn-taking’ Bayesian network

The same approach to testing is applied as in the previous example: (1) the Bayesian networks

are thoroughly tested with the Hugin GUI, and (2) access to the Bayesian network in MediaHub

via the Hugin GUI is tested with NetBeans IDE and psyProbe. Tables 6.5 and 6.6 show subsets

of the test case tables for both ‘turn-taking’ Bayesian networks (See Appendix D for full test

case tables).

189

Gaze Posture Speech Turn
OK?

G T G T G T G T

62 38 40 60 60 40 57 43 Yes

55 45 33 67 56 44 46 54 Yes

35 65 52 48 41 59 37 63 Yes

Table 6.5: Subset of test cases for ‘turn-taking’ Bayesian network

S
pe

ec
h

G
az

e

P
os

tu
re

H
ea

d

U
_T

ur
n

S
_T

ur
n

O
ld

_S
ta

te

N
ew

_S
ta

te

OK?

G T G T G T G T GT TT GT TT U S U S

45 55 50 50 38 62 30 70 29 71 T F F T 85 15 Yes

74 26 55 45 62 38 49 51 72 28 F T T F 17 83 Yes

91 9 70 30 85 15 70 30 94 6 F T T F 3 97 Yes

Table 6.6: Subset of test cases for alternative ‘turn-taking’ Bayesian network

In Tables 6.5 and 6.6, the letters G and T represent the states of Give and Take, GT and TT are

abbreviations of GiveTurn and TakeTurn, whilst U and S represent the UserTurn and

SystemTurn of the New_State node. Tables 6.5 and 6.6 facilitate testing and refining the

decision-making of the Bayesian networks in Figures 6.30 and 6.31 and both networks were

considered capable of contributing to the resolution of ambiguity in respect of turn-taking in

intelligent agents.

6.3.5. Dialogue act recognition
The problem of dialogue act recognition in the application domain of an ‘intelligent travel

agent’ was discussed in Chapter 5, Section 5.7.5. Figure 6.32 illustrates the testing of the

Bayesian network implemented for the ‘dialogue act recognition’ example. Table 6.7 presents a

subset of test cases used for testing the Bayesian network in Figure 6.32. The complete test case

table is given in Appendix D. The testing and evaluation of the Bayesian network in Figure 6.32

confirmed MediaHub’s capability of supporting dialogue act recognition in an intelligent agent.

190

Figure 6.32: Testing of ‘dialogue act recognition’ Bayesian network

Speech Intonation Eyebrows Mouth DialogueAct OK?

G C R A X U R A X U R A X U R A X G C R A X

95 5 0 0 0 90 0 0 10 90 0 0 10 25 25 25 25 90 10 0 0 0 Yes

0 20 0 80 0 0 0 30 70 0 0 30 70 0 0 50 50 0 0 0 75 25 Yes

0 20 0 80 0 25 25 25 25 0 0 30 70 0 0 50 50 0 0 0 85 15 Yes

Table 6.7: Subset of test cases for ‘dialogue act recognition’ Bayesian network

6.3.6. Parametric learning
Chapter 5, Section 5.5.6 discussed the example of an ‘intelligent interviewer’ multimodal

system to demonstrate MediaHub’s capability of supporting parametric learning with the Hugin

GUI. To facilitate the testing of parametric learning the Bayesian network shown in Figure 6.33

was constructed. However, unlike the previous example, the CPTs of the Bayesian network

were not altered during its construction. Next, a data file was created containing 100

combinations of inputs to the states of the Bayesian network combined with the corresponding

conclusions, i.e., values in the states of the EmotionalState node. A section of the data file for

learning the parameters of the Bayesian network is shown in Figure 6.34. Note that I, FE, P, BL

and ES in the Bayesian network in Figure 6.34 are abbreviations for intonation, facial

expression, posture, body language and emotional state respectively.

191

Figure 6.33: Bayesian network for ‘parametric learning’

Figure 6.34: Section of data file for ‘parametric learning’

The data file given in Figure 6.34 then facilitates learning the parameters of the Bayesian

network and hence modelling the causal relationships between the variables of the data file, as

shown in Figure 6.35.

Figure 6.35: Section of data file for ‘parametric learning’

I, FE, P, BL, ES
happy, neutral, happy, relaxed, happy

relaxed, happy, relaxed, relaxed, relaxed

neutral, confused, defensive, neutral, confused

unassigned, neutral, neutral, open, neutral

happy, neutral, neutral, open, neutral

unassigned, confused, defensive, neutral, confused

192

When the parameters of the CPTs in the Bayesian network were learned, the Bayesian network

was tested with a test case table as in the previous example. The Bayesian network was then

adjusted manually through the Hugin GUI until desired performance was achieved. The Hugin

GUI was found to correctly model the relationships between the variables of the data file.

However, since the data file was simulated, i.e., not the result of a Wizard-of-Oz experiment as

discussed in Section 5.7.6, and it contained just 100 test cases, the resulting Bayesian network

required considerable refinement before it was deemed useful for emotional state recognition.

This was to be expected, since the data file was created by a non-expert in the field of emotional

state recognition. However, the testing did confirm MediaHub’s ability to learn the parameters

of a Bayesian network from multimodal data.

6.4. Performance of MediaHub
The performance of MediaHub obviously has a huge impact on its potential scalability. Since

MediaHub constitutes a centralised distributed platform hub, the load on the machine hosting

MediaHub will increase proportionally to the number of interacting modules and the frequency

of the interactions between modules. The ability of MediaHub to process the semantics of

multimodal data in a timely fashion is critical to its applicability within a multimodal system.

Temporality, as discussed in Chapter 4, Section 4.4, is hugely significant if intelligent and time

critical decisions are to be made during the course of a multimodal dialogue. Psyclone has

mechanisms in place that assist temporal management. As observed in Stefánsson et al. (2009,

p. 67), “Psyclone does not need to pre-compute the dataflow beforehand but rather manages it

dynamically at runtime, optimizing based on priorities of messages and modules”. Although

MediaHub was tested across six key problem areas and five application domains and could be

potentially applied to a number of other problem areas and application domains, it should be

noted that MediaHub has yet to be fully tested in a live fully functional multimodal system.

MediaHub’s performance and scalability will be dependent upon the application domain in

which it is deployed. It is therefore difficult to make definitive claims on MediaHub’s expected

performance in a fully implemented multimodal system. Throughout testing, however,

MediaHub’s impact on system resources was monitored with Task Manager in the Windows

Operating System (see Figure 6.36) and KDE System Guard (KSysGuard) Performance

Monitor in Linux (Kubuntu), as shown in Figure 6.37.

 MediaHub was found to achieve acceptable levels of performance on all three test

environment operating systems, i.e., Windows XP, Windows Vista and Linux (Kubuntu). There

was no noticeable difference in performance between the Windows XP and Vista PCs. Nor was

MediaHub found to run noticeably faster or more efficiently on the Linux machine. Both speed

193

and impact on system resources was comparable across all three test environment operating

systems. However, it is again worth noting that, MediaHub is a testbed distributed platform hub

that has yet to be fully implemented within a live multimodal system. It is therefore not possible

to draw complete conclusions on its performance and scalability. However, initial testing across

six key problem areas and five application domains has produced satisfactory performance

results.

Figure 6.36: Task Manager in Windows Vista

Figure 6.37: KSysGuard Performance Monitor in Linux (Kubuntu)

6.5. Requirements criteria check

Table 6.8 summarises a check against MediaHub’s capabilities against each of the requirements

criteria for a multimodal distributed platform hub listed in Chapter 4, Section 4.9. A symbol

indicates full capability and a symbol denotes partial capability.

194

Capability MediaHub

E1. Ability to process both multimodal input and output.
E2. Fusion of both input and output semantics.
E3. Representation of semantics on both input and

output.

E4. Dynamic updating of belief associated with

multimodal input and output.

E5. Distributed processing.
E6. Maintenance of dialogue history.
E7. Current context consideration.
E8. Ambiguity resolution.
E9. Storage of domain-specific information.
E10. Ability to deal with missing data.
E11. Decisions on best combination of output.
E12. Ability to learn from sample data.
D1. Multi-platform.
D2. Ability to learn from experience.
D3. Ability to learn from real data.

Table 6.8: Check on multimodal hub requirements criteria

As shown in Table 6.8, MediaHub offers full capability for each of the essential criteria listed in

Chapter 4, Section 4.9. MediaHub is concerned with the processing of multimodal input/output

data and with the fusion and storage of input/output semantics. Bayesian networks dynamically

update the states of all nodes as new evidence is applied. Psyclone enables distributed

processing in MediaHub and the maintenance of dialogue history on the MediaHub

Whiteboard. The current context is encoded in Bayesian networks applicable to each problem

domain. Also, Psyclone offers its own context mechanism for enabling different module

behaviour that is context dependant. Ambiguity resolution with different modalities is a key

task for MediaHub’s decision-making mechanism. The Domain Model stores domain-specific

195

information in XML format. As previously mentioned, Bayesian networks are capable of

reaching conclusions when some of the relevant inputs to the problem domain are absent.

Therefore MediaHub has the capability of dealing with missing data. MediaHub can also make

decisions on the optimal combinations for multimodal output.

6.6. Summary
This chapter discussed the objective evaluation of MediaHub. The evaluation focused on

MediaHub’s performance in six key problem areas: (1) anaphora resolution, (2) domain

knowledge awareness, (3) multimodal presentation, (4) turn-taking, (5) dialogue act recognition

and (6) parametric learning, across five application domains: (1) building data, (2) cinema ticket

reservation, (3) in-car safety, (4) intelligent agents and (5) emotional state recognition. The

iterative process of design, implementation, testing and analysis of the implemented Bayesian

networks was described and the utilisation of Psyclone psyProbe and Hugin GUI for testing

Bayesian networks was detailed. The use of NetBeans IDE for verifying access to Bayesian

networks via the Hugin GUI was also described. MediaHub’s performance and potential

scalability was then discussed. Finally, MediaHub was checked against the necessary and

sufficient requirements criteria for a distributed multimodal platform hub. MediaHub was found

to offer full capability for all essential criteria and partial capability for the remaining three

desirable criteria. In summary, based on the evaluation discussed here, MediaHub is considered

capable of performing effective Bayesian decision-making in a multimodal distributed platform

hub.

196

Chapter 7 Conclusion and Future Work

Decision-making in multimodal systems includes semantic representation, communication and

AI reasoning techniques. This chapter concludes the thesis by first providing a summary of the

research completed here. Next, the results are compared to other related work. Finally, there is a

discussion on future work and applications of this work.

7.1. Summary
In this thesis we have discussed the problems and solutions for decision-making in a

multimodal distributed platform hub. These are broadly categorised into three areas: (1)

semantic representation and storage, (2) communication and (3) decision-making. The three key

objectives of this thesis are: (1) interpretation and generation of multimodal semantic

representations, (2) coordination of communication between the modules of a multimodal

distributed platform hub and with external modules and (3) performing decision-making with

Bayesian networks.

 Previous work in the areas of multimodal data fusion and synchronisation, semantic

representation and storage, communication, decision-making, distributed processing,

multimodal platforms and systems, intelligent multimedia agents, turn-taking in intelligent

agents, multimodal corpora and annotation tools, dialogue act recognition and reference

resolution was reviewed. A detailed analysis of Bayesian networks was provided, including a

discussion of the definition, history and structure of Bayesian networks, intercausal inference,

influence diagrams, challenges in Bayesian network construction, Conditional Probability

Tables (CPTs), limitations, advantages and applications of Bayesian decision-making, the

utilisation of Bayesian networks in multimodal systems and software tools for their

implementation.

 Having examined the problems and solutions pertinent to multimodal decision-making a

Bayesian approach to decision-making in a multimodal distributed platform hub was proposed.

This included a discussion on the key problems and the nature of decision-making within

multimodal systems, with decisions categorised into two areas relating to: (1) synchronisation

of multimodal data and (2) multimodal data fusion. The rationale for MediaHub was discussed

by explaining the key advantages of Bayesian networks, i.e., their ability to perform intercausal

reasoning, representation of casual dependencies between variables of a problem domain, their

197

compact graphical structure, their ability to represent uncertainty and ambiguity, their tolerance

of missing data and their ability to learn. Necessary and sufficient requirements criteria for an

intelligent multimodal distributed platform hub and the benefits derived from the application of

Bayesian networks in multimodal decision-making were also discussed.

 Next, the implementation of a multimodal distributed platform hub, called MediaHub,

was discussed. The following four key modules of MediaHub were detailed: (1) Dialogue

Manager, (2) MediaHub Whiteboard, (3) Decision-Making Module and (4) Domain Model.

MediaHub constitutes a publish-subscribe architecture with a central whiteboard for semantic

representation. Communication within MediaHub is based on the OpenAIR specification

(Mindmakers 2009; Thórisson et al. 2005) and is achieved by exchanging semantic

representations between modules via MediaHub Whiteboard. The role of Psyclone (Thórisson

et al. 2005) which facilitates distributed processing in MediaHub was then described in detail

and the Hugin tools (Jensen 1996) for Bayesian decision-making were explained. The role of

MediaHub psySpec in defining the configuration of MediaHub’s modules on invocation was

also described.

 Bayesian networks were developed through an iterative process of design,

implementation, testing and analysis. The four key stages in implementing Bayesian network

are: (1) defining the variables of the application domain, (2) understanding the causal

relationships between the variables of the domain, (3) determining the structure of a Bayesian

network, i.e., the qualitative component, to model the causal relations and (4) eliciting the

parameter values of the Bayesian network in the Conditional Probability Tables (CPTs), i.e., the

quantitative component. When these four stages are resolved, the actual construction and testing

of the Bayesian network in the Hugin GUI is a relatively straightforward task. Five decision-

making making layers were outlined: (1) psySpec and Contexts, (2) Message Types, (3)

Document Type Definitions (DTDs), (4) Bayesian networks and (5) Rule-based.

 Multimodal decision-making in MediaHub was demonstrated through worked examples

that provide solutions to six key problems in five application domains. The evaluation of

MediaHub focused on its performance in six key problem areas for multimodal decision-

making: (1) anaphora resolution, (2) domain knowledge awareness, (3) multimodal

presentation, (4) turn-taking, (5) dialogue act recognition and (6) parametric learning, across

five application domains: (1) building data, (2) cinema ticket reservation, (3) in-car safety, (4)

intelligent agents and (5) emotional state recognition. Finally, MediaHub’s capabilities were

checked against the requirements criteria for a multimodal distributed platform hub.

198

To sum up, this thesis provides:

(1) A generic approach to Bayesian-based decision-making within a multimodal distributed

platform hub.

(2) Applications of Bayesian networks to decision-making for six key problems in

multimodal systems: anaphora resolution, domain knowledge awareness, multimodal

presentation, turn-taking, dialogue act recognition and learning.

(3) Implementation and evaluation of (1) within MediaHub.

7.2. Relation to other work
MediaHub relates to other research within a similar theoretical and practical context including

multimodal platforms, multimodal presentation systems, intelligent agents and other

multimodal systems as discussed in Chapter 2, Sections 2.8 and 2.9. This section discusses

MediaHub in relation to other research.

DARBS (Distributed Algorithmic and Rule-Based System) (Choy et al. 2004a, 2004b;

Nolle et al. 2001) proposes the use of rule-based, neural network and genetic algorithm

knowledge sources working in parallel around a central blackboard. However, DARBS does not

implement or advocate the use of Bayesian networks. Similarities exist between MediaHub and

Chameleon (Brøndsted et al. 1998, 2001), discussed in Chapter 2, Section 2.8.1. For example,

Chameleon’s dialogue manager and Blackboard operate in a similar fashion to MediaHub’s

Dialogue Manager and MediaHub Whiteboard. Both implement a domain model and in both

communication is achieved by exchanging semantic representation between modules via a

semantic storage module. Both Chameleon and MediaHub address the problem of anaphora

resolution in a ‘building data’ application domain. However, Chameleon uses a frame-based

method for semantic representation, whilst MediaHub uses XML. Also, domain-specific

information in Chameleon is stored in text files linked together in hierarchical linked-list

structures with a series of search functions, whilst all domain information in MediaHub is

stored in XML format. MediaHub’s use of Psyclone for distributed processing compares

favourably with DACS (Fink et al. 1996) used for communication in Chameleon. Chameleon

performs rule-based decision-making, whilst MediaHub implements Bayesian networks.

Additionally, MediaHub implements a Whiteboard using Psyclone which is an extension of the

blackboard-based model of semantic storage implemented in Chameleon.

XWand (Wilson & Shafer 2003; Wilson & Pham 2003) is a wireless sensor package

enabling natural interaction within intelligent spaces. XWand has a dynamic Bayesian network

199

for action selection within an intelligent space focussing on the home environment. XWand

could potentially be applied to select movies from a list on a computer screen as discussed in

the ‘domain knowledge awareness’ example in Chapter 5, Section 5.7.2. However, the hand-

held wand would clearly not be suitable for use by the driver in the car environment as

considered in the ‘multimodal presentation’ example in Chapter 5, Section 5.7.3. SmartKom

offers a wide range of capabilities in a host of areas important to multimodal systems. However,

it does not specifically explore the application of a generic Bayesian approach to decision-

making within the hub of a distributed platform. Moreover, the focus of MediaHub is the

development of a multimodal distributed platform hub that can be utilised within other

multimodal systems. Much multimodal research is concerned with improving the quality of the

time a driver spends in a car. Multimodality in the car environment has been considered at

length in SmartKom (Wahlster 2006). In Berton et al. (2006) driver interaction with mobile

services in the car is investigated. However, SmartKom is not applied to in-car safety as

described in Section 5.5.3, Chapter 5. SmartKom deploys rule-based processing and a

stochastic model for decision-making. Driver interaction with both online and offline

entertainment and information services is considered in Rist (2001) where monitoring of the

status of the driving situation, i.e., visibility, distance from another vehicle, road condition and

the status of the driver, i.e., steering, pressure on the steering wheel, eye-gaze and heartbeat, is

addressed.

7.3. Future work
In this section other problem areas and functionality that will be addressed by MediaHub in the

future are discussed. The potential deployment of MediaHub within other application domains

is also considered.

7.3.1. MediaHub increased functionality
Future work includes the integration of MediaHub with existing multimodal systems, such as

TeleTuras (Solon et al. 2007) and CONFUCIUS (Ma 2006), that require complex decision-

making and distributed communication. This integration will address the problem of

synchronisation, which was not fully addressed in this thesis. It is also possible that structural

learning could facilitate generation of entirely new Bayesian networks that model the causal

dependencies that exist between variables in a given data set. The data could be derived from

existing multimodal corpora, e.g., AMI (Carletta et al. 2006; Petukhova 2005), or it could be

created with a Wizard-of-Oz experiment for the application domain. Structural learning, as

discussed in Chapter 3, Section 3.11.5, is a feature offered by the Hugin software tool and will

be investigated further in the future development of MediaHub. Currently, all semantics in

200

MediaHub is represented in XML format and manually created for the purpose of

demonstration and evaluation. The potential for applying the EMMA (2009) semantic

representation formalism is a future consideration, as is the automatic learning of Bayesian

networks from corpora of existing data, e.g., AMI (Carletta et al. 2006). Future work will also

aim to meet the requirements criteria discussed in Chapter 6, Section 6.5, which are presently

only partially met, including the ability to operate across multiple platforms and the ability to

learn from both experience and real data. Also planned for future work is a more detailed

analysis of MediaHub’s performance and scalability.

7.3.2. MediaHub application domains
The use of Bayesian networks in MediaHub across various application domains was discussed

in Section 5.7, Chapter 5. A number of other potential application domains have been

considered including determining the emotional and intentional state of a user during a web-

browsing session, strategy adaptation for an intelligent sales agent and structural learning of a

new Bayesian network from a data set. Similar to the ‘intelligent interviewer’ example

discussed in Section 5.5.6, provided there are recognition modules available for speech, facial

expression and eye-gaze, it is feasible that a Bayesian network can be applied to determining

the emotional and intentional state (e.g., happy, confused, frustrated, angry) of the user whilst

browsing the Web. An ‘intelligent Web browser’ multimodal system could monitor a user’s

speech, facial expression and eye-gaze to determine the user’s emotional state at various stages

in a Web browsing session. The relevance of web page content, the accuracy of a search

strategy and the understanding of the user’s intentions could then be improved based on the

beliefs about the user’s emotional state. Whilst decision engineers and experts may have

varying views on the causal relations in this, and indeed any other, application domain,

Bayesian networks would certainly be capable of representing these relations. MediaHub, in

conjunction with the Hugin API and Psyclone, has both the framework and functionality

necessary to implement Bayesian decision-making for user emotional state recognition.

 Another possible application considered is related to the strategy adaptation for an

‘intelligent sales agent’. The system could operate in a number of contexts derived through

discussions with sales and marketing experts (e.g., Introduction, ExplainProduct, Listen,

NegotiateOnPrice, ArrangeAnotherMeeting and CloseDeal). The input nodes of the ‘intelligent

sales agent’ Bayesian network would relate to the gesture, posture, facial expression and body

language of the potential buyer. Context and dialogue history would influence the decision-

making process. Outputs of the Bayesian networks would be decisions on strategy, e.g. ‘attempt

to close the sale’, ‘change package offering’, ‘drop the price’, ‘arrange another meeting’, and

201

‘give up’. Another Bayesian network could recommend non-verbal cues and body language

categories (e.g., neutral, open, relaxed, confident) and speech output of the ‘intelligent sales

agent’. Again, the real challenge is not in the actual representation of the multimodal data or the

construction of the Bayesian networks, but in understanding the causal relations present

between the relevant variables in the application domain. When this knowledge is elicited, e.g.,

through discussions with sales and marketing and body language experts, the construction of

the Bayesian networks is relatively straightforward.

7.4. Conclusion
The aim of this thesis is to develop a Bayesian approach to decision-making within a

multimodal distributed platform hub. In order to demonstrate this approach, MediaHub, a test-

bed multimodal distributed platform hub, was implemented. MediaHub constitutes a publish-

subscribe architecture that uses existing software tools, Psyclone and Hugin, to enable Bayesian

decision-making over multimodal input/output data. Evaluation results demonstrate how

MediaHub has met the objectives of this research and a set of requirements criteria defined for a

multimodal distributed platform hub. This evaluation focused on six key problem areas across

five application domains. The evaluation gives positive results that highlight MediaHub’s

capabilities for decision-making and shows MediaHub to compare favourably with existing

approaches.

 Suggestions for future work include increased functionality of MediaHub such as the

automatic learning of Bayesian networks from multimodal corpora and the utilisation of

EMMA for MediaHub’s semantic representation, as well as the development of a more

formalised API or user interface to facilitate integration with existing multimodal systems. In

addition, there are opportunities to demonstrate the potential of MediaHub to new application

domains. MediaHub is domain independent and could be potentially deployed in a range of

multimodal application areas that require distributed processing and intelligent multimodal

decision-making and this merits further consideration. The Bayesian approach employed in

MediaHub has demonstrated a degree of universality, regarding decision making over

multimodal data, which has enhanced its applicability in the domain of multimodal decision-

making.

202

 Appendices

203

Appendix A: MediaHub’s Document Type Definitions (DTDs)

Example Document Type Definitions (DTDs) which check the validity of XML semantic

segments in MediaHub.

Figure A.1: DTD for ‘anaphora resolution’

Figure A.2: DTD for ‘domain knowledge awareness’

<!ELEMENT movies (movie+)>
<!ELEMENT movie (title, starttime, moredetails, no, coordinates)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT starttime (#PCDATA)>
<!ELEMENT moredetails (#PCDATA)>
<!ELEMENT no (#PCDATA)>
<!ELEMENT coordinates (x,y)>
<!ELEMENT x (from, to)>
<!ELEMENT y (from, to)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT to (#PCDATA)>

<!ELEMENT Offices (Office+)>
<!ELEMENT Office (ID, Person, Coordinates)>
<!ELEMENT ID (#PCDATA)>
<!ELEMENT Person (FirstName, Surname, Gender)>
<!ELEMENT FirstName (#PCDATA)>
<!ELEMENT Surname (#PCDATA)>
<!ELEMENT Gender (#PCDATA)>
<!ELEMENT Coordinates (From, To)>
<!ELEMENT From (X,Y)>
<!ELEMENT To (X,Y)>
<!ELEMENT X (#PCDATA)>
<!ELEMENT Y (#PCDATA)>

<!-- speech and gesture can be in any order -->
<!ELEMENT carSafety (face, eyeGaze, posture, head, steering, braking)>
<!ELEMENT face (fNormal, fTired, fTimestamp)>
<!ELEMENT fNormal (#PCDATA)>
<!ELEMENT fTired (#PCDATA)>
<!ELEMENT fTimestamp (#PCDATA)>
<!ELEMENT eyeGaze (eNormal, eTired, eTimestamp)>
<!ELEMENT eNormal (#PCDATA)>
<!ELEMENT eTired (#PCDATA)>
<!ELEMENT eTimestamp (#PCDATA)>
<!ELEMENT posture (pNormal, pTired, pTimestamp)>
<!ELEMENT pNormal (#PCDATA)>
<!ELEMENT pTired (#PCDATA)>
<!ELEMENT pTimestamp (#PCDATA)>
<!ELEMENT head (hNormal, hTired, hTimestamp)>
<!ELEMENT hNormal (#PCDATA)>
<!ELEMENT hTired (#PCDATA)>
<!ELEMENT hTimestamp (#PCDATA)>
<!ELEMENT steering (sNormal, sAbrubt, sTimestamp)>
<!ELEMENT sNormal (#PCDATA)>
<!ELEMENT sAbrubt (#PCDATA)>
<!ELEMENT sTimestamp (#PCDATA)>
<!ELEMENT braking (bNormal, bAbrubt, bTimestamp)>
<!ELEMENT bNormal (#PCDATA)>
<!ELEMENT bAbrubt (#PCDATA)>
<!ELEMENT bTimestamp (#PCDATA)>

Figure A.3: DTD for ‘multimodal presentation’

204

Figure A.4: DTD for ‘turn-taking’

Figure A.5: DTD for ‘dialogue act recognition’

<!ELEMENT turnTaking2 (speech, eyeGaze, posture, he ad, status)>
<!ELEMENT speech (sGive, sTake, sTimestamp)>
<!ELEMENT sGive (#PCDATA)>
<!ELEMENT sTake (#PCDATA)>
<!ELEMENT sTimestamp (#PCDATA)>
<!ELEMENT eyeGaze (eGive, eTake, eTimestamp)>
<!ELEMENT eGive (#PCDATA)>
<!ELEMENT eTake (#PCDATA)>
<!ELEMENT eTimestamp (#PCDATA)>
<!ELEMENT posture (pGive, pTake, pTimestamp)>
<!ELEMENT pGive (#PCDATA)>
<!ELEMENT pTake (#PCDATA)>
<!ELEMENT pTimestamp (#PCDATA)>
<!ELEMENT head (hGive, hTake, hTimestamp)>
<!ELEMENT hGive (#PCDATA)>
<!ELEMENT hTake (#PCDATA)>
<!ELEMENT hTimestamp (#PCDATA)>
<!ELEMENT status (oldState, sysTurn)>
<!ELEMENT oldState (userTurn, systemTurn)>
<!ELEMENT userTurn (#PCDATA)>
<!ELEMENT systemTurn (#PCDATA)>
<!ELEMENT sysTurn (sysGive, sysTake, sysTimestamp)>
<!ELEMENT sysGive (#PCDATA)>
<!ELEMENT sysTake (#PCDATA)>
<!ELEMENT sysTimestamp (#PCDATA)>

<!ELEMENT dialogueAct (speech, intonation, eyebrows , mouth)>
<!ELEMENT speech (sGreeting, sComment, sRequest, sA ccept, sReject, sTimestamp)>
<!ELEMENT sGreeting (#PCDATA)>
<!ELEMENT sComment (#PCDATA)>
<!ELEMENT sRequest (#PCDATA)>
<!ELEMENT sAccept (#PCDATA)>
<!ELEMENT sReject (#PCDATA)>
<!ELEMENT sTimestamp (#PCDATA)>
<!ELEMENT intonation (iUnassigned, iRequest, iAccep t, iReject, iTimestamp)>
<!ELEMENT iUnassigned (#PCDATA)>
<!ELEMENT iRequest (#PCDATA)>
<!ELEMENT iAccept (#PCDATA)>
<!ELEMENT iReject (#PCDATA)>
<!ELEMENT iTimestamp (#PCDATA)>
<!ELEMENT eyebrows (eUnassigned, eRequest, eAccept, eReject, eTimestamp)>
<!ELEMENT eUnassigned (#PCDATA)>
<!ELEMENT eRequest (#PCDATA)>
<!ELEMENT eAccept (#PCDATA)>
<!ELEMENT eReject (#PCDATA)>
<!ELEMENT eTimestamp (#PCDATA)>
<!ELEMENT mouth (mUnassigned, mRequest, mAccept, mR eject, mTimestamp)>
<!ELEMENT mUnassigned (#PCDATA)>
<!ELEMENT mRequest (#PCDATA)>
<!ELEMENT mAccept (#PCDATA)>
<!ELEMENT mReject (#PCDATA)>
<!ELEMENT mTimestamp (#PCDATA)>

205

Appendix B: MediaHub message types

A collection of message types implemented in MediaHub.

Figure B.1: ‘Anaphora resolution’ message types

Figure B.2: ‘Domain knowledge awareness’ message types

Figure B.3: ‘Multimodal presentation’ message types

 car.eyegaze.input

 car.posture.input

 car.face.expression.input

 car.head.input

 car.steering.input

 car.braking.input

 movies.speech.input

 movies.gesture.pointing.input

 movies.eyegaze.input

 movies.posture.input

 movies.moredetail.input

 movies.starttime.input

 movies.multimodal.repdoc

building.query.office.occupant.speech.input

building.query.office.occupant.gesture.pointing.input

building.query.office.occupant.intdoc

building.query.office.occupant.repdoc

building.query.office.occupant.hisdoc

building.request.route.speech.from.office.gender

building.request.route.speech.from.office

building.request.route.intdoc

206

Figure B.4: ‘Turn-taking’ message types

Figure B.5: ‘Dialogue act recognition’ message types

dialogueact.speech.input

dialogueact.intonation.input

dialogueact.eyebrows.input

dialogueact.mouth.input

turntaking.eyegaze.input

turntaking.posture.input

turntaking.speech.input

turntaking2.speech.input

turntaking2.eyegaze.input

turntaking2.posture.input

turntaking2.head.input

turntaking2.status.input

207

Appendix C: HTML Bayesian network documentation

Example of HTML documentation automatically generated by the Hugin GUI for the ‘domain

knowledge awareness’ Bayesian network.

Domain Knowledge Awareness

The model is depicted below:

Nodes

Gaze

Represent the belief that the user wants to give a turn based on gaze input.

Name = Gaze

Label = Gaze

Type = Discrete Labelled Node

States
Give : Belief, based on gaze input, that the user wishes to give the turn to the agent.

Take : Belief, based on gaze input, that the user wishes to take the turn from the agent.

Parents

• Turn

Posture

Represent the belief that the user wants to give a turn based on posture input.

Name = Posture

208

Label = Posture

Type = Discrete Labelled Node

States

Give : Belief, based on posture input, that the user wishes to give the turn to the agent.

Take : Belief, based on posture input, that the user wishes to take the turn from the agent.

Parents

• Turn

Speech

Represent the belief that the user wants to give a turn based on speech input.

Name = Speech

Label = Speech

Type = Discrete Labelled Node

States

Give : Belief, based on speech input, that the user wishes to give the turn to the agent.

Take : Belief, based on speech input, that the user wishes to take the turn from the agent.

Parents

• Turn

Turn

The Turn node relates to the turn-taking strategy of the agent.

Name = Turn

Label = Turn

Type = Discrete Labelled Node

States

Give : Give the turn to the User

Take : Take the turn from the User

209

Appendix D: Test case tables

Test case tables used to confirm correctness of Bayesian networks.

Table D.1: Test cases for ‘domain knowledge awareness’ Bayesian network

Speech MoreDetail StartTime EyeGaze ChosenMovie
OK?

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

65 0 15 20 T F F F F F F F 55 45 0 0 95 3 1 1 Yes

66 0 0 34 T F F F T F F T 80 20 0 0 83 0 0 17
No – % of 1

should be > 83

74 0 26 0 T F F F T F F F 76 24 0 0 89 11 0 0
No – % of 1

should be > 89

0 0 35 65 F T F F F F T T 0 6 40 54 1 7 32 60 Yes

0 0 40 60 F T F F F F T T 0 0 50 50 1 5 41 53 Yes

0 0 38 62 F T F F F F F T 0 0 48 52 1 5 8 86 Yes

0 0 67 33 F T F F F F F T 0 0 46 54 1 6 17 76 Yes

54 0 0 46 T F F F T F F F 89 11 0 0 100 0 0 0 Yes

59 0 0 41 T F F F T F F F 50 35 15 0 99 .5 0 .5 Yes

59 0 0 41 T F F F T F F T 50 35 15 0 97 1 0 2 Yes

0 88 12 0 F T F F F T F F 0 90 10 0 .5 98 1 .5 Yes

0 88 12 0 F T F F F F T F 0 90 10 0 .5 93 6 .5 Yes

0 0 75 25 F F F F F F T F 0 0 80 20 .5 .5 97 2 Yes

0 0 75 25 F F T F F F F F 0 0 80 20 .5 .5 97 2 Yes

0 0 75 25 F F T F F F T F 0 0 80 20 0 0 100 0 Yes

80 0 20 0 T F T F T F F F 55 45 0 0 98 1 1 0 Yes

50 0 50 0 T T T T T F F F 78 22 0 0 96 2 2 0 Yes

50 0 50 0 T F F F T F F F 78 22 0 0 99 .5 .5 0 Yes

210

Table D.2: Test cases for ‘multimodal presentation’ Bayesian network

S
te

er
in

g

B
ra

ki
ng

F
ac

e

E
ye

G
az

e

H
ea

d

P
os

tu
re

T
ir

ed

S
pe

ec
hO

ut
pu

t

OK?

N A N A N T N T N T N T N T N F W

65 35 45 55 50 50 55 45 60 40 40 60 58 42 36 30 34 Yes

70 30 22 78 70 30 85 15 45 55 50 50 77 23 27 39 34 Yes

30 70 25 75 51 49 90 10 80 20 60 40 67 33 15 29 56 Yes

20 80 20 80 70 30 50 50 65 35 78 22 54 46 8 23 69 Yes

29 71 21 79 95 5 50 50 50 50 50 50 73 27 14 30 56 Yes

55 45 50 50 45 55 43 57 34 66 32 68 35 65 25 30 45 Yes

88 12 85 15 51 49 55 45 19 81 78 22 85 15 90 5 5
No, value of None state of

SpeechOutput should be lower

10 90 35 65 50 50 45 55 34 66 55 45 23 77 3 20 77
Yes – but try few more test cases

like this!

5 95 30 70 55 45 45 55 40 60 60 40 25 75 2 18 80 Yes

20 80 11 89 60 40 60 40 25 75 65 35 18 82 3 15 82 Yes

14 86 38 62 54 46 49 51 20 80 52 48 24 76 5 22 73 Yes

89 11 94 6 5 95 20 80 50 50 10 90 20 80 72 18 10 Yes

89 11 94 6 50 50 50 50 50 50 50 50 80 20 87 9 4 Yes

50 50 50 50 50 50 50 50 50 50 50 50 50 50 29 29 42 Yes

66 34 49 51 60 40 40 60 55 45 45 55 60 40 40 29 31 Yes

66 34 61 39 60 40 40 60 60 40 45 55 66 34 49 26 25 Yes

72 28 85 15 55 45 45 55 45 55 50 50 71 29 67 20 13 Yes

20 80 15 85 50 50 41 59 38 62 25 75 16 84 2 14 84 Yes

98 2 30 70 52 48 48 52 50 50 40 60 61 39 36 44 20 Yes

30 70 98 2 52 48 48 52 50 50 40 60 61 39 36 44 20 Yes

50 50 50 50 55 45 56 44 40 60 43 57 52 48 30 29 41 Yes

211

Gaze Posture Speech Turn
OK?

G T G T G T G T

65 35 45 55 60 40 67 33 Yes

35 65 30 70 50 50 30 70 Yes

75 25 80 20 11 89 59 41 Yes

80 20 89 11 30 70 78 22 Yes

95 5 90 10 10 90 77 23 Yes

50 50 50 50 50 50 50 50 Yes

50 50 80 20 80 20 82 18 Yes

20 80 80 20 80 20 68 32 Yes

10 90 72 28 52 48 39 61 Yes

25 75 78 22 58 42 57 43 Yes

34 66 48 52 52 48 40 60 Yes

10 90 90 10 50 50 50 50 Yes

30 70 70 30 50 50 50 50 Yes

45 55 55 45 50 50 50 50 Yes

5 95 55 45 50 50 25 75 Yes

12 88 44 56 22 78 14 86 Yes

12 88 44 56 5 95 9 91 Yes

95 5 90 10 92 8 97 3 Yes

40 60 52 48 51 49 46 54 Yes

88 12 50 50 12 88 50 50 Yes

50 50 78 22 18 82 47 53 Yes

50 50 49 51 25 75 34 66 Yes

62 38 40 60 60 40 57 43 Yes

55 45 33 67 56 44 46 54 Yes

35 65 52 48 41 59 37 63 Yes

Table D.3: Test cases for ‘turn-taking’ Bayesian network

212

S
pe

ec
h

G
az

e

P
os

tu
re

H
ea

d

U
_T

ur
n

S
_T

ur
n

O
ld

_S
ta

te

N
ew

_S
ta

te

OK?

G T G T G T G T GT TT GT TT U S U S

74 26 60 40 40 60 40 60 60 40 F T T F 24 76 Yes

84 16 20 80 80 20 21 79 54 46 F T T F 28 72 Yes

84 16 50 50 80 20 21 79 70 30 F T T F 18 82 Yes

60 40 54 46 38 62 50 50 52 48 F T T F 29 71 Yes

45 55 20 80 38 62 30 70 17 83 T F F T 91 9 Yes

55 45 20 80 38 62 30 70 21 79 T F F T 89 11 Yes

50 50 50 50 50 50 50 50 50 50 T F F T 75 25 Yes

45 55 50 50 38 62 30 70 29 71 T F F T 85 15 Yes

74 26 55 45 62 38 49 51 72 28 F T T F 17 83 Yes

91 9 70 30 85 15 70 30 94 6 F T T F 3 97 Yes

95 5 95 5 20 80 20 80 71 29 F T T F 17 83 Yes

50 50 10 90 50 50 50 50 27 73 T F F T 86 14 Yes

50 50 85 15 50 50 50 50 68 32 T F F T 66 34 Yes

50 50 90 10 50 50 90 10 87 13 T F T F 56 44 Yes

35 65 50 50 30 70 20 80 17 83 T F F T 91 9 Yes

35 65 50 50 49 51 49 51 40 60 T F F T 80 20 Yes

49 51 50 50 49 51 49 51 48 52 T F F T 76 24 Yes

85 15 84 16 90 10 96 4 98 2 F T T F 1 99 Yes

10 90 15 85 11 89 30 70 3 97 T F F T 98 2 Yes

10 90 48 52 11 89 30 70 7 93 T F F T 96 4 Yes

45 55 48 52 43 57 50 50 42 58 T F F T 79 21 Yes

55 45 48 52 11 89 50 50 30 70 T F F T 85 15 Yes

90 10 90 10 40 60 40 60 82 18 F T T F 11 89 Yes

Table D.4: Test cases for alternative ‘turn-taking’ Bayesian network

213

Speech Intonation Eyebrows Mouth DialogueAct OK?

G C R A X U R A X U R A X U R A X G C R A X

12 9 11 68 0 25 25 25 25 36 24 40 0 30 30 35 5 14 12 9 65 0 Yes

34 63 3 0 0 85 0 10 5 50 22 20 8 25 25 25 25 37 63 0 0 0 Yes

66 34 0 0 0 85 0 10 5 50 22 20 8 25 25 25 25 64 36 0 0 0 Yes

85 15 0 0 0 85 0 10 5 50 22 20 8 25 25 25 25 81 19 0 0 0 Yes

95 5 0 0 0 85 0 10 5 50 22 20 8 25 25 25 25 89 11 0 0 0 Yes

95 5 0 0 0 90 0 0 10 90 0 0 10 25 25 25 25 90 10 0 0 0 Yes

0 20 0 80 0 0 0 30 70 0 0 30 70 0 0 50 50 0 0 0 75 25 Yes

0 20 0 80 0 25 25 25 25 0 0 30 70 0 0 50 50 0 0 0 85 15 Yes

0 0 0 80 20 0 0 30 70 25 25 25 25 0 0 50 50 0 0 0 60 40 Yes

0 0 0 80 20 0 0 30 70 25 25 25 25 25 25 25 25 0 0 1 60 39 Yes

0 0 0 80 20 0 0 90 10 25 25 25 25 25 25 25 25 0 0 0 95 5 Yes

0 0 0 90 10 0 0 90 10 25 25 25 25 0 0 90 10 0 0 0 99 1 Yes

0 0 0 90 10 0 0 90 10 25 25 25 25 0 0 10 90 0 0 0 85 15 Yes

0 0 0 90 10 0 0 25 75 25 25 25 25 0 0 10 90 0 0 0 93 7 Yes

0 0 0 55 45 0 0 25 75 25 25 25 25 0 0 10 90 0 0 0 7 93 Yes

20 20 20 20 20 0 0 25 75 25 25 25 25 0 0 10 90 0 0 0 6 94 Yes

20 20 20 20 20 0 0 25 75 25 25 25 25 0 0 75 25 0 0 0 50 50 Yes

20 20 20 20 20 0 0 25 75 0 0 75 25 0 0 75 25 0 0 0 72 28 Yes

0 0 0 60 40 0 0 60 40 0 0 45 55 0 0 46 54 0 0 0 60 40 Yes

0 0 0 60 40 0 0 80 20 0 0 30 70 0 0 46 54 0 0 0 66 34 Yes

0 0 0 60 40 0 0 80 20 0 0 30 70 0 0 30 70 0 0 0 51 49 Yes

0 25 75 0 0 25 75 0 0 0 80 20 0 0 90 10 0 0 0 100 0 0 Yes

0 25 75 0 0 25 75 0 0 0 30 70 0 0 30 70 0 0 0 97 3 0 Yes

Table D.5: Test cases for ‘dialogue act recognition’ Bayesian network

214

References

Adams, D. (1979) The Hitchhiker’s Guide to the Galaxy. London, England: Barker.

Agena (2009)
http://www.agenarisk.com/ Site visited 16/03/09.

Amtrup, J.W. (1995) ICE-INTARC Communication Environment Users Guide and Reference
Manual Version 1.4, University of Hamburg, October.

Allwood, J., L. Cerrato, K. Jokinen, C. Navarretta & P. Paggio (2007) The MUMIN coding
scheme for the annotation of feedback in multimodal corpora: a prerequisite for behavior
simulation. In Language Resources and Evaluation. Special Issue. J.-C. Martin, P. Paggio, P.
Kuehnlein, R. Stiefelhagen, F. Pianesi (eds.) Multimodal Corpora for Modeling Human
Multimodal Behavior, Vol. 41, No. 3-4, 273-287.

André, E., T. Rist (1994) Referring to world objects with text and pictures. In Proceedings of
the 15th International Conference on Computational Linguistics, Kyoto, Japan, 530-534.

André, E., J. Muller & T. Rist (1996) The PPP Persona: A Multipurpose Animated Presentation
Agent. In Proceedings of Advanced Visual Interfaces, Gubbio, Italy, 245–247.

Babuska, R. (1993) Fuzzy toolbox for MATLAB. In Proceedings of the 2nd IMACS
International Symposium on Mathematical and Intelligent Models in System Simulation,
University Libre de Bruxelles, Brussels, Belgium.

Bayer, S., C. Doran & B. George (2001) Dialogue Interaction with the DARPA Communicator
Infrastructure: The development of Useful Software. In Proceedings of HLP 2001, First
International Conference on Human Language Technology Research, San Diego, CA, USA,
114-116.

Berners-Lee, T., J. Hendler & O. Lassila (2001) The Semantic Web, In Scientific American,
May 17, p. 35-43.

Berton, A., D. Buhler, W. Minker (2006) SmartKom - Mobile Car: User Interaction with
Mobile Services in a Car Environment. In SmartKom: Foundations of Multimodal Dialogue
Systems, W. Wahlster (Ed.), Berlin, Germany: Springer-Verlag, 523-537.

Bolt, R.A. (1980) “Put-that-there” Voice and gesture at the graphics interface. Computer
Graphics (SIGGRAPH ’80 Proceedings), 14(3), July, 262–270.

Bolt, R.A. (1987) Conversing with Computers. In Readings in Human-Computer Interaction: A
Multidisciplinary Approach, R. Baecker & W. Buxton (Eds.), California, U.S.A.: Morgan
Kaufmann.

Brock, D.C. (2006) (Ed.) Understanding Moore's Law: Four Decades of Innovation.
Philadelphia, USA: Chemical Heritage Press.

Brøndsted, T., P. Dalsgaard, L.B. Larsen, M. Manthey, P. Mc Kevitt, T.B. Moeslund & K.G.
Olesen (1998) A platform for developing Intelligent MultiMedia applications. Technical Report

215

R-98-1004, Center for PersonKommunikation (CPK), Institute for Electronic Systems (IES),
Aalborg University, Denmark, May.

Brøndsted, T. (1999) Reference problems in Chameleon, In IDS-99, 133-136.

Brøndsted, T., P. Dalsgaard, L.B. Larsen, M. Manthey, P. Mc Kevitt, T.B. Moeslund & K.G.
Olesen (2001) The IntelliMedia WorkBench - An Environment for Building Multimodal
Systems. In Advances in Cooperative Multimodal Communication: Second International
Conference, CMC'98, Tilburg, The Netherlands, January 1998, Selected Papers, Harry Bunt &
Robbert-Jan Beun (Eds.), 217-233. Lecture Notes in Artificial Intelligence (LNAI) series, LNAI
2155, Berlin, Germany: Springer Verlag.

BUGS (2009)
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml Site visited 16/03/09.

Bunt, H.C. & S. Keizer (2006) Multidimensional Dialogue Management. In Proceedings of
SIGdial Workshop on Discourse and Dialogue, 37-45.

Bunt, H.C., M. Kipp, M. Maybury & W. Wahlster (2005) Fusion and Coordination for
Multimodal Interactive Information Presentation. In Multimodal Intelligent Information
Presentation (Text, Speech and Language Technology), O. Stock & M. Zancanaro (Eds.), Vol.
27, Dordrecht, The Netherlands: Springer, 325-340.

Carletta, J. (2006) Announcing the AMI Meeting Corpus. In The ELRA Newsletter 11(1),
January-March, 3-5.

Carlson, R. (1996) The Dialog Component in the Waxholm System. In Proceedings of Twente
Workshop on Language Technology (TWLT11) Dialogue Management in Natural Language
Systems, University of Twente, The Netherlands, 209-218.

Carlson, R. & B. Granström (1996) The Waxholm spoken dialogue system. In Palková Z, (Ed.),
39-52, Phonetica Pragensia IX. Charisteria viro doctissimo Premysl Janota oblata. Acta
Universitatis Carolinae Philologica 1.

Carpenter, B. (1992) The Logic of Typed Feature Structures. Cambridge, England: Cambridge
University Press.

Cassell, J., J. Sullivan, S. Prevost, & E. Churchill (Eds.) (2000) Embodied Conversational
Agents. Cambridge, MA: MIT Press.

Cassell, J., H. Vilhjalmsson and T. Bickmore (2001) BEAT: the Behavior Expression
Animation Toolkit, Computer Graphics Annual Conference, SIGGRAPH 2001 Conference
Proceedings, Los Angeles, Aug 12-17, 477-486.

Chester, M. (2001) Cross-Platform Integration with XML and SOAP. In IT Pro,
September/October, 26-34.

Cheyer, A., L. Julia & J.C. Martin (1998) A Unified Framework for Constructing Multimodal
Experiments and Applications, In Proceedings of CMC ’98: Tilburg, The Netherlands, 63-69.

Choy, K.W., A.A. Hopgood, L. Nolle & B.C. O'Neill (2004a) Implementing a blackboard
system in a distributed processing network. In Expert Update, Vol. 7, No. 1, Spring, 16-24.

216

Choy, K.W., A.A. Hopgood, L. Nolle & B.C. O'Neill (2004b) Implementation of a tileworld
testbed on a distributed blackboard system. In Proceedings of the 18th European Simulation
Multiconference (ESM2004), Magdeburg, Germany, June 2004, Horton, G., (Ed.), 129-135.

CMU (2009)
JavaBayes http://www.cs.cmu.edu/~javabayes/Home/ Site visited 16/03/09.

Cohen-Rose, A.L. & S. B. Christiansen (2002) The Hitchhiker’s Guide to the Galaxy. In
Language, Vision and Music, Mc Kevitt, Paul, Seán Ó Nualláin and Conn Mulvihill (Eds.), 55-
66.

CORBA (2009)
http://java.sun.com/developer/onlineTraining/corba/corba.html Site visited 16/03/09.

DAML (2009)
http://www.daml.org/ Site visited 16/03/09.

DAML-S (2009)
http://www.daml.org/services/owl-s/ Site visited 16/03/09.

DAML+OIL (2009)
 http://www.daml.org/2001/03/daml+oil-index Site visited 16/03/09.

Davis, L. (Ed.) (1991) Handbook of Genetic Algorithms. New York, USA: Van Nostrand
Reinhold.

de Rosis, F., c, I. Poggi, V. Carofiglio & B. De Carolis (2003) From Greta's mind to her face:
modelling the dynamics of affective states in a conversational embodied agent, International
Journal of Human-Computer Studies, Vol. 59 No. 1-2, 81-118.

EMBASSI (2009)
http://www.embassi.de/ewas/ewas_frame.html Site visited 16/03/09.

EMMA (2009)
http://www.w3.org/TR/2004/WD-emma-20041214/ Site visited 16/03/09.

Fensel, D., F. van Harmelen, I. Horrocks, D. McGuinness & P. Patel-Schneider (2001) OIL: An
Ontology Infrastructure for the Semantic Web. In IEEE Intelligent Systems, 16(2), 38-45.

Finin, T., R. Fritzson, D. McKay & R. McEntire (1994) KQML as an Agent Communication
Language. In Proceedings of the 3rd International Conference on Information and Knowledge
Management (CIKM '94), Gaithersburg, MD, USA, 456-463.

Fink, G.A., N. Jungclaus, F. Kummert, H. Ritter & G. Sagerer (1995) A Communication
Framework for Heterogeneous Distributed Pattern Analysis. In International Conference on
Algorithms And Architectures for Parallel Processing, Brisbane, Australia, 881-890.

Fink, G.A., N. Jungclaus, F. Kummert, H. Ritter & G. Sagerer (1996) A Distributed System for
Integrated Speech and Image Understanding. In International Symposium on Artificial
Intelligence, Cancun, Mexico, 117-126.

217

Foster, M.E. (2004) Corpus-based Planning of Deictic Gestures in COMIC. Student session,
Third International Conference on Natural Language Generation (INLG 2004), Brockenhurst,
England, July, 198-204.

Freeman (2009)
Make Room For JavaSpaces Part 1
http://www.javaworld.com/javaworld/jw-11-1999/jw-11-jiniology.html Site visited 16/03/09.

Genie (2009)
http://genie.sis.pitt.edu/ Site visited 16/03/09.

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimisation and Machine Learning.
Addison-Wesley.

Gratch, J., N. Wang, J. Gerten, E. Fast & R. (2007) Duffy Creating Rapport with Virtual
Agents. In Proceedings of the International Conference on Intelligent Virtual Agents, Paris,
France, 125-138.

Grosz, B.J. & C.L. Sidner (1986) Attention, intentions and the structure of discourse.
Computational Linguistics, Vol. 12, 175-204.

Grosz, B.J., C.L. Sidner (1990) Plans for discourse. In P.R. Cohen, J.L. Morgan & M.E. Pollack
(eds.), 417-444, Intentions and Communication, Cambridge, MA:MIT Press.

Gruber, T.R. (1993) A translation approach to portable ontology specifications. In Knowledge
Specification, Vol. 5, 199-220.

Haddawy, P. (1999) Introduction to this Special Issue: An overview of some recent
developments in Bayesian problem-solving techniques, AI Magazine, Special Issue on
Uncertainty in AI, Vol. 20, No. 2, 11-19.

Hall, P. & P. Mc Kevitt (1995) Integrating vision processing and natural language processing
with a clinical application. In Proceedings of the Second New Zealand International Two-
Stream Conference on Artificial Neural Networks and Expert Systems, New Zealand,
November, 373 – 376.

Haykin, S. (1999) Neural Networks, A Comprehensive Foundation. Prentice Hall, Upper
Saddle River, NJ.

Heckerman, D., E. Horvitz, B. Nathwani (1992) Towards normative expert systems: Part I. The
Pathfinder project, Methods of Information in Medicine, 31(2), 90-105.

Herzog, G., H. Kirchmann, S. Merten, A. Ndiaye & P. Poller (2003) MULTIPLATFORM
Testbed: An Integration Platform for Multimodal Dialog Systems. In H. Cunningham &
J. Patrick (Eds.), 75-82, Proceedings of the HLT-NAACL 2003 Workshop on Software
Engineering and Architecture of Language Technology Systems (SEALTS), Edmonton,
Canada.

Holland, J.H. (1992) Genetic Algorithms. Scientific American. Vol. 260, July, 44-51.

218

Holzapfel, H., C. Fuegen, M. Denecke & A. Waibel (2002) Integrating Emotional Cues into a
Framework for Dialogue Management. In Proceedings of the International Conference on
Multimodal Interfaces, 141-148.

Hopgood, A.A. (2003) Artificial Intelligence: Hype or Reality? In IEEE Computer Society
Press, Vol. 36, No. 5, IEEE Computer Society, May, 24-28.

Horvizt, E. & M. Barry (1995) Display of Information for Time-Critical Decision Making. In
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 296-305.

Horvitz, E., J. Breese, D. Heckerman, D. Hovel & K. Rommelse (1998) The Lumiere Project:
Bayesian User Modeling for Inferring the Goals and Needs of Software Users. Proceedings of
the Fourteenth Conference on Uncertainty in Artificial Intelligence, July, 256-265.

Hugin (2009)
Hugin Expert Developers Site http://developer.hugin.com/ Site visited 16/03/09.

Jensen, F.V., (1996) An introduction to Bayesian networks. London, England: UCL Press.

Jensen, F.V. (2000) Bayesian Graphical Models, Encyclopaedia of Environmetrics, Wiley,
Sussex, UK.

Jensen, F.V. & T.D. Nielsen (2007) Bayesian Networks and Decision Graphs, Second Edition,
New York, USA: Springer Verlag.

Jeon, H., C. Petrie & M.R. Cutkosky (2000) JATLite: A Java Agent Infrastructure with
Message Routing. IEEE Internet Computing Vol. 4, No. 2, Mar/Apr, 87-96.

Johnston, M., P.R. Cohen, D. McGee, S. L. Oviatt, J.A. Pittman & I. Smith (1997) Unification-
based multimodal integration. In Proceedings of the eighth conference on European chapter of
the Association for Computational Linguistics, Madrid, Spain, 281-288.

Johnston, M. (1998) Unification-based multimodal parsing. In Proceedings of the 36th

conference on Association for Computational Linguistics, Montreal, Quebec, Canada, 624-630.

Johnston, M., S. Bangalore, G. Vasireddy, A. Stent, P. Ehlen, M. Walker, S. Whittaker & P.
Maloor (2002) MATCH: An Architecture for Multimodal Dialog Systems. In Proceedings of
ACL-02, 376–383.

Jokinen, K., A. Kerminen, M. Kaipainen, T. Jauhiainen, G. Wilcock, M. Turunen, J. Hakulinen,
J. Kuusisto & K. Lagus (2002) Adaptive Dialogue Systems – Interactions with Interact. In
Proceedings of the 3rd SIGdial Workshop on Discourse and Dialogue of ACL-02, Philadelphia,
PA, July 11-12, 64-73.

Kadie, C.M., D. Hovel & E. Horvitz (2001) MSBNx: A Component-Centric Toolkit for
Modeling and Inference with Bayesian Networks. Microsoft Research Technical Report MSR-
TR-2001-67, July 2001.

Kelleher, J., T. Doris, Q. Hussain & S. Ó Nualláin (2000) SONAS: Multimodal, Multi-User
Interaction with a Modelled Environment. In S. Ó Nualláin, (Ed.), 171-184, Spatial Cognition.
Amsterdam, The Netherlands: John Benjamins Publishing Co.

219

Kipp, M. (2001) Anvil - a generic annotation tool for multimodal dialogue. In Proceedings of
Eurospeech 2001, Aalborg, 1367-1370.

Kipp, M. (2006) Creativity meets Automation: Combining Nonverbal Action Authoring with
Rules and Machine Learning. In Proceedings of the 6th International Conference on Intelligent
Virtual Agents, 230-242, Springer.

Kirste T., T. Herfet & M. Schnaider (2001) EMBASSI: Multimodal Assistance for Infotainment
and Service Infrastructures. In Proceedings of the 2001 EC/NSF Workshop Universal on
Accessibility of Ubiquitous Computing: Providing for the Elderly, Alcácer do Sal, Portugal, 41-
50.

Kjærulff, U.B. & A.L. Madsen (2006) Probabilistic Networks for Practitioners – A Guide to
Construction and Analysis of Bayesian Networks and Influence Diagrams, Department of
Computer Science, Aalborg University, HUGIN Expert A/S.

Klein, M. (2001) XML, RDF, and relatives. In Intelligent Systems, IEEE, Vol. 16, No. 2,
March-April, 26-28.

Klein, M. (2002) Interpreting XML documents via an RDF schema ontology. In Proceeding of
the 13th International Workshop on Database and Expert Systems Applications, September,
Amsterdam, Netherlands, 889 – 893.

Kopp, S. & I. Wachsmuth (2004) Synthesizing multimodal utterances for conversational agents.
In Computer Animation and Virtual Worlds, 2004; Vol. 15, 39–52.

Kristensen, T. (2001) T Software Agents In A Collaborative Learning Environment. In
International Conference on Engineering Education, Oslo, Norway, Session 8B1, August, 20-
25.

López-Cózar Delgado, R. & M. Araki (2005) Spoken, Multilingual and Multimodal Dialogue
Systems: Development and Assessment. Chichester, England: John Wiley & Sons.

Lumiere (2009)
http://research.microsoft.com/~horvitz/lum.htm Site visited 16/03/09.

Ma, M. & P. Mc Kevitt (2003) Semantic representation of events in 3D animation. In
Proceedings of the Fifth International Workshop on Computational Semantics (IWCS-5), Harry
Bunt, Ielka van der Sluis and Roser Morante (Eds.), 253-281. Tilburg University, Tilburg, The
Netherlands, January.

Martin, J.C., S. Grimard & K. Alexandri (2001) On the annotation of the multimodal behavior
and computation of cooperation between modalities. In Proceedings of the workshop on
Representing, Annotating, and Evaluating Non-Verbal and Verbal Communicative Acts to
Achieve Contextual Embodied Agents, May 29, Montreal, Fifth International Conference on
Autonomous Agents, 1-7.

Martin, J.C. & M. Kipp (2002) Annotating and Measuring Multimodal Behaviour - Tycoon
Metrics in the Anvil Tool. In Proceedings of the 3rd International Conference on Language
Resources and Evaluation (LREC’2002), Las Palmas, Canary Islands, Spain, May, 29-31.

220

Martinho, C., A. Paiva, & M. R. Gomes (2000). Emotions for a Motion: Rapid Development of
Believable Pathematic Agents in Intelligent Virtual Environments. Applied Artificial
Intelligence, Vol. 14, No. 1, 33-68.

Maybury, M.T. (Ed.) (1993) Intelligent Multimedia Interfaces. Menlo Park: AAAI/MIT Press.

Mc Guinness, D.L., R. Fikes, J. Hendler & L.A. Stein (2002) DAML+OIL: An Ontology
Language for the Semantic Web. In IEEE Intelligent Systems, Vol. 17, No. 5,
September/October, 72-80.

Mc Kevitt, P. (Ed.) (1995/96) Integration of Natural Language and Vision Processing (Volumes
I-IV): Computational Models and Systems. London, U.K.: Kluwer Academic Publishers.

Mc Kevitt, P., S. Ó Nualláin & C. Mulvihill (Eds.) (2002), Language, vision and music,
Readings in Cognitive Science and Consciousness, Advances in Consciousness Research,
AiCR, Vol. 35. Amsterdam, The Netherlands/Philadelphia, USA: John Benjamins Publishing
Company.

Mc Kevitt, Paul (2005) Advances in Intelligent MultiMedia: MultiModal semantic
representation. In Proceedings of the Pacific Rim International Conference on Computational
Linguistics (PACLING-05), Hiroshi Sakaki (Ed.), Meisei University (Hino Campus), Hino-shi,
Tokyo, Japan, August, 2-13.

Mc Tear, M.F. (2004) Spoken dialogue technology: toward the conversational user interface.
London, England: Springer Verlag.

MIAMM (2009)
http://miamm.loria.fr/ Site visited 16/03/09.

Microsoft (2009)
http://www.microsoft.com/surface/index.html Site visited 16/03/09.

Mindmakers (2009)
http://www.mindmakers.org/ Site visited 16/03/09.

Minsky, M. (1975) A Framework for representing knowledge. In Readings in Knowledge
Representation, R. Brachman and H. Levesque (Eds.), Los Altos, CA: Morgan Kaufmann, 245-
262.

MPEG-7 (2009)
http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm Site visited 16/03/09.

MSBNx (2009)
http://www.research.microsoft.com/adapt/MSBNx/ Site visited 16/03/09.

MS .NET (2009)
http://www.microsoft.com/NET/ Site visited 16/03/09.

Murphy (2009)
Website of Kevin Patrick Murphy. http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html
Site visited 16/03/09.

221

Neal, J. & S. Shapiro (1991) Intelligent Multi-Media Interface Technology. In Intelligent User
Interfaces, J. Sullivan and S. Tyler (Eds.), 11-43, Reading, MA: Addison-Wesley.

Neal, R.M. (1993) Probabilistic inference using Markov Chain Monte Carlo methods. Technical
Report, CRG-TR-93-1, University of Toronto, Canada.

Nejdl, W., M. Wolpers & C. Capella (2000) The RDF Schema Specification Revisited. In
Modelle und Modellierungssprachen in Informatik und Wirtschaftsinformatik, Modellierung
2000, April.

Ng-Thow-Hing, V., J. Lim, J. Wormer, R.K. Sarvadevabhatla, C. Rocha, K. Fujimura & Y.
Sakagami (2008) The memory game: Creating a human-robot interactive scenario for ASIMO.
IROS 2008, 779-786.

Nigay, L. & J. Coutaz (1995) A generic platform for addressing the multimodal challenge. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, 98-
105.

Nolle, L., K. Wong & A.A. Hopgood (2001) DARBS: a distributed blackboard system. In
Proceedings of ES2001, Research and Development in Intelligent Systems XVIII, M. Bramer,
F. Coenen and A. Preece (Eds.), 161-170, Berlin, Germany: Springer-Verlag.

Norsys (2009)
http://www.norsys.com/ Site visited 16/03/09.

OAA (2009)
http://www.ai.sri.com/~oaa/whitepaper.html Site visited 16/03/09.

Okada, N. (1996) Integrating vision, motion, and language through mind. In Integration of
Natural Language and Vision Processing (Volume IV): Recent Advances. McKevitt, P. (Ed.)
55-79. Dordrecht, The Netherlands: Kluwer-Academic Publishers.

Okada, N., K. Inui & M. Tokuhisa (1999) Towards affective integration of vision, behavior, and
speech processing. In Integration of Speech and Image Understanding, September, 49-77.

Ó Nualláin, S. & A. Smith (1994) An Investigation into the Common Semantics of Language
and Vision. In P. McKevitt, (Ed.), 21-30, Integration of Natural Language and Vision
Processing (Volume I): Computational Models and Systems. London, U.K.: Kluwer Academic
Publishers.

Ó Nualláin, S., B. Farley & A. Smith (1994) The Spoken Image System: On the visual
interpretation of verbal scene descriptions. In P. McKevitt, (Ed.), 36-39, Proceedings of the
Workshop on integration of natural language and vision processing, Twelfth American National
Conference on Artificial Intelligence (AAAI-94). Seattle, Washington, USA, August.

OWL (2009)
http://www.w3.org/2004/OWL/ Site visited 16/03/09.

Oxygen (2009)
http://oxygen.lcs.mit.edu/Overview.html Site visited 16/03/09.

222

Passino, K.M. & S. Yurkovich (1997) Fuzzy Control. Menlo Park, CA: Addison Wesley
Longman.

Pastra, K. & Y. Wilks (2004) Image-language Multimodal Corpora: needs, lacunae and an AI
synergy for annotation. In Proceedings of the 4th Language Resources and Evaluation
Conference (LREC), Lisbon, Portugal, 767-770.

Pearl, J. (2000) Causality: Models, Reasoning and Inference, New York, USA: Cambridge
University Press.

Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, 2nd edition, San Francisco, USA: Morgan Kaufmann.

Petukhova, V.V. (2005) Multidimensional interaction of dialogue acts in the AMI project. MA
thesis, Tilburg University, Tilburg, The Netherlands, August.

Pineda, L. & G. Garza (1997) A model for multimodal reference resolution. Computational
Linguistics. Vol. 26, No. 2, 139-193.

Pourret, O., P. Naïm & B. Marcot (Eds.) (2008) Bayesian Networks: A Practical Guide to
Applications. Chichester, England: John Wiley & Sons.

Psyclone (2009)
http://www.cmlabs.com/psyclone/ Site visited 16/03/09.

RDF Schema (2009)
http://www.w3.org/TR/rdf-schema/ Site visited 16/03/09.

Reithinger, N., C. Lauer & L. Romary (2002) MIAMM - Multidimensional Information Access
using Multiple Modalities. In International CLASS Workshop on Natural, Intelligent and
Effective Interaction in Multimodal Dialogue Systems, Copenhagen, Denmark, 28-29 June.

Reithinger, N. & D. Sonntag (2005) An integration framework for a mobile multimodal
dialogue system accessing the semantic web. In Interspeech 2005, Lisbon, Portugal, 841-844.

Rehm, M. & E. André (2006) From Annotated Multimodal Corpora to Simulated Human-Like
Behaviors. ZiF Workshop, 1-17.

Rich, C. & C. Sidner (1997) COLLAGEN: When Agents Collaborate with People. In First
International Conference on Autonomous Agents, Marina del Rey, CA, February, 284-291.

Rickel, J., J. Gratch, R. Hill, S. Marsella, & W. Swartout (2001) Steve Goes to Bosnia: Towards
a New Generation of Virtual Humans for Interactive Experiences. In AAAI Spring Symposium
on Artificial Intelligence and Interactive Entertainment, Stanford University, CA, March.

Rist, T. (2001) Media and Content Management in an Intelligent Driver Support System.
International Seminar on Coordination and Fusion in MultiModal Interaction, Schloss Dagstuhl
International Conference and Research Center for Computer Science, Wadern, Saarland,
Germany, 29 Oct - 2 Nov. (www.dfki.de/~wahlster/Dagstuhl_Multi_Modality/rist-dagstuhl.pdf
Site visited 16/03/09)

223

Rutledge, L. (2001) SMIL 2.0: XML For Web Multimedia. In IEEE Internet Computing, Sept-
Oct, 78-84.

Rutledge, L. & P. Schmitz (2001) Improving Media Fragment Integration in Emerging Web
Formats. In Proceedings of the International Conference on Multimedia Modelling (MMM01),
CWI, Amsterdam, The Netherlands, November 5-7, 147-166.

Sidner, C.L. (1994) An Artificial Discourse Language for Collaborative Negotiation. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, Vol. 1, MIT Press,
Cambridge, MA, 814-819.

SmartKom (2009)
http://www.smartkom.org Site visited 16/03/09.

SMIL (2009a)
http://www.w3.org/TR/REC-smil/ Site visited 16/03/09.

SMIL (2009b)
http://www.w3.org/AudioVideo/ Site visited 16/03/09.

Solon, A.J., P. Mc Kevitt & K. Curran (2007) TeleMorph: a fuzzy logic approach to network-
aware transmoding in mobile Intelligent Multimedia presentation systems, Special issue on
Network-Aware Multimedia Processing and Communications, A. Dumitras, H. Radha, J.
Apostolopoulos, Y. Altunbasak (Eds.), IEEE Journal Of Selected Topics In Signal Processing,
1(2) (August), 254-263.

Spirtes, P., C. Glymour & R. Scheines (2000) Causation, Prediction, and Search, 2nd Edition,
Cambridge, MA: MIT Press.

Stefánsson, S.F., Jónsson, B.T. & K.R. Thórisson (2009) A YARP-Based Architectural
Framework for Robotic Vision Applications. In Proceedings of the International Conference on
Computer Vision Theory and Applications (VISAPP'09). February 5-8, Lisboa, Portugal, 65-68.

Stock, O. & M. Zancanaro (2005) Multimodal Intelligent Information Presentation (Text,
Speech and Language Technology), Dordrecht, The Netherlands: Springer.

Sunderam, V.S. (1990) PVM: a framework for parallel distributed computing. In Concurrency
Practice and Experience, 2(4), 315-340.

SW (2009)
Semantic Web. http://www.w3.org/2001/sw/ Site visited 16/03/09.

Thórisson, K. (1996) Communicative Humanoids: A Computational Model of Psychosocial
Dialogue Skills. Ph.D. Thesis, Media Arts and Sciences, Massachusetts Institute of Technology,
USA.

Thórisson, K. R. (1997) Gandalf: An Embodied Humanoid Capable of Real-Time Multimodal
Dialogue with People. In the First ACM International Conference on Autonomous Agents,
Mariott Hotel, Marina del Rey, California, February 5-8, 536-7

Thórisson, K. (1999) A Mind Model for Multimodal Communicative Creatures & Humanoids.
In International Journal of Applied Artificial Intelligence, Vol. 13 (4-5), 449-486.

224

Thórisson, K. R. (2002) Natural Turn-Taking Needs No Manual: Computational Theory and
Model, from Perception to Action. In B. Granström, D. House, I. Karlsson (Eds.),
Multimodality in Language and Speech Systems, 173-207. Dordrecht, The Netherlands: Kluwer
Academic Publishers.

Thórisson, K. R., C. Pennock, T. List & J. DiPirro (2004) Artificial Intelligence in Computer
Graphics: A Constructionist Approach. Computer Graphics Quarterly, 38(1), New York: ACM,
26-30.

Thórisson, K.R., T. List, C. Pennock, & J. DiPirro (2005) Whiteboards: Scheduling
Blackboards for Semantic Routing of Messages & Streams, AAAI-05 Workshop on Modular
Construction of Human-Like Intelligences, K.R. Thórisson (Ed.), Twentieth Annual Conference
on Artificial Intelligence, Pittsburgh, PA, July 10, 16-23.

Thórisson, K. R. (2007) Avatar Intelligence Infusion - Key Noteworthy Issues. Keynote
presentation, 10th International Conference on Computer Graphics and Artificial Intelligence,
3IA 2007, Athens, Greece, May 30-31, 123-134.

Turunen, M. & J. Hakulinen (2000) Jaspis - A Framework for Multilingual Adaptive Speech
Applications, In Proceedings of the Sixth International Conference on Spoken Language
Processing, Beijing, China, October 16-20, 719-722.

Vybornova, O., M. Gemo & B. Macq (2007) Multimodal Multi-Level Fusion using Contextual
Information. In ERCIM NEWS, No. 70, July, 61-62.

Vinoski, S. (1993) Distributed object computing with CORBA, C++ Report, Vol. 5, No. 6,
July/August, 32-38.

W3C (2009)
http://www.w3.org Site visited 16/03/09.

W3C XML (2009)
http://www.w3.org/XML/Activity.html Site visited 16/03/09.

Wahlster, W., E. André, S. Bandyopadhyay, W. Graf & T. Rist (1992) WIP: The Coordinated
Generation of Multimodal Presentations from a Common Representation. In Communication
from Artificial Intelligence Perspective: Theoretical and Applied Issues, J. Slack, A. Ortony &
O. Stock (Eds.), 121-143, Berlin, Heidelberg: Springer Verlag.

Wahlster, W., N. Reithinger & A. Blocher (2001) SmartKom: Towards Multimodal Dialogues
with Anthropomorphic Interface Agents. In: Wolf, G. & G. Klein (Eds.), 23-34, Proceedings of
International Status Conference, Human-Computer Interaction. October, Berlin, Germany:
DLR.

Wahlster, W. (2003) SmartKom: Symmetric Multimodality in an Adaptive and Reusable
Dialogue Shell. In: Krahl, R. & D. Günther (Eds.), 47-62, Proceedings of the Human Computer
Interaction Status Conference, June. Berlin, Germany: DLR.

Wahlster, W. (2006) (Ed.) SmartKom: Foundations of Multimodal Dialogue Systems, Berlin,
Germany: Springer-Verlag.

225

Waibel, A., M.T. Vo, P. Duchnowski & S. Manke (1996) Multimodal Interfaces. In Artificial
Intelligence Review, Vol. 10, Issue 3-4, August, 299-319.

Webb, N., M. Hepple & Y. Wilks (2005) Dialog act classification based on intra-utterance
features. In Proceedings of the AAAI Workshop on Spoken Language Understanding.

Weilhammer, K., J.D. Williams & S. Young (2005) The SACTI-2 Corpus: Guide for Research
Users. Technical Report CUED/F-INFENG/TR.505, Department of Engineering, Cambridge
University, England, February.

Wilson, A. & H. Pham (2003) Pointing in Intelligent Environments with the WorldCursor,
Interact.

Wilson, A. & S. Shafer (2003) XWand: UI for Intelligent Spaces. In Proceedings of the
SIGCHI conference on human factors in computing systems, Ft. Lauderdale, Florida, USA,
April 5-10, 545-552.

Zadeh, L. (1965) Fuzzy sets. Information and Control, 8(3), 338-353.

Zarri, G.P. (1997) NKRL, a Knowledge Representation Tool for Encoding the Meaning of
Complex Narrative Texts. In Natural Language Engineering, 3, 231-253.

Zarri, G.P. (2002) Semantic Web and knowledge representation. In Proceedings of the 13th
International Workshop on Database and Expert Systems Applications, September, 75-79.

Zou, X. & B. Bhanu (2005) Tracking Humans using Multi-modal Fusion. In Computer Society
Conference on Computer Vision and Pattern Recognition (CVPRW'05), San Diego, California,
USA, 4-11.

