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Abstract 

 
Intelligent multimodal systems facilitate natural human-computer interaction through a wide 

range of input/output modalities including speech, deictic gesture, eye-gaze, facial expression, 

posture and touch. Recent research has identified new ways of processing and representing 

modalities that enhance the ability of multimodal systems to engage in intelligent human-like 

communication with real users. As the capabilities of multimodal systems have been extended, 

the complexity of the decision-making required within these systems has increased. The often 

complex and distributed nature of multimodal systems has meant that the ability to perform 

distributed processing is a fundamental requirement in such systems. The hub of a multimodal 

distributed platform must interpret and represent multimodal semantics, facilitate 

communication between different modules of a multimodal system and perform decision-

making over input/output data. 

 This research has investigated distributed processing and intelligent decision-making 

within multimodal systems and proposes a new approach to decision-making based on Bayesian 

networks within the hub of a multimodal platform. The thesis is demonstrated in a test-bed 

multimodal distributed platform hub called MediaHub. MediaHub performs Bayesian decision-

making for semantic fusion and addresses three key problems in multimodal systems: (1) 

semantic representation, (2) communication and (3) decision-making. MediaHub has been 

tested on a number of problems such as anaphora resolution, domain knowledge awareness, 

multimodal presentation, turn-taking, dialogue act recognition and parametric learning across a 

series of application domains such as building data, cinema ticket reservation, in-car 

information and safety, intelligent agents and emotional state recognition. Evaluation of 

MediaHub gives positive results which highlight its capabilities for decision-making and it is 

shown to compare favourably with existing approaches. Future work includes the integration of 

MediaHub with existing multimodal systems that require complex decision-making and 

distributed communication, and the automatic population of Bayesian networks. 
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Chapter 1 Introduction 

 

Multimodal systems provide the potential to transform the way in which humans communicate 

with machines. Already there have been significant advances towards the goal of achieving 

natural human-like interaction with computers (Bunt et al. 2005; López-Cózar Delgado & Araki 

2005; Maybury 1993; Mc Kevitt 1995/96; Stock & Zancanaro 2005; Thórisson 2007; Wahlster 

2006). Speech is a common form of communication between humans and computational 

devices (Mc Tear 2004). Of course, speech is just one modality that humans use to 

communicate. We use a vast array of modalities to interact with each other, including gestures, 

facial expressions, gaze and touch. In order to realise truly natural human-computer interaction, 

there is a need to design multimodal systems that can process these modalities in intelligent and 

complementary ways. Such systems must be flexible, enabling the user to choose the interaction 

modalities. They must adapt to the changing needs of a dialogue with the user, accessing 

various modalities as required. Communication must not be restricted to a particular modality, 

but use a wide range of potential modalities. Multimodal systems must also facilitate 

communication through a combination of modalities in parallel (e.g. speech and gesture, speech 

and gaze) and be able to adapt their output to suit both the current context and the needs and 

preferences of the user. A more natural form of human-machine interaction has resulted from 

the development of systems that facilitate multimodal input such as natural language, eye and 

head tracking and 3D gestures.  

1.1. Overview of multimodal systems 
With respect to multimodal systems, of particular importance are their methods of semantic 

representation (Mc Kevitt 2005, Ma & Mc Kevitt 2003), semantic storage (Thórisson et al. 

2005), and decision-making, i.e., semantic fusion and synchronisation (Wahlster 2006). Ymir 

(Thórisson 1996, 1999) is a multimodal architecture for creating autonomous creatures capable 

of human-like communication. A prototype interactive agent called Gandalf has been created 

with the Ymir architecture (Thórisson 1996, 1997). Gandalf is capable of fluid turn-taking and 

dynamic sequencing. Chameleon (Brøndsted et al. 2001) is a platform for the development of 

intelligent multimedia applications. In Chameleon, communication between modules is 

achieved by exchanging semantic representations via a blackboard. SmartKom (Wahlster 2006) 

is a multimodal dialogue system that deploys rule-based pre-processing together with 



 

  

2

probabilistic based decision-making in the form of a stochastic model. SmartKom primarily 

focuses on three application domains: home, e.g., interfacing with home entertainment; public, 

e.g., tourist information, hotel reservations, banking; and mobile, e.g., driver interaction with 

mobile services in the car. SmartKom deploys a combination of speech, gestures and facial 

expressions to facilitate a more natural form of human-computer interaction, allowing face-to-

face interaction with its conversational agent, Smartakus. Interact (Jokinen et al. 2002) aids the 

creation of agent-based distributed systems. Agents are scored with regard to their suitability in 

performing particular tasks and an Interaction Manager deals with interactions between Interact 

modules. An early application of Interact was an intelligent bus-stop that enables multimodal 

access to city transport information. MIAMM (Reithinger et al. 2002) is an abbreviation for 

Multidimensional Information Access using Multiple Modalities. The aim of MIAMM is to 

develop new concepts and techniques that will facilitate fast and natural access to multimedia 

databases through multimodal dialogues. Considerable work has also been conducted on 

semantic representation within multimodal systems. Approaches to representing semantics 

include frames, typed feature structures, melting pots and XML (Mc Kevitt, 2005). 

1.1.1. Distributed processing 
Advances in the field of distributed processing have seen the emergence of various software 

tools that aid the design of distributed systems. Psyclone (Thórisson et al. 2005) is a powerful 

and robust message-based middleware that enables the development of large distributed 

systems. Psyclone facilitates a publish-subscribe mechanism of communication, where a 

message is routed through one or more central whiteboards to modules that have subscribed to 

that message type.  Psyclone implements the OpenAIR (Mindmakers 2009; Thórisson et al. 

2005) routing and communication protocol and enables the creation of single- and multi-

blackboard based Artificial Intelligence (AI) systems. The Open Agent Architecture (OAA) 

(Cheyer et al. 1998; OAA 2009) is a framework for developing distributed agent-based 

applications. .NET (MS .NET 2009) is the Microsoft Web services strategy that enables 

applications to share data across different operating systems and hardware platforms. The Web 

services provide a universal data format that enables applications and computers to 

communicate with each other. Based on XML, the Web services facilitate communication 

across platforms and operating systems, irrespective of what programming language is used to 

write the applications. Other tools for distributed processing include CORBA (CORBA 2009; 

Vinoski 1993), an architecture for developing distributed object-based systems, and DACS 

(Distributed Applications Communication System) (Fink et al. 1996), a software tool for system 
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integration that provides useful features for the development and maintenance of distributed 

systems.  

1.1.2. Bayesian networks 
Bayesian networks (Bayes nets, Belief networks, Causal Probabilistic Networks (CPNs)) (Pearl 

1988; Charniak, 1991; Jensen 1996, 2000; Jensen & Nielsen 2007; Pourret et al. 2008) are an 

AI technique for reasoning about uncertainty using probabilities. There are a number of 

properties of Bayesian networks that make them suited to modelling decision-making within 

multimodal systems. Bayesian networks are appropriate where there exist causal relationships 

between variables of a problem domain, but where uncertainty forces the decision-maker to 

describe things probabilistically, e.g., where a multimodal system is 75% sure that the user is 

happy because the person is believed to be smiling. Becoming more prevalent over the last two 

decades, Bayesian networks have been applied in a number of application scenarios including 

medical diagnosis (Peng & Reggia, 1990; Milho & Fred, 2000), story understanding (Charniak 

& Goldman, 1989) and risk analysis (Agena 2009). A key advantage of Bayesian networks is 

their ability to perform intercausal reasoning, i.e., evidence supporting one hypothesis explains 

away competing hypotheses. Several software tools facilitate development of Bayesian 

networks, with many offering both a Graphical User Interface (GUI) and a set of Application 

Programming Interfaces (APIs). Popular Bayesian software includes Hugin (2009), MSBNx 

(Kadie et al. 2001, MSBNx 2009), Elvira (2009) and the Bayes Net Toolbox (Murphy 2009).  

1.2. Objectives of this research 
The key objectives of the research are summarised as follows: 

• Develop a Bayesian approach to decision-making, i.e., fusion and synchronisation of 

multimodal input and output data. 

• Implement and test this Bayesian approach within MediaHub, a multimodal distributed 

platform hub, with a generic approach to decision-making over multimodal data. 

• Generate/interpret semantic representations of multimodal input/output within 

MediaHub. 

• Coordinate communication between the modules of MediaHub and between MediaHub 

and external modules.  

• Design, implement and evaluate MediaHub. 

In pursuing these objectives several key problems in multimodal systems are addressed 

including anaphora resolution, domain knowledge awareness, multimodal presentation, turn-
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taking, dialogue act recognition and parametric learning. MediaHub is tested in a number of 

different application domains including building data, cinema ticket reservation, in-car 

information and safety, intelligent agents and emotional state recognition. The testing of 

MediaHub across a range of application domains demonstrates the breadth of its applicability in 

decision-making over multimodal data. The focus here is to demonstrate the breadth of 

MediaHub’s decision-making, as opposed to its depth in any specific application domain.  

1.3. Outline of this thesis 
This thesis consists of seven chapters. Chapter 2 reviews related research and a number of 

concepts that are fundamental to multimodal systems, including semantic representation and 

storage, communication and the fusion and synchronisation of multimodal input/output data, 

i.e., decision-making. The chapter includes a discussion on tools for distributed processing and 

a review of existing multimodal platforms and systems. Intelligent multimedia agents are 

discussed and available multimodal corpora and annotation tools are reviewed. Also considered 

are the problems of dialogue act recognition and anaphora resolution.   

 Chapter 3 includes a detailed discussion of Bayesian networks and their application to 

decision-making. A definition and discussion of the history of Bayesian networks is provided 

initially before the structure of Bayesian networks is discussed. The ability of Bayesian 

networks to perform intercausal reasoning is given particular attention. Chapter 3 also considers 

the key problems that are encountered when constructing Bayesian networks and highlights 

their advantages over other approaches to decision-making. Applications of Bayesian networks 

are then discussed and a review of their current usage in multimodal systems is given. Chapter 3 

concludes by reviewing existing software for implementation of Bayesian networks. 

 Chapter 4 presents a Bayesian approach to decision-making in a multimodal distributed 

platform hub. First, a generic architecture for a multimodal platform hub is given. This is 

followed by a discussion on the nature of decision-making and the key problems that arise 

within multimodal decision-making. The decisions are grouped into two areas: (1) 

synchronisation of multimodal data and (2) multimodal data fusion. Also considered are 

semantic representation, multimodal fusion and ambiguity resolution. Next, the features of a 

multimodal system that support decision-making including distributed processing, dialogue 

history, domain-specific information and learning are discussed. Following this, a list of 

necessary and sufficient requirements criteria for an intelligent multimodal distributed platform 

hub is compiled. Finally, the chapter ends with a discussion on the rationale for a Bayesian 

approach to decision-making within a multimodal distributed platform hub. 
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 Chapter 5 details MediaHub, a multimodal distributed platform hub for Bayesian 

decision-making over multimodal input/output data. First, MediaHub’s architecture is presented 

and its modules described in detail. Semantic representation and storage within MediaHub is 

addressed, before the role of Psyclone (Thórisson et al. 2005), which facilitates distributed 

processing in MediaHub, is described. Next, MediaHub’s five decision-making layers are 

outlined: (1) psySpec and Contexts, (2) Message Types, (3) Document Type Definitions 

(DTDs), (4) Bayesian networks and (5) Rule-based. Following this, the functionality of Hugin 

(Jensen 1996) in implementing Bayesian networks for decision-making in MediaHub is 

discussed. Multimodal decision-making in MediaHub is then demonstrated through worked 

examples that investigate key problems in various application domains. 

 Chapter 6 discusses evaluation of MediaHub. First, hardware and software 

specifications of test environment systems are discussed. Next, initial testing of MediaHub is 

outlined, including NetBeans IDE, Hugin GUI and Psyclone’s psyProbe. Then, the results of 

testing MediaHub on six key problems in multimodal decision-making are presented. The six 

problem areas considered are: (1) anaphora resolution, (2) domain knowledge awareness, (3) 

multimodal presentation, (4) turn-taking, (5) dialogue act recognition and (6) parametric 

learning across five application domains: (1) building data, (2) cinema ticket reservation, (3) in-

car information and safety, (4) intelligent agents and (5) emotional state recognition. Next, the 

performance and potential scalability of MediaHub is considered. Chapter 6 then provides a 

discussion on how MediaHub meets the essential and desirable requirements criteria for a 

multimodal distributed platform hub. Finally, Chapter 7 concludes the thesis with a comparison 

to other work and a discussion on potential future work. 

 

 

 



 

  

6

Chapter 2 Approaches to Multimodal Systems 

 

This chapter reviews multimodal systems and the concepts and technology related to their 

development. First, the fusion and synchronisation of multimodal input and output data is 

considered. Then, three problems fundamental to the design of intelligent multimodal systems are 

discussed; semantic representation and storage, communication and decision-making. Tools for 

distributed processing are addressed and a review of existing multimodal platforms and systems is 

given. Intelligent multimedia agents are discussed and the pertinent problem of turn-taking in such 

agents considered. Multimodal corpora and annotation tools are reviewed, before a discussion on 

two key problems in the design of intelligent multimodal systems: dialogue act recognition and 

anaphora resolution. The chapter concludes with a discussion on the limitations of current AI 

research. 

2.1. Multimodal data fusion and synchronisation 
Multimodal data fusion refers to the process of combining information from different modalities 

(information chunks), “so that the dialogue system can create a comprehensive representation of 

the communicated goals and actions of the user” (López-Cózar Delgado & Araki 2005, p. 34). 

More specifically, it refers to fusion of semantics relating to various modalities. Fusion of 

semantics is a critical task at both the input and the output of a multimodal system. An example of 

semantic fusion can be found in Brøndsted et al. (2001), where semantics of the utterance, “Whose 

office is this?” needs to be fused with semantics of the corresponding gesture input, i.e., pointing 

to the intended office.  

Fusion, as discussed in López-Cózar Delgado & Araki (2005, p. 34), can be performed at a 

number of levels including signal, contextual, micro-temporal, macro-temporal and semantic. 

Signal (lexical) fusion involves attaching hardware primitives to software events. Only temporal 

concerns, e.g., synchronisation, are considered without any regard to interpretation at a higher 

level. Signal fusion frequently occurs in audio-visual speech recognition, i.e., fusion of speech 

with lip movement signals. Semantic fusion interprets the multimodal information chunks 

separately and considers their meaning before combining them. Fusion at the semantic level is 

normally conducted in two stages: (1) the multimodal events are combined at a low level and (2) 
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the high level meaning of the combination is extracted. As discussed in López-Cózar Delgado & 

Araki (2005, p. 36), semantic fusion, “is mostly applied to modalities that differ in the time scale 

characteristics of their features”. For example, semantic fusion often occurs when combining 

speech and pointing, as in the IntelliMedia WorkBench application of Chameleon (Brøndsted et 

al. 1998, 2001). Nigay and Coutaz (1995) consider three kinds of fusion: microtemporal, 

macrotemporal and contextual. Microtemporal fusion combines the information chunks as they are 

provided in parallel. Macrotemporal fusion combines information chunks that are provided in 

sequence, provided in parallel but processed sequentially, or delayed due to processing limitations 

of the system. Information chunks may be delayed due the processor-hungry nature of the data 

being processed, e.g., speech or visual input will take longer to process than mouse input. 

Contextual fusion, according to Nigay and Coutaz (1995), combines the information chunks 

without giving any consideration to temporal constraints. 

Decisions on the output of a multimodal system can relate to both the choice of output 

modality, e.g., speech output only when a car is moving, as discussed in Berton et al. (2006) and 

to the synchronisation of multimodal output, e.g., synchronising the movement of a pointing laser 

with corresponding speech output, as in the IntelliMedia WorkBench application of Chameleon 

(Brøndsted et al. 2001) where a statement of the form, “This is the route from Paul’s office to 

Tom’s office”, needs to be synchronised with the laser output tracing the route between the two 

offices. 

Systems capable of integrating speech and gestures have been proposed since the early 

eighties. Bolt (1980, 1987) introduced the ‘Put-That-There’ system, which enables the user to 

move shapes about a graphical display with speech commands and pointing gestures. Mc Kevitt 

(1995/96) includes a collection of computational models and systems that have been designed to 

address the challenge of multimodal integration. Ó Nualláin & Smith (1994) investigate the 

relationship between the semantics of language and vision, which led to the development of 

Spoken Image (Ó Nualláin et al. 1994). Spoken Image enables a user to quickly build an 

envisaged house or town scene, within a 3D environment, by describing the scene with natural 

language. Aesopworld (Okada 1996; Okada et al. 1999) aims to create an architectural foundation 

for intelligent agents. Aesopworld involves the creation of a computational agent that simulates 

various kinds of mental activities. QuickSet (Johnston et al. 1997, Johnston 1998) focuses on the 

integration of speech with pen-based input. Hall and Mc Kevitt (1995) observe that language and 

vision are combined by humans in a non-linear fashion which makes analysis of the phenomenon 

a very difficult task. They argue that their use of a knowledge representation that is independent of 
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both the vision processing and natural language processing modules makes vision-language 

integration feasible. Pastra & Wilks (2004) highlight the need for a comprehensive language and 

vision integration standard and present the Vision-Language intEgration MechAnism (VLEMA) 

as a possible solution. Martin et al. (2001) achieve the linking of a speech/gesture segment with its 

visual reference object by nesting the reference object in an XML segment annotation. This work 

was then continued in Martin & Kipp (2002), where it was put to practice in the ANVIL 

annotation tool (Kipp 2001, Martin & Kipp 2002). Several mechanisms have been employed for 

the semantic fusion of multiple modalities, including frames, melting pots, neural networks and 

agents. An important prerequisite of modality integration is the means of representing the 

individual modalities. This is referred to as semantic representation and is discussed in the next 

section.  

2.2. Multimodal semantic representation 
One of the central questions in the development of intelligent multimedia or multimodal systems 

is what form of semantic representation should be used (Ma & Mc Kevitt 2003, Mc Kevitt 2005). 

This semantic representation needs to support the interpretation/generation of multimodal 

input/output and semantic theory. The representation can contain architectural, environmental and 

interactional information. Architectural information comprises the producer/consumer of the 

information, associated confidence and input/output devices. Environmental information contains 

timestamps and spatial information, whilst interactional information includes the speaker/user’s 

state. Here, four approaches to semantic representation are considered: frames, typed feature 

structures, melting pots and XML. 

2.2.1. Frames     
A frame is a set of attributes together with associated values that represent some real world entity. 

Minsky (1975) first introduced frames as a method of semantically representing situations in order 

to facilitate decision-making and reasoning. The idea of frames is based on human memory and 

the psychological view that, when humans are faced with a new problem, they select an existing 

frame, or remembered framework, and adapt it to fit the new situation by changing appropriate 

details. Although frames have limited capabilities on their own, a frame-based system provides a 

powerful mechanism for encoding information to support reasoning and decision-making.  Frames 

can be used to represent concepts, including real world objects, for example, “the village of 

Dromore”. The frames for representing each concept have slots which represent the attributes of 

the concept. Frame-based methods of semantic representation are implemented in several 
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multimodal platforms, including Ymir (Thórisson 1996, 1999), Chameleon (Brøndsted et al. 1998, 

2001), Waxholm (Carlson & Granström 1996; Carlson 1996) and DARBS (Choy et al. 2004a, 

2004b; Nolle et al. 2001). Figure 2.1 shows example frame-based semantic representations from 

Chameleon. The example frames in Figure 2.1 illustrate how speech and gesture input are 

represented. The SPEECH-RECOGNISER frame in Figure 2.1 has three slots: (1) UTTERANCE:, 

which contains the speech recognised by the system, (2) INTENTION:, which indicates the 

perceived intention of the user, i.e., the user is intending to give an instruction, and (3) TIME: 

which contains a timestamp for speech input. The GESTURE frame in Figure 2.1 also captures the 

intention and timestamp of the gesture input and contains the recognised coordinates of the 

pointing gesture in the GESTURE: slot. Note that, although the syntax and structure of frames will 

vary from system to system, the basic principles of knowledge representation will remain the 

same.   

 

Figure 2.1: Example frames from Chameleon (Brøndsted et al. 1998, 2001) 

2.2.2. Typed Feature Structures 
Typed Feature Structures (TFSs) (Carpenter 1992) are another means of combining chunks of 

information across different modalities. TFSs allow partial information chunks to be specified. For 

example, a gesture that partially specifies the user’s intention can be represented by a TFS 

containing some un-instantiated features. The dialogue manager can then ask the user to provide 

missing information to help clarify the intentions of the user. TFSs have been used in the 

implementation of a variety of dialogue systems, including QuickSet (Johnston et al. 1997) and in 

Holzapfel et al. (2002) which used multidimensional TFSs to annotate multimodal information 

chunks with, e.g., confidence scores and input channels. 

2.2.3. Melting pots 
Melting pots (Nigay & Coutaz 1995, López-Cózar Delgado & Araki 2005) are a semantic 

representation technique for encapsulating time-stamped multimodal information to support fusion 

based on the complementarity of the melting pots, time and the current context. Separate melting 

pots can combine information from different modalities. For example, when the user says, “What 

[SPEECH-RECOGNISER 
UTTERANCE:(Point to Hanne’s office) 
INTENTION: instruction! 
TIME: timestamp] 
 
[GESTURE 
GESTURE: coordinates (3, 2) 
INTENTION: pointing 
TIME: timestamp]  
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are the available flights from Chicago to this city?”, and points to a map, one melting point can 

handle speech input stating the start location, and the other handle a pointing gesture to the 

destination. The two melting pots can then be integrated by a fusion module to fully represent the 

intention of the user. Melting pots are applied in MATIS (Multimodal Airline Travel Information 

System) (Nigay & Coutaz 1995), which gives information on flight schedules. The integration of 

two melting pots in the MATIS system is illustrated in Figure 2.2. 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 2.2: Melting Pots in MATIS (Nigay & Coutaz 1995) 

The fusion depicted in Figure 2.2 occurs when the user issues a multimodal request for 

information on flights from Pittsburgh to Boston. The left melting pot in Figure 2.2 is generated 

by the speech act triggered by the utterance, “flights from Pittsburgh”, whilst the right melting pot 

results from the user selecting Boston with the mouse. 

2.2.4. XML and derivatives 
The eXtensible Markup Language (XML), created by the W3C (World Wide Web Consortium) 

(W3C 2009), is a derivative of SGML (Standard Generalised Mark-up Language). XML was 

initially developed for use in electronic publishing, but is now used extensively in the exchange of 

data via the Web. The main purpose of XML is to provide a mechanism for the mark-up and 

structuring of documents. XML is different to HTML in that tags are only used within XML to 

delimit segments of data. Interpretation of the data is left to the application that reads it. Another 

advantage of XML is that it is possible to easily create new XML tags. SmartKom (Wahlster 
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2003, 2006; Wahlster et al. 2001; SmartKom 2009), Interact (Jokinen et al. 2002) and MIAMM 

(Reithinger et al. 2002) have an XML-based method of multimodal semantic representation.  

Derivatives of XML also exist for multimodal semantic representation. SmartKom 

(Wahlster 2006) has an XML-based mark-up language, M3L (MultiModal Markup Language), for 

semantically representing information passed between its various components. The exchange of 

information within MIAMM is facilitated by a derivative of XML called MMIL (Multi-Modal 

Interface Language). The Synchronised Multimedia Integration Language (SMIL) (Rutledge 2001, 

Rutledge & Schmitz 2001, SMIL 2009a,b) is a representation language for encoding multimedia 

presentations for distribution over the Web. SMIL consists of XML elements and attributes 

describing the temporal and spatial coordination of media objects. The focus of SMIL is on the 

integration and synchronisation of independent media. Another XML-based mark-up language is 

EMMA (Extensible MultiModal Annotation markup language) (EMMA 2009). EMMA is a 

canonical structure for marking up a variety of modalities including speech, natural language text 

and gestures. 

2.2.5. Other semantic representation languages 
MPEG-7 (MPEG-7 2009) is an ISO/IEC standard developed by MPEG (Moving Picture Experts 

Group). The MPEG-7 standard provides tools for describing multimedia content. MPEG-7 aims to 

enable, “interoperable searching, indexing, filtering and access of audio-visual (AV) content by 

enabling interoperability among devices and applications that deal with AV content description” 

(MPEG-7 2009, p. 1). It is expected that MPEG-7 will make the Web more searchable with 

multimedia content as the search criteria, as opposed to the traditional method of searching for 

text.  

The Semantic Web (Berners-Lee et al. 2001; SW 2009) aims to provide, “a common 

framework that enables data to be shared and reused across application, enterprise and community 

boundaries” (SW 2009, p. 1). Based on the Resource Description Framework (RDF) (Klein 2001, 

2002, Nejdl et al. 2000, RDF Schema 2009), it is a joint effort led by the W3C (World Wide Web 

Consortium) with input from other research and industrial partners. According to Berners-Lee et 

al. (2001, p. 36), “the Semantic Web is an extension of the current Web in which information is 

given well-defined meaning, better enabling computers and people to work in cooperation”. 

Research in this area is motivated by the need to develop a knowledge representation framework 

that can manage the mass of unstructured data on the current Web. An important goal of the 

Semantic Web is to put information on the Web that can be processed by machines in addition to 

humans. Semantic Web technologies such as RDF (Resource Description Framework) (Klein 
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2001, 2002, Nejdl et al. 2000, RDF Schema 2009), OIL (Ontology Inference Layer) (Fensel et al. 

2001)  and OWL (Ontology Web Language) (OWL 2009) enable rich information networks to be 

rapidly created and can assist in the generation of hypotheses across large sets of data. RDF is a 

general-purpose language for the representation of information on the Web. RDF Schema, an 

extension of RDF, provides mechanisms for describing groups of resources and relationships 

between them. RDF’s class and property system is comparable to that of object-oriented 

programming languages such as Java. However, RDF, rather than defining a class in terms of the 

properties its instances may have, describes properties in terms of the classes of resource to which 

they may be applied. OIL (Ontology Inference Layer) (Fensel et al. 2001) is an ontology 

architecture that is being developed for use with the Semantic Web. An ontology, as defined by 

Gruber (1993, p. 200), is, “an explicit specification of a conceptualization”. OIL represents a 

standard for specifying and exchanging ontologies, and aims to provide a general-purpose 

semantic mark-up language for the Semantic Web. OWL enables applications to process the 

content of information rather than simply presenting it to humans. OWL facilitates greater 

machine interpretability of Web content than that provided by XML, RDF and RDF Schema. This 

is achieved by providing additional vocabulary together with a formal semantics. OWL, based on 

DAML+OIL (DAML 2009, DAML+OIL 2009, Mc Guinness et al. 2002), has three sublanguages: 

OWL Lite, OWL DL, and OWL Full. DAML + OIL evolved from the merging of DAML + ONT, 

an earlier ontology language, and OIL. The goal of DAML + OIL is to, “support the 

transformation of the Web from being a forum for information presentation to a resource for 

interoperability, understanding, and reasoning” (Mc Guinness et al. 2002, p.1).  A further 

advancement in the DAML project led to the development of DAML-S (DAML Services) 

(DAML-S 2009), which provides a set of mark-up language constructs to describe Web Services 

in a format understandable to computers.  

SOAP (Simple Object Access Protocol) (Chester 2001) enables software applications 

developed using different programming languages and running on different platforms to 

interoperate. SOAP uses a combination of HTML and XML to send and receive messages in a 

distributed environment. HTML facilitates communication between modules, while the actual 

network conversation is encoded in XML. SOAP is a network protocol for calling components, 

methods, objects and services on remote servers. This is enabled by representing parameters, 

return values and errors in an XML document known as a SOAP envelope. A standardised XML 

vocabulary called WSDL (Web Services Definition Language) facilitates description of the 

methods, parameters and return values of a SOAP Web Service. The SOAP model is 
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language/platform independent, secure and scalable. It is a loosely coupled protocol that enables 

information exchange in a decentralised, distributed environment. The NKRL (Narrative 

Knowledge Representation Language) (Zarri 1997, 2002) language can represent the semantic 

content of complex multimedia information in a standardised way. NKRL is a language for 

representing the meaning of natural language narrative documents such as, for example, news 

stories and corporate documents. 

2.3. Multimodal semantic storage 
In addition to semantic representation, another important factor is how semantics is stored within a 

multimodal system. Semantic storage is important for maintaining dialogue history in a 

multimodal system, which becomes increasingly more complex as dialogue systems become more 

intelligent. The storage of semantics is important for deictic reference ambiguity resolution in a 

dialogue where a user may ask, “How can I get from his office to that office [�]1?”. It is also 

important for communication between modules of multimodal systems. 

There are three key approaches to semantic storage: blackboard based, non-blackboard 

based and multi-blackboard based. Similar to the traditional classroom-based blackboard, a 

blackboard within a multimodal system is a repository of shared information containing semantic 

representations of the reasoning performed, other information important to the reasoning process 

and conclusions reached by the system during the resolution of a problem (e.g. a dialogue). This 

information is maintained over time and can be accessed later to support decision-making in a 

multimodal dialogue. Blackboards (Thórisson et al. 2005) help simplify the construction of AI 

systems with large numbers of interacting modules. A key advantage of a blackboard is 

modularity. That is, a problem space can be divided into a number of problem areas with each 

being addressed by an ‘expert’ which works on the problem and communicates with other experts 

via the blackboard. The principle of modularity makes blackboards popular in the design of 

distributed and multimodal systems. Multimodal distributed platforms that deploy a blackboard 

model of semantic storage include Chameleon (Brøndsted et al. 1998, 2001), Psyclone (Thórisson 

et al. 2005) and DARBS (Nolle et al. 2001).  

Non-blackboard based systems typically store semantics in individual modules and 

communicate this semantics directly between modules through message-passing. Waxholm 

(Carlson & Granström 1996; Carlson 1996), Aesopworld (Okada 1996, Okada et al. 1999) and 

                                                 
 
1 [�] indicates a deictic gesture. 
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InterACT (Waibel et al. 1996) all implement a non-blackboard based model of semantic storage. 

Some large, complex platforms and systems need to implement multiple blackboards. Multi-

blackboard based approaches are deployed in Ymir (Thórisson 1996, 1999) and SmartKom 

(Wahlster 2006). Psyclone (Thórisson et al. 2005) enables the creation of single- and multi-

blackboard based systems. Psyclone actually implements a special type of blackboard referred to 

as a whiteboard. A whiteboard can perform all the functions of a blackboard and has the same 

primary purpose, i.e., the storage of information relating to a problem in a shared space to support 

decision-making in the multimodal system. However, whiteboards in Psyclone significantly 

extend the blackboard model in a number of ways, including independence of programming 

language, both query and publish-subscribe mechanisms, and implementation of an explicit 

temporal model.  

2.4. Communication 
Communication is an important consideration in the development of any system. It is particularly 

important in the design of multimodal systems, where the system will process input and output 

from a variety of sources across multiple modalities. A common approach to communication 

within large multimodal systems is to implement a blackboard, or shared space, and have all 

modules in the system communicate by exchanging semantic representations via the blackboard 

(Brøndsted et al. 1998, 2001). Alternatively, communication may be achieved by exchanging 

semantic representations directly between the modules. It is also possible to both implement a 

blackboard and allow direct communication between the modules themselves, as is the case in 

Chameleon (Brøndsted et al. 1998, 2001).  

 A number of communication protocols exist, a frequently used protocol being TCP/IP. 

This is a suite of protocols used by Internet browsers and servers to connect to the Internet. 

TCP/IP takes its name from the two key protocols contained in the suite: Transmission Control 

Protocol (TCP) and Internet Protocol (IP). In addition to the Internet, TCP/IP also enables 

communication within multimodal and unimodal systems. MATCH (Multimodal Access To City 

Maps) (Johnston et al. 2002) uses TCP/IP for communication between the user interface and its 

Java-based facilitator MCUBE. TCP/IP is also used in JATLite (Kristensen 2001, Jeon et al. 

2000), which encompasses a collection of Java packages for constructing multi-agent systems and 

DARBS (Distributed Algorithmic and Rule-Based System) (Choy et al. 2004a, 2004b, Nolle et al. 

2001). The OpenAIR specification (Mindmakers 2009; Thórisson et al. 2005), implemented 

within the Psyclone platform (Thórisson et al. 2005), is a routing and communication protocol. 
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Based on the publish-subscribe architecture paradigm, and built upon standard TCP/IP and XML, 

OpenAIR aids the creation of large distributed systems.  

2.5. Multimodal decision-making 
In order to solve complex real-world problems, a system needs to combine knowledge and 

techniques from various sources. Such problem-solving has required systems to be developed that 

mimic the reasoning and decision-making capabilities of a human being. A system that is capable 

of tackling complex problems in a human-like manner is said to be an intelligent system and the 

intelligence that the system exhibits is termed Artificial Intelligence (AI) (Hopgood 2003). Many 

definitions of AI exist in standard text books, some more complex than others. A simple definition 

may be found in Hopgood (2003, p. 1), which states that AI, “is the science of mimicking human 

mental faculties in a computer”. This definition, although perfectly correct, leaves the notion of 

intelligence somewhat vague. It is important to appreciate the incredible complexity of the human 

mind and the various levels of human intelligence that need to be replicated using intelligent 

systems. Figure 2.3 provides some clarification by illustrating the spectrum of intelligence based 

on the level of understanding involved. 

 

Figure 2.3: Spectrum of intelligent behaviour (Hopgood, 2003) 

Although there have been considerable advancements made at the top and bottom end of the 

spectrum of intelligence, replicating human behaviour in the middle of the spectrum has proven to 

be the greatest challenge. For example, a significant gap still exists in the “common sense” region. 

It remains difficult to build systems that are capable of making sensible decisions under 

uncertainty.  

According to Hopgood (2003), AI technology for modelling intelligent behaviour can be 

broadly categorised into the following two areas: 

• Explicit modelling – with words and symbols 

• Implicit modelling– with numerical techniques 
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Explicit modelling includes techniques such as rule-based and case-based reasoning. With explicit 

modelling, words and symbols create explicit rules to model the problem. An example is, ‘if the 

temperature is hot, then turn the fan on’. This technique has the disadvantage that it can only deal 

with explicit situations and cannot deal with unfamiliar situations. Implicit modelling uses 

numerical techniques in an attempt to overcome this problem. Numerical techniques such as 

Neural Networks, Genetic Algorithms, Fuzzy Logic and Bayesian Networks enable the computer 

to create its own model based on observations and past experience. For example, Neural Networks 

can learn rules from a set of example data and apply these rules in previously un-encountered 

situations. 

2.5.1. Uncertainty 
Real world decisions are seldom taken with 100% certainty that they are correct. Humans deal 

with uncertainty all the time, often during the course of a dialogue. Background noise, for 

example, can increase the uncertainty involved in speech recognition. In a noisy environment there 

may be increased uncertainty relating to the recognition of speech. Here, people can use other non-

verbal cues (e.g. lip movement, gestures) to compensate for uncertainty in recognising speech and 

increase their overall certainty about the message being communicated. Of course, even without 

noise, uncertainty frequently arises in everyday conversations. As an example consider the 

following dialogue segment, as discussed in Mc Tear (2004, p. 47): 

1 A: John caught up with Bill outside the pub. 

2 B: Did he give him the tickets? 

Here there is uncertainty as to who ‘he’ and ‘him’ refer to. In this example, the uncertainty can be 

resolved if it is known who has the tickets. Whilst uncertainty is something that decision-making 

mechanisms try to resolve it is important, in the first instance, that uncertainty relating to certain 

inputs and beliefs are adequately recognised within the multimodal system. 

 It should also be noted that a dialogue which contains no uncertainty in the real world can 

have uncertainty introduced when interpreted by a multimodal system. Also, the choice of the 

wrong decision-making strategy for a particular situation can lead to the system being both 100% 

certain and 100% wrong. For example, consider the following conversation discussed in Mc Tear 

(2004, p. 48): 

1 A: Click on the “install” icon to install the program. 

2 B: OK. 

3 B: By the way, did you hear about Bill? 
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4 A: No, what’s up? 

5 B: He took his car to be fixed and they’ve found all sorts of problems. 

6 A: Poor Bill. He’s always in trouble. 

7. A: OK. Is it ready yet? 

It will be obvious to the reader that the referent of “it” in turn 7 is not Bill’s car, but the program 

that B is trying to install. However, if the system were to use the last recently mentioned pronoun 

that matches syntactically it would believe A is referring to Bill’s car. This is just one unimodal 

example of how an ill thought-out decision strategy could lead to uncertainty or incorrectness. The 

presence of multiple modalities can further complicate the decision-making process unless care is 

taken to design a decision-making strategy that appropriately weights the various inputs and 

ensures that the multiple modalities are harnessed to reduce uncertainty and ambiguity. 

Another potential source of uncertainty in a dialogue is sarcasm. Consider the dialogue 

below: 

1 A: Any holidays planned this year? 

2 B: Off for a week on Monday. Going to stay local, planning to tour Donegal. 

3 B: Have you heard the weather forecast for the next few days? 

4 A: I heard there will be a lot rain on Monday and Tuesday. 

5B: Oh Great! ( ☺ ). 

Note that the ☺ symbol indicates the speaker is smiling whilst uttering turn 5. Here, participant B 

is not happy that there is a lot of rain forecasted for Monday and Tuesday. The utterance, “Oh 

Great!’, and the accompanying smile of turn 5 are examples of sarcasm. Again, this will be 

obvious to the reader, but turn 5 could easily be misinterpreted by a computer. The effective use of 

dialogue history, labelling turn 4 as negative information for participant B, and an understanding 

that a positive comment and expression can sometimes constitute sarcasm could help avoid 

uncertainty in this dialogue.  

2.5.2. Fuzzy Logic 
Fuzzy Logic (Zadeh 1965; Passino & Yurkovich 1997) is a problem solving methodology that can 

be used to arrive at definite conclusions based on vague, imprecise or missing data. This enables 

Fuzzy Logic to mimic the approximate reasoning capability of human beings. As an example of 

such reasoning, consider what we do in the shower when the temperature is too hot: we can 

quickly fix the problem by adjusting the temperature control knob without knowing the exact 

temperature of the water. Note that the water will be perceived to be too hot over a wide range of 
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temperature values and not only at a fixed temperature. Thus our action in adjusting the control 

knob is based on perception, not just on a measured value. Fuzzy Logic attempts to replicate this 

form of human reasoning. 

 Fuzzy Logic uses linguistic or fuzzy variables, typically nouns such as, “temperature”, 

“error” or “voltage”. All of these linguistic variables have linguistic values assigned to them. 

Examples of linguistic values are, “very hot”, “zero”, “positive large”, “negative small”, “ok”, 

“cold” and “very cold”. This will be further clarified by a simple example. Consider the problem 

of balancing an inverted pendulum as discussed in Passino & Yurkovich (1997). A model diagram 

of the problem is shown in Figure 2.4. 

 

Figure 2.4: Inverted Pendulum (Passino & Yurkovich 1997) 

Note that ‘u’ in Figure 2.4 represents the force that must be applied to the moving cart in order to 

balance the pendulum, and ‘y’ represents the displacement of the pendulum from the vertical 

(balanced) position. Suppose that an expert on the system says that he/she will use e(t), i.e., error, 

and d/dt e(t), i.e., change in error, as the variables on which to base decisions. The error is 

mathematically expressed as follows: 

e(t) = r(t) - y(t)         (2.1) 

where r(t) is the reference point, indicated by the dashed line in Figure 2.4, and y(t) is the displacement 

from this position. The following linguistic variables will be used in the fuzzy system: 

“error” describes e(t) 

“change-in-error” describes d/dt e(t) 

“ force” describes u(t) 

The linguistic variables will assume linguistic values over time. That is, “error” , “change-in-

error” and “force” will take on the following linguistic values: 
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“neglarge” 

“negsmall” 

“zero” 

“possmall” 

“poslarge” 

Note that, “neglarge”, is an abbreviation for, “negative large”, and, “poslarge”, is an 

abbreviation for “positive large”. We can now define linguistic rules that will capture the expert’s 

knowledge about how to control the pendulum. A few of these rules are: 

If error is negsmall and change-in-error is zero Then force is possmall 

If error is zero and change-in-error is possmall Then force is negsmall 

If error is poslarge and change-in-error is negsmall Then force is negsmall 

We can now use membership functions to plot the meaning of the linguistic values. Consider 

Figure 2.5. This is a plot of a function µ versus an error e(t). The function µ quantifies the 

certainty that e(t) can be classified linguistically as “possmall”. For example, if e(t) = π/4 then 

µ(π/4) = 1.0, indicating that we are absolutely certain that e(t) = π/4 is what we mean by 

“possmall”. 

 

Figure 2.5: Membership function for “possmall” (Passino & Yurkovich 1997) 

To better understand the concept of the membership function, we will draw the membership 

functions for the inverted pendulum using the following default initial conditions: 

 

y(0) = 0.1 radians, r(0) = 0, and u = 0  (2.2) 

 

Therefore, using (2.1): 

 

e(t)  =  r(0) – y(0)  = 0 – 0.1 = -0.1  (2.3) 
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d/dt e(t) = dy/dt = 0     (2.4)    

 

The membership functions for these input conditions are shown in Figure 2.6. For e(t) = - 0.1 and 

d/dt e(t) = 0, we can see from Figure 2.6 that there are two active rules: 

If error is zero and change-in-error is zero then force is zero 

If error is negsmall and change-in-error is zero then force is possmall 

"zero" "possmall""negsmall""neglarge" "poslarge"

Pi / 2- Pi / 2 Pi / 4
e(t)

"zero" "possmall""negsmall""neglarge" "poslarge"

Pi / 4- Pi / 8- Pi / 4 Pi / 8
d / dt e(t)

0
- 0.1

0

0

- Pi / 4
- 0.7854

 

Figure 2.6: Membership functions for “error” and “change in error” 

Having defined which rules are on, our next step (the inference step) is to determine which 

conclusions should be reached in deciding what force should be applied to the cart in order to keep 

the inverted pendulum balanced. The final step is to convert the decisions reached by each of the 

rules into actions. This step is known as defuzzification and the result is a crisp (or non-fuzzy) 

output force that should be applied to the cart in order to keep the inverted pendulum balanced. 

Fuzzy logic is one method of AI that could be applied in a multimodal system where decisions 

need to be made based on noisy or ambiguous multimodal data. The TeleMorph Fuzzy Inference 

System (Solon et al. 2007) implements fuzzy logic for decision-making in TeleTuras, a mobile 

intelligent multimedia tourist information system. 

2.5.3. Genetic Algorithms 
Genetic Algorithms (GAs) (Davis 1991; Goldberg 1989; Holland 1992) are another paradigm 

within Artificial Intelligence that can facilitate decision-making within a multimodal system. GAs 

were inspired by Darwin’s Theory of Evolution which states how all living things evolve, 
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adapting themselves to constantly changing environments in order to survive. Darwin observes 

that the weaker members of a species have a tendency to die away, leaving the stronger to mate 

and create offspring. This theory is illustrated in Figure 2.7.  

 

Figure 2.7: Darwin’s Theory of Evolution 

Genetic Algorithms are essentially exploratory search and optimisation methods, where each 

potential solution to the problem is represented by an individual in the population. Each individual 

within the GA is represented by a string. Every iteration of the GA creates a new population from 

the old by interbreeding the fittest strings to create new ones which may be closer to the optimal 

solution to the problem in question. So in each generation, new strings are created from the 

segments of previous strings. Additionally, new random data is occasionally added in order to 

keep the population from stagnating. GAs are parallel search procedures, i.e., they can be 

implemented on parallel processing machines which can greatly speed up their operation. The 

main elements of GAs are:   

• Chromosomes - Each point in a solution space is encoded into a bit string called a 

chromosome. 

• Encoding schemes – An encoding scheme transforms a point in a solution space into a bit 

string representation. 
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Evolution 
through 
millions 
of years 
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species with unique 

characteristics 

Survivors re-produce a 
new generation 

Weaker members of the 
species die in adverse 

environment 



 

  

22

Although several encoding schemes exist, the most commonly used is the binary coding scheme. 

In the binary coding scheme, each decision variable in the solution set is encoded in a binary 

string and concatenated to form a chromosome. For example, a point (3, 12, 7) in a 3D parameter 

space could be represented by the following chromosome: 

C = { 0011 1100 0111} 

Three basic operators are found in every GA. These are selection (reproduction), crossover and 

mutation. The selection operator allows an individual string to be copied, based on its fitness 

value, and possibly included in the next generation. A fitness function is used to calculate the 

fitness value of a string. Crossover in GA is analogous to crossover in biological terms where 

chromosomes from the parents are blended to produce new chromosomes for the offspring. The 

mutation operator introduces new genetic material into an existing individual, thus increasing the 

genetic diversity of the population. 

2.5.4. Neural Networks 
Neural Networks (Haykin 1999) are information processing paradigms that have been inspired by 

the manner in which biological nervous systems, e.g., the human brain, process information. A 

neural network is made up of large numbers of interconnected processing elements, or neurons, 

working in parallel to solve a problem. Neural networks, “learn by example”. That is, they are 

trained using input and output data sets to adjust the synaptic weight connections between the 

neurons. An example of a neural network is shown in Figure 2.8. Three important properties of 

neural networks are: 

• Parallelism 

• Learning 

• Generalisation 

Parallelism enables large volumes of data to be processed in parallel. Due to the distributed nature 

of the neurons within the layers of a neural network, the processing capabilities of the network are 

distributed across all of its neurons and synapses. This means that the corruption or damage of one 

layer may not significantly degrade the output. Learning can be applied to solving a problem when 

a model of the problem is not known. The network is trained using known input/output data sets of 

the problem. Generalisation enables a neural network to process data on which it has never been 

trained. The network learns rules from a set of examples, thus it is not necessary to explicitly 
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know and program the necessary actions. Neural Networks are another technique within Artificial 

Intelligence for potential decision-making within multimodal systems. 

  

 

Figure 2.8: Example of a typical neural network structure 

2.5.5. Bayesian networks  
Bayesian networks (Pearl 1988; Jensen 2000; Kadie et al. 2001; Jensen & Nielsen 2007; Hugin 

2009; Pourret et al. 2008) are also known as Bayes nets, Causal Probabilistic Networks (CPNs), 

Bayesian Belief Networks (BBNs) or belief networks. A Bayesian network consists of a collection 

of nodes with directed edges between the nodes. Each of the nodes represents a random variable, 

with each edge representing a cause-effect relationship within the domain, i.e., causal impact from 

one node to another. An edge connecting two nodes A and B indicates that a direct influence 

exists between the state of A and the state of B. All edges in the graph are directed and directed 

cycles are not permitted, i.e., it is a Directed Acyclic Graph. As an example, consider Figure 2.9, 

where the directed edges from ‘Diet’ and ‘Exercise’ have an impact on ‘Weight Loss’. It can be 

seen in Figure 2.9 that the nodes are represented by ovals and the directed edges are illustrated by 

arrows. In Figure 2.9, there is a causal dependency from ‘Diet’ to ‘Weight Loss’ and from 

‘Exercise’ to ‘Weight Loss’.  

 

Figure 2.9: Example of a simple Bayesian network 
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Each node in a Bayesian network contains the states of the random variable it represents together 

with a Conditional Probability Table (CPT), or a Conditional Probability Function (CPF). The 

CPT contains the probabilities of the node being in a particular state given the states of its parents. 

The effects in a Bayesian network, represented by the directed edges, are not completely 

deterministic (e.g. disease -> symptom) and the strengths of these effects are modelled as 

probabilities. The following example gives the conditional probability of having a certain medical 

condition given the variable temp (where P(…) represents a probability function): 

1) If tonsillitis then P(temp>37.9) = 0.75  

2) If whooping cough then P(temp>37.9) = 0.65 

Since 1) and 2) could be mistakenly read as rules, the following notation was developed, where ‘|’ 

represents a directed edge in the Bayesian network from the latter node (whooping cough) to the 

first node (temp>37.9):  

P(temp>37.9 | whooping cough) = 0.65 

If 1) and 2) are read as ‘If otherwise healthy and...then...’, it is also necessary to specify how the 

two causes combine. That is, one needs to know the probability of having a fever if both, or none, 

of the symptoms are present. Hence, it is necessary to specify the conditional probabilities:  

P(temp>37.9 | whooping cough, tonsillitis) 

where ‘whooping cough’ and ‘tonsillitis’ each have the states ‘yes’ and ‘no’. Thus it is necessary 

to define the strength of all combinations of states for all of the possible causes. Inference, or 

model evaluation, computes the conditional probability for some variables given information, or 

evidence, on other variables. This is easiest when all evidence relates to variables that are 

ancestors, or parent nodes, of the variable(s) of interest. However, when evidence relates to a 

descendant of the variable(s) of interest, one has to perform inference against the direction of the 

edges. In order to do this, Bayes’ Theorem is employed: 

P(A | B)   =  P(B | A)P(A)    (2.5)    

                  P(B) 

In other words, the probability of some event A occurring, given that event B has occurred, is 

equal to the probability of event B occurring, given that event A has occurred, multiplied by the 

probability of event A occurring and divided by the probability of event B occurring.  
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2.6. Distributed processing 
A distributed system allows the various components of the system to be distributed over multiple 

computers. The processing power of a distributed system may thus be spread over several 

computers and the processing speed of the system can be greatly increased. Each computer within 

a distributed system can be configured to operate on a specific task. The collection of computers 

that form a distributed system can appear to the user as a single system. In addition to the ability to 

run applications faster, distributed systems offer several other advantages. These include: 

• Price – desktop computers provide cheap but powerful processing. 

• Data sharing – data can be shared amongst all computers in a distributed system. For 

example, a central computer might keep the records of all the customers of a bank. Staff at 

all branches of the bank can access these records as if they were available locally on their 

own computers. 

• Reliability – if one computer in a distributed system goes down, the others can still 

perform. 

• Incremental growth – machines can be upgraded, replaced and added incrementally. 

• Scalability – if more processing is needed, new computers can be added to the distributed 

system. 

A disadvantage associated with the use of distributed systems is that they are often critically 

dependent on the network. If the network is down or unreliable, serious problems can arise. 

Another disadvantage concerns security, as data sharing increases the possibility of security 

violations.  

2.7. Tools for distributed processing 
Recent advances in the area of distributed systems have seen the development of several software 

tools for distributed processing. These tools are utilised in the creation of a range of distributed 

platforms. Numerous software tools for distributed computing are available and an overview of 

such tools will now be given. 

2.7.1. PVM 
PVM (Parallel Virtual Machine) (Sunderam 1990, Fink et al. 1995) is a programming 

environment that provides a unified framework where large parallel systems can be developed. It 

enables development of large concurrent or parallel applications consisting of relatively 

independent interacting components. An objective of PVM is to enable existing software to be 

incorporated into a larger system, with little or no modifications. A demon task is present on each 
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machine of the distributed system. This allows communication to be monitored by a debugger, 

thus simplifying the analysis of heterogeneous interaction between the modules. A disadvantage 

with the PVM system is that it does not have a centralised instance of a service that can monitor 

the system configuration. This limitation causes additional overhead during reconfiguration. 

2.7.2. ICE 
ICE (INTARC Communication Environment) (Amtrup 1995) is a communication mechanism for 

AI projects developed at the University of Hamburg. ICE is based on the Parallel Virtual Machine 

(PVM), with an additional layer added to interface with several programming languages. Support 

for visualisation is provided by the use of the Tcl/Tk scripting language, which has graphical 

capabilities. ICE supports the following programming languages: 

• C / C++ 

• Allegro Common Lisp 

• C LISP 

• LUCID Common Lisp 

• Sicstus Prolog 

• Quintus Prolog 

• Tcl/Tk 

The overall structure of a system constructed using ICE is shown in Figure 2.10. A system 

developed using ICE can be composed of several components written in different programming 

languages. Each component is given a unique name and can communicate with all other 

components within the system. 

 

Figure 2.10: Typical structure of an ICE system (Amtrup 1995) 
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As shown in Figure 2.10, components communicate with each other via channels. ICE provides a 

base channel between components that uses eXternal Data Representation (XDR) to encode data 

as hardware-independent. 

2.7.3. DACS 
DACS (Distributed Applications Communication System) (Fink et al. 1995, 1996) is a powerful 

tool for system integration that provides a multitude of useful features for developing and 

maintaining distributed systems. Communication within DACS is based on asynchronous message 

passing, with additional extensions to deal with dynamic system reconfiguration at run-time. Other 

more advanced features include both synchronous and asynchronous remote procedure calls and 

demand streams that can handle data in continuous data streams.  

 All messages passed within DACS are encoded in a Network Data Representation, which 

enables the inspection of data at any stage and the development of generic tools capable of 

processing different kinds of information. Similar to PVM, DACS uses a communication demon 

that runs on each participating machine. DACS differs from PVM in that the communication 

demon enables multiple users to access the system simultaneously and virtual machines dedicated 

to individual users are not provided. The purpose of the DACS demon is to route all internal 

traffic and establish connections to other demons located on remote machines. A central name 

server keeps track of all registered demons and modules. This avoids the overhead that would 

result if changes in the system configuration were broadcasted. Each participating module must 

register with the system using a unique name, which is passed to the name server and enables 

other modules to address it. DACS constitutes a flexible communication tool that can be utilised in 

the creation of distributed systems. DACS could be used in different applications that necessitate 

the integration of existing heterogeneous software systems. 

2.7.4. Open Agent Architecture (OAA) 
The Open Agent Architecture (OAA) (Cheyer et al. 1998, OAA 2009) is a general-purpose 

infrastructure for creating systems that contain multiple software agents.  OAA enables such 

agents to be written in different programming languages and running on different platforms. 

According to its developers, “OAA enables a truly cooperative computing style wherein members 

of an agent community work together to perform computation, retrieve information, and serve user 

interaction tasks” (OAA 2009, p.1). OAA distinguishes itself from other methods of distributed 

computing, such as the Blackboard approach, in that it enables both human users and software 

agents to express what they want done without specifying who should perform the task or how it 
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should be done. For example, a user may issue the request “notify me immediately when a 

message for me arrives in relation to security” or “print this page on the nearest printer”. Figure 

2.11 shows the agent interaction within an OAA-based system. 

 

Figure 2.11: Agent interaction in OAA (OAA 2009) 

As shown in Figure 2.11, the requesting agent issues a request to the Facilitator, which matches 

the request with an agent, or agents, which provides that service. All agents interact using the 

Interagent Communication Language (ICL), which can express high-level, complex tasks and 

natural language expressions. A major advantage of OAA is the ability to add new agents on the 

fly. 

2.7.5. JavaSpaces 
JavaSpaces (Freeman 2009), developed by Sun Microsystems, enable developers to quickly create 

collaborative and distributed applications. JavaSpaces represent a distributed computing model 

where, in contrast to conventional network tools, processes do not communicate directly. Instead, 

processes exchange objects through a space or shared memory. A process can write an object to a 

space, take an object from a space, or read an object in a space, i.e., make a copy of an object. 

These operations are shown in Figure 2.12. 

 

 

 

 

Figure 2.12: Read, write and take operations within JavaSpaces 
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To read or take an object from the space, processes use simple matching, based on the value of 

fields, to find the object that they require. Because processes can communicate through spaces, 

rather than communicating directly, more flexible and scalable distributed applications can be 

developed.  

2.7.6. CORBA 
The CORBA (Common Object Request Broker Architecture) (CORBA 2009, Vinoski 1993) 

specification was released by the Object Management Group (OMG) in 1991. CORBA is a 

standard architecture for the creation of distributed object systems, enabling distributed 

heterogeneous objects to work together. CORBA facilitates the requesting of the services of a 

distributed object. The services of an object can be accessed through the object’s interface, defined 

using the Interface Definition Language (IDL) and which has a syntax similar to C++. A major 

component of CORBA is the Object Request Broker (ORB), which delivers requests to objects 

and returns results back to the client. The role of the ORB is shown in Figure 2.13. 

 

 

Figure 2.13: A typical object request (CORBA 2009) 

Note that the client object holds a reference to the distributed object. The operation of the ORB is 

completely transparent to the client. That is, the client doesn’t need to know where the objects are, 

how they communicate, how they are implemented, stored or executed. The client and the 

CORBA object uses exactly the same request mechanism irrespective of where the object is 

located. In situations where the requesting client is written in a different programming language 

from that of the CORBA object, the ORB will translate between the two programming languages. 

One of the key objectives of CORBA is to enable client and object implementations to be 
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portable. To meet this requirement two application programmer’s interfaces (APIs) are defined, 

one for implementing the CORBA object and another for the clients of a distributed object.  

2.7.7. JATLite 
JATLite (Kristensen 2001, Jeon et al. 2000) provides a set of Java packages that enable multi-

agent systems to be developed using Java. JATLite provides a Java agent platform that uses the 

KQML Agent Communication Language (ACL) for inter-agent communication. An important 

component within the JATLite platform is the Agent Message Router (AMR). The AMR is 

responsible for registering agents with a name and password. JATLite facilitates modular 

construction of systems and consists of the following layers: 

• Abstract layer, which provides a collection of abstract classes necessary for JATLite 

implementation. 

• Base layer, which provides communication based on TCP/IP and the abstract layer. 

• KQML (Knowledge Query and Manipulation Language) layer, which provides for storage 

and parsing of KQML messages. 

• Router layer, which provides name registration and routing and queuing of messages via 

the AMR. 

These four layers enable flexibility in the infrastructure of systems developed using JATLite, 

allowing developers to select the most appropriate layer for their system. 

2.7.8. .NET 
.NET (MS .NET 2009) is the Microsoft Web services strategy that enables applications to share 

data across different operating systems and hardware platforms. The Web services provide a 

universal data format that enables applications and computers to communicate with each another. 

Based on XML, the Web services enable communication across platforms and operating systems, 

irrespective of what programming language is used to write the applications. The .NET framework 

can either be installed as a client or a server. Both the client and the server configurations of the 

.NET framework offer their own advantages and the developer must consider these carefully 

before making a decision on which configuration to use. The .NET framework consists primarily 

of the following two components: 

• The Common Language Runtime (CLR) 

• The .NET Framework Class Library 

The CLR is a system agent that runs and manages .NET code at run-time, managing basic services 

such as memory management and error control. The .NET Framework Class Library is a 
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collection of object-oriented types for developing applications, services and components. .NET 

enables the components of a system to be shared over the Internet. The framework makes use of 

Web Services that can be utilised by both Windows-based applications and those running on other 

platforms – provided these applications use Internet standards such as TCP/IP, HTTP, XML and 

SOAP. The architecture of the .NET framework is shown in Figure 2.14. As shown in Figure 2.14, 

.NET enables three different kinds of applications to be developed: applications running managed 

code under the CLR, applications running unmanaged machine code and Web applications, and 

services running unmanaged code under ASP.NET. Using .NET, both managed and unmanaged 

applications can be written to co-exist on the same computer.  

 

Figure 2.14: Architecture of .NET framework (MS.NET 2009) 

2.7.9. OpenAIR 
The OpenAIR specification (Mindmakers 2009; Thórisson et al. 2005) can be applied to routing 

and communication within large distributed systems based on the publish-subscribe architecture. 

OpenAIR is an open-source specification of the AIR protocol implemented in C# and Java. 

Implementations are available for the Windows, Mac, and Linux operating systems. OpenAIR is 

used to implement an AIR server in Psyclone (Thórisson et al. 2005), a platform for creating large 
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distributed AI projects. OpenAIR messages are in XML format and contain a ‘Type’ slot which is 

a dot-delimited string. The following is an example of a message type in OpenAir, delimited by 

XML tags: 

<type>Internal.Perception.Hearing.Voice</type> 

The dot-delimited string is used by the dispatcher, i.e., a blackboard or whiteboard, to decide 

which modules are subscribed to which message types, and to route messages accordingly. The 

asterisk can be used as a wild card when subscribing to messages. For example, a module 

subscribed to messages of type *Perception* or *Voice* would receive all messages headed by 

the previous message type. The OpenAIR specification defines a number of other XML tags and 

attributes that enables the design of publish-subscribe blackboard based architectures.  

2.7.10. Psyclone 
Psyclone (Thórisson et al. 2005) is a powerful message-based middleware for simplifying the 

creation of modular, distributed systems. Psyclone is applied in applications where complexity 

management or interactivity is of importance. Psyclone enables software to be easily distributed 

across multiple machines and enables communication to be managed through rich messages 

formatted in XML. A design methodology called, ‘divisible modularity’, enables the incremental 

construction of multi-granular, heterogeneous systems. Psyclone, written in C++, uses XML 

configuration files and bulletin boards to enable the easy set-up and testing of system 

architectures. Psyclone runs on the following platforms: 

• Linux 

• Windows 

• Mac OS X 

• PocketPC 

Psyclone introduces the concept of a, ‘whiteboard’, which is essentially a blackboard that is 

capable of handling media streams. A psySpec in Psyclone initialises modules and whiteboards at 

start-up. Figure 2.15 shows an example psySpec. The code in Figure 2.15 creates a whiteboard 

(WB1) and an internal module called ‘Startup’. It is possible to create multiple whiteboards and 

multiple modules for a system. In order to enable multiple programs to communicate with each 

other via the whiteboards, programs can use plugs written in Java, C++, Python and Lisp. 

2.7.11. Constructionist Design Methodology 
Constructionist Design Methodology (CDM) (Thórisson et al. 2004) aids the construction of large 

AI systems. CDM is based on the principle of multiple interacting modules communicating via 
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message-passing. At the heart of CDM is the notion of modularity, i.e., breaking down the 

functionalities of the system into software modules whose roles are defined in terms of associated 

message types and information content. 

 

Figure 2.15: XML Code to initialise Psyclone at start-up (Psyclone 2009) 

The methodology follows the idea that the human mind can be effectively modelled through a 

combination of interacting modules (Mc Kevitt et al., 2002). CDM is particularly suited to 

facilitating large teams of researchers collaborating on large and complex systems. Previous 

research has shown that a modular approach can hasten the development of such systems (Fink et 

al. 1996; Thórisson 1996, 1997; Martinho et al. 2000; Thórisson et al. 2004). To test CDM, 

Thórisson et al. (2004) chose to develop a system encompassing an embodied virtual character, 

called Mirage, living in an augmented reality setting. Mirage is shown in Figure 2.16. At the 

highest level, CDM follows the following fundamental design principles (Thórisson et al. 2004, p. 

6): 

• “To mediate communication between modules, use one or more blackboards with publish-

subscribe functionality. 

• Only build functionality from scratch that is critical to the raison d’entre of the system – 

use available software modules wherever possible”. 

  <psySpec name="Project X" version="1.2">    

  <whiteboard name="WB1">  
     <description>This is a basic Whiteboard</descr iption> 
  </whiteboard>  

  <module name="Startup"> 
<description>Bootstrap by pos ting a root context upon system                     
ready</description> 
   <context name="System"> 
          <phase name="Look for System Created"> 
                 <triggers from="any"> 
                        <trigger type="System.Ready " after="100"/>  
                 </triggers> 
            <posts> 
                <post to="WB1" type="Psyclone.Conte xt:SoB.Alive"/>  
            </posts> 
          </phase> 
   </context> 

   </module>  

   </psySpec>  
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Figure 2.16: Embodied agent Mirage (Thórisson et al. 2004) 

The implementation of one or more blackboards makes modularity explicit within a system. The 

fact that modules communicate through a blackboard, as opposed to communicating directly, 

enables parallel implementation of modules. The second design principle puts emphasis on 

defining the goal(s) of the project, e.g., practically motivated or research oriented. The following 

outlines the specific steps of CDM, as discussed in Thórisson et al. (2004): 

1. Define the project’s goal(s). 

2. Define the project’s scope. 

3. Modularisation – build the system using modules communicating through a 

blackboard and/or publish-subscribe mechanism. 

4. Test the system against scenarios. 

5. Iterate – repeat steps 2 to 4 until satisfied that desired functionality is achieved. 

6. Assign modules to suitable team members (based on their strengths and areas of 

interest). 

7. Test all modules at run-time (at an early stage in their implementation). 

8. Build modules to full specification. 

9. Tune the system will all the modules running.  

In the implementation of Mirage, Psyclone (Thórisson et al. 2005) was used to implement the 

blackboard, more precisely, a whiteboard, as discussed in Section 2.3, and the publish-subscribe 

mechanism. Mirage consisted of 8 modules and a total of 5 team members implemented the 
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system. With CDM the design and implementation took only 9 weeks, thus demonstrating the 

merits of adopting the methodology in the construction of such a large complex system. The 

distributed processing capabilities of Psyclone (Thórisson et al. 2005) proved very useful in the 

implementation of Mirage and adherence to the principles of CDM. CDM primarily aims to 

support the development of large AI systems by a large team of researchers. However, many of its 

recommendations could be adopted by a single researcher (or small team), provided the system 

under construction is of sufficient complexity to justify the use of such a methodology. 

2.8. Multimodal platforms and systems 
Several multimodal platforms and systems have been developed that assist the creation of 

intelligent multimodal systems. These multimodal systems are capable of processing input/output 

in a wide range of modalities including speech, vision, eye-gaze, facial expression, gesture and 

tactile. These platforms enable systems to be developed that can communicate with users through 

the entire range of human communication modalities. The result of enabling such rich multimodal 

input and output is the development of systems that are more flexible and can adapt to the varying 

needs of each individual user. In this section several existing multimodal platforms will be 

discussed, with particular attention given to their methods of semantic representation, semantic 

storage and decision-making. 

2.8.1. Chameleon  
Chameleon (Brøndsted et al. 1998, 2001) is a distributed architecture capable of processing 

multimodal input and output. The system consists of ten modules, mostly programmed in C and 

C++. The ten modules are listed below: 

• Blackboard 

• Dialogue Manager 

• Domain model 

• Gesture recogniser 

• Laser system 

• Microphone array 

• Speech recogniser 

• Speech synthesiser 

• Natural language processor 

• Topsy 
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The ten modules of Chameleon are glued together by the DACS communication system (Fink et 

al. 1995, Fink et al. 1996). Chameleon implements a blackboard for semantic storage. The 

blackboard keeps track of interactions over time, using frames for semantic representation. The 

architecture of Chameleon is shown in Figure 2.17. 

 

 

Figure 2.17: Architecture of Chameleon (Brøndsted et al. 1998, 2001) 

The blackboard and dialogue manager are collectively the kernel of Chameleon. The blackboard 

stores the semantic representations produced by other modules, keeping a history of all 

interactions. Communication between modules is achieved by exchanging semantic 

representations between themselves or the blackboard. Figure 2.18 shows how the blackboard acts 

as a mediator for information exchange between the modules of Chameleon. 

 

Figure 2.18: Information exchange using the blackboard (Brøndsted et al. 1998, 2001) 

The blackboard consists of the following components: 

• SQL database 

• Communication interface 

• Table of implicit requests 
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The internal architecture of the blackboard is shown in Figure 2.19. The semantic representation is 

in the form of input, output and integration frames which represent the meaning of user input and 

system output. Frames are coded as messages and are passed between modules using the DACS 

communication system. Figure 2.20 defines the predicate-argument syntax of frames, as they 

appear on Chameleon’s blackboard. The code for the frame messages is compiled separately and 

included in other modules which operate on the representation using a rule-based method of 

decision-making.  

 

Figure 2.19: Internal blackboard architecture (Brøndsted et al. 1998, 2001) 

  

   FRAME ::= PREDICATE 

  PREDICATE  ::= identifier(ARGUMENTS) 

  ARGUMENTS ::= ARGUMENT 

|   ARGUMENTS, ARGUMENT 

ARGUMENT ::= CONSTANT 

|   VARIABLE 

|   PREDICATE 

CONSTANT ::= identifier 

|   integer 

|   string 

VARIABLE ::= $identifier 

Figure 2.20: Syntax of messages (frames) within Chameleon (Brøndsted et al. 1998, 2001) 

The IntelliMedia WorkBench (Brøndsted et al. 2001) is a prototype application for Chameleon. 

An example domain of application is a Campus Information System for 2D building plans, where 

the user can ask the system for directions, using speech and pointing gestures, to various offices 

within a building. The Domain Model, implemented in C, contains all the relevant data for the 

Campus Information System, including information on rooms, their function and their occupants. 

Figure 2.21 shows an extract from a file containing the description of the physical environment.  
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Figure 2.21: Physical environment data (Brøndsted et al. 1998) 

Hierarchical levels are illustrated with indentation. As shown, the top level is identified by the 

keyword, ‘area’, which is followed by the area’s name and minimal/maximal x and y coordinates. 

The next level is identified by the keyword, ‘building’, which is again followed by the name and 

coordinates. Similar files store information about the occupants of the building. The functionality 

provided by the domain model is to answer questions relating to the environment through search 

functions. Examples of such functions are: 

dm_get_person_coordinates(person_id) 

dm_get_place_coordinates(place_id) 

dm_get_person_name(person_id) 

dm_get_place_name(place_id) 

The first two functions return a C struct holding x and y coordinates, while the last two functions 

return a string containing the name of the person or place. Inputs to Chameleon include 

synchronised spoken dialogue and pointing gestures, and outputs include synchronised spoken 

dialogue and laser pointing. Topsy, implemented within Chameleon, is a general purpose 

distributed system for representing real world knowledge as patterns of synchronisation. Topsy 

consists of: Sensors, which represent words and intentions; Effectors, which interact with the 

outside world, through laser and speech synthesis; Event Windows, the learning mechanism in 

Topsy; and Actions. 

2.8.2. TeleMorph 
TeleMorph (Solon et al. 2007) is an inference system that uses fuzzy logic for decision-making on 

the selection of output for a mobile intelligent multimedia presentation system. TeleMorph 

area FRB7 1190 0 920 
  building environment 0 1190 0 920 
 
  building A1-1 871 1111 497 739 
 tp A1-1s1  725    898 2 A1-2s1 A2-1c1-1 
  building A1-2 317 557 497 739 
 tp A1-2s1  725    341 2 A1-1s1 A2-2c1-1 
  building A2-1 631 871 497 739 
 room   00   624   663   746   860   meeting_room 
 tp A2-100  653    797 1 A2-1c2 

room   01   683   739   787   860   laboratory 
 tp A2-101  693    797 1 A2-1c2 

room   02   663   739   693   787   laboratory 
 tp A2-102  706    746 1 A2-102-2 

tp A2-102-2  673    746 3 A2-1c2 A2-102 A2-102-4 
tp A2-102-3  693    704 2 A2-103 A2-102-4 
tp A2-102-4  673    704 3 A2-102-2 A2-102-3 A2-102- 5 
tp  A2- 102 - 5  640    704  3 A2 - 105 A2 - 102 - 4 A2 - 1c3 - 1 
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dynamically adapts output based on available bandwidth and addresses the problems that typically 

plague mobile presentation systems, including bandwidth fluctuations and packet loss. A 

particular focus of the research is transmoding, the adaptation of multimedia content across 

different modalities. For example, if bandwidth is limited, TeleMorph can replace certain media 

combinations, e.g., audio and video, with an alternative combination using different modalities, 

e.g., text and images. TeleMorph defines fuzzy logic rules for deciding when to perform 

adaptations on output, e.g., from images-text to audio-images, from video to images-text. Matlab’s 

Fuzzy Logic Toolbox (Babuska 1993) was used to implement fuzzy logic within TeleMorph. The 

architecture of TeleMorph’s Fuzzy Inference System is shown in Figure 2.22.  

  

  
  

  

  

  

  

  

  

  

 

Figure 2.22: Architecture of TeleMorph’s Fuzzy Inference System (Solon et al. 2007) 
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As shown in Figure 2.22, TeleMorph’s Fuzzy Inference System defines 7 membership functions 

which provide a sufficient level of granularity for decision-making within the system. TeleTuras, a 

testbed for TeleMorph, is a mobile multimedia presentation system, which provides tourist 

information about the city of Derry. TeleTuras enables users to ask questions such as, “Where is 

the University of Ulster?”, and responds by presenting multimedia content that automatically 

adapts in response to fluctuations in the bandwidth of the mobile network. A number of bandwidth 

specific test scenarios, created to test the transmoding capabilities of TeleMorph, have given 

positive results. 

2.8.3. CONFUCIUS  
CONFUCIUS (Ma 2006) is an intelligent storytelling system that performs language visualisation 

of English sentences. The architecture of CONFUCIUS is shown in Figure 2.23. A key problem 

addressed by CONFUCIUS is the mapping between language knowledge and visual/audio 

knowledge. CONFUCIUS can generate output animation based on speech input. For example, the 

utterance, “John put a cup on the table”, causes CONFUCIUS to produce the output animation 

presented in Figure 2.24. 

 

Figure 2.23: Architecture of CONFUCIUS (Ma 2006) 
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Figure 2.24: Output animation in CONFUCIUS (Ma 2006) 

CONFUCIUS also includes a presentation agent called Merlin, shown in Figure 2.25, who acts as 

a narrator.  

 

Figure 2.25: Narrator Merlin in CONFUCIUS (Ma 2006)  

2.8.4. Ymir 
Ymir (Thórisson 1996, 1999) is a multimodal platform for the creation of autonomous agents 

capable of human-like communication. Ymir represents a distributed, modular approach that 

implements a coherent framework to bridge between multimodal perception, decision-making and 

action. Within the Ymir architecture, a prototype agent called Gandalf (Thórisson 1996) has been 

created. The interactive agent, Gandalf, is capable of fluid turn-taking and dynamic sequencing. 

The modules within Ymir are divided into the following four process collections: 
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• The Reactive Layer (RL), which operates on relatively simple data. 

• The Process Control Layer (PCL), which controls the global aspects of the dialogue and 

manages the communicative behaviour of the agent. 

• The Content Layer (CL), which hosts the processes that interpret the content of the 

multimodal input and generates suitable responses. 

• The Action Scheduler (AS), which coordinates appropriate actions. 

Three main blackboards are implemented in Ymir. The first blackboard, called the Functional 

Sketchboard, is primarily used to exchange information between the Reactive Layer and the 

Process Control Layer. The Content Blackboard deals with communication between the Process 

Control Layer and the Content Layer. The messages that are posted on the Content Blackboard are 

less time-critical than those posted on the Functional Sketchboard. The third blackboard is called 

the Motor Feedback Blackboard and keeps track of which part of an action stream is presently 

being planned or carried out by the Action Scheduler (AS). Ymir uses a frame-based method of 

semantic representation. Within Ymir, the majority of messages take the form 

[<Message>,<State>,<Timestamp], with state being either true or false. Figure 2.26 shows an 

example of a message posted on the Functional Sketchboard. The message can either be the form 

of a decision or a perception. For example, I-GIVE-TURN is a decision, whilst HAND-IN-GEST-

SPACE indicates a belief about the dialogue. It is expected that Ymir’s modular structure will 

allow systems to be easily extended, without affecting the simplicity or performance of the 

system. Ymir has been applied in the development of the Honda ASIMO humanoid robot (Ng-

Thow-Hing et al. 2008) and, according to Thórisson (1999), looks promising in providing a 

general framework for communicative, task-knowledgeable agents.  

 

Figure 2.26: Frame posted on Ymir’s Functional Sketchboard (Thórisson 1999) 

2.8.5. InterACT  
InterACT (Waibel et al. 1996) aims to remove the limitations associated with traditional computer 

interfaces by enabling input using the entire range of human communication modalities, including 

(RHAND-IN-GEST-SPACE T 5140) 

(HAND-IN-GEST-SPACE T 5150) 

(R-DEICTIC-MORPH T 5180) 

(SPEAKING T 5180) 

(USER-TAKING-TURN T 5190) 

(I-TAKE-TURN NIL 5330) 

(I-GIVE-TURN T 5340) 
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speech, gesture, eye-gaze, face recognition, facial expression, lip motion, handwriting and sound 

localisation. InterACT uses frames for semantic representation and implements a non-blackboard 

model of semantic storage. An initial application of InterACT is an Audio/Visual Automated 

Speech Recognition (ASR) System. This involves the recognition of letters in the German 

alphabet using automated lip reading and speech recognition. A Multi-State Time-Delay Neural 

Network (MS-TDNN) performs recognition of visual data. The network architecture of InterACT 

is shown in Figure 2.27, where the acoustic and visual inputs are processed in isolation. The audio 

and visual inputs are then combined for further processing in the combined layer.  

 

Figure 2.27: Network architecture of InterACT (Waibel et al. 1996) 

Table 2.1 shows recognition performances for InterACT. The results show that when visual 

information is added to speech the overall recognition rate can be significantly improved. It can 

also be seen that, as expected, the improvement is greatest when the speech input is noisy. 

 
Speaker Acoustic Visual Combined 

msm/clean 88.8 31.6 93.2 

msm/noisy 47.2 31.6 75.6 

mcb/clean 97.0 46.9 97.2 

mcb/noisy 59.0 46.9 69.6 

Table 2.1: Word accuracy of Speech/Lip system (Waibel et al. 1996) 

2.8.6. JASPIS 
JASPIS (Turunen & Hakulinen 2000; Jokinen et al. 2002) focuses on the exploration of natural 

human-computer interaction and the development of natural adaptive dialogue models. Another 
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key objective of JASPIS is adaptivity - the ability of the system to adapt to the changing needs and 

activities of a user, e.g., in a mobile environment. An agent-based architecture has been developed 

in pursuit of these objectives. The architecture of JASPIS is depicted in Figure 2.28 where 

different agents focus on specific tasks within the system. Using these specialised agents modular, 

reusable interaction components are implemented. An information storage knowledge base acts 

similar to a blackboard, with other system components accessing the knowledge base via the 

Information Manager. An Interaction Manager facilitates interactions between the modules of 

JASPIS. An unlimited set of modules can be connected to JASPIS and the Interaction Manager 

caters for all connections between modules. 

 

Figure 2.28: Architecture of JASPIS (Jokinen et al. 2002) 

The architecture also enables JASPIS to be distributed over multiple computers. Agents within 

JASPIS have different capabilities and the most suitable agent for performing a given task can be 

selected dynamically at run-time based on its capabilities and the current context. Evaluators 

determine which agent is best suited to deal with a particular situation. The decision-making 

process involves the evaluator giving a score between zero and one to each of the agents. A score 

of zero indicates the agent is not suited to the situation, a score of one means the agent is deemed 

perfectly suited, whilst values between zero and one indicate the degree of suitability. Several 

evaluators give scores to an agent, indicating its suitability for the current situation. Scaling 

functions can give greater importance to certain evaluators, before the scores are multiplied to give 

final scores, or suitability factors, for each of the agents. Multiple evaluations are performed 

before an agent is chosen for a particular task. JASPIS uses an XML-based method of semantic 

representation and, through the use of a shared knowledge base, implements a blackboard-style 
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method of semantic storage. An early application of JASPIS is an intelligent bus-stop that allows 

multimodal access to city transport information. 

2.8.7. SmartKom 
SmartKom (Wahlster 2003, 2006; Wahlster et al. 2001; SmartKom 2009) is a multimodal 

dialogue system that helps overcome the problems of interaction between people and machines. 

SmartKom focuses on developing multimodal interfaces for applications in the home, public and 

mobile domains. SmartKom uses a combination of speech, gestures and facial expressions to 

facilitate more natural human-computer interaction, enabling face-to-face interaction with its 

conversational agent Smartakus. For example, in the public domain, the user can allocate to 

Smartakus the task of finding a library. Together with its language capabilities, Smartakus uses 

facial expressions and body language to improve the naturalness of the interaction. It is intended 

that SmartKom will enable complex dialogic interactions, where both the user and the system will 

be capable of initiating interactions, asking questions, requesting clarification, signalling problems 

of understanding and interrupting the dialogue partner. SmartKom enables the following two 

modes of interaction: 

• ‘Lean-forward’ mode, which supports touch and visual input. 

• ‘Lean-back’ mode, where input and output is only achieved via the speech channel. 

An XML-based mark-up language, M3L (MultiModal Mark-up Language), provides semantic 

representation of information passed between components of SmartKom. An example of the M3L 

code within SmartKom is shown in Figure 2.29. SmartKom also makes use of the OIL ontology 

language (Fensel et al. 2001) to represent domain and application knowledge. SmartKom 

constitutes a distributed multi-blackboard system, including more than 40 asynchronous modules 

coded in C, C++, Java and Prolog. The integration platform for SmartKom is called 

MULTIPLATFORM (MUltiple Language Target Integration PLATform FOR Modules) (Herzog 

et al. 2003), which enables the creation of open, flexible and scalable software architectures. 

MULTIPLATFORM uses a message-based middleware, based on the Parallel Virtual Machine 

(PVM), to provide a powerful framework for creating integrated multimodal dialogue systems. 

The ultimate aim of SmartKom is to provide a kernel system that can be utilised within different 

application scenarios. 

2.8.8. DARPA Galaxy Communicator 
The DARPA Galaxy Communicator project (Bayer et al. 2001) investigates ways to engage 

humans in robust, mixed-initiative spoken interactions, which would surpass the capabilities of 
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current dialogue systems. This project has involved the development of a distributed message-

passing infrastructure for dialogue systems, namely the Galaxy Communicator Software 

Infrastructure (GCSI). 

 

Figure 2.29: Example of M3L code (Wahlster 2003) 

An extension of the Galaxy-II distributed infrastructure for dialogue interaction, the GCSI is a 

distributed hub-and-spoke architecture. Semantic representation is managed by frames and 

communication is facilitated via message-passing. The architecture of the GCSI is illustrated in 

Figure 2.30.  

 

Figure 2.30: Hub-and-spoke architecture of GCSI (Bayer et al. 2001) 

<presentationTask> 
   <presentationGoal> 
      <inform> <informFocus> <RealizationType>list 
</RealizationType> </informFocus> </inform> 
<abstractPresentationContent> 
<discourseTopic> <goal>epg_browse</goal> </discours eTopic> 
<informationSearch id="dim24"><tvProgram id="dim23" > 
<broadcast><timeDeictic id="dim16">now</timeDeictic > 
<between>2003-03-20T19:42:32 2003-03-20T22:00:00</b etween> 
<channel><channel id="dim13"/> </channel> 
</broadcast></tvProgram> 
</informationSearch> 
<result> <event> 
<pieceOfInformation> 
<tvProgram id="ap_3"> 
<broadcast> <beginTime>2003-03-20T19:50:00</beginTi me> 
<endTime>2003-03-20T19:55:00</endTime> 
<avMedium> <title>Today’s Stock News</title></avMed ium> 
<channel>ARD</channel> 
</broadcast>……..</event> 
</result> 
</presentationGoal> 
</presentationTask>  
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The GCSI’s hub enables programmers to create programs using a simple scripting language that 

can control message traffic. The message-passing nature of the GCSI infrastructure means that the 

hub doesn’t need to have any compile-time knowledge of the functional properties of the server it 

is communicating with. A scripting language enables the programmer to alter the flow of 

messages, allowing the integration of servers with a variety of interaction paradigms without 

making modifications to the servers themselves. This property also enables tools and filters to be 

inserted that can convert data between different formats. Included in the GCSI are libraries and 

templates, allowing Communicator-compliant servers to be created in C, Java, Python and Allegro 

Common Lisp. 

2.8.9. Waxholm 
Waxholm (Carlson & Granström 1996; Carlson 1996) combines speech synthesis and recognition 

in a human-computer dialogue framework. Waxholm gives information on boat traffic. Besides 

the spoken language capabilities, Waxholm has modules to deal with graphical information such 

as pictures, maps, charts and timetables. Waxholm uses SQL to access information, as requested 

by the user. During a dialogue the decision on which topic path to follow is based on dialogue 

history and the content of the utterance. Using a rule-based system, the utterance is encoded in a 

semantic frame with slots relating to both the grammatical analysis of the utterance and the current 

application domain. In order to decide on the topic, the semantic features found in the semantic 

and syntactic analysis are considered in the form of conditional probabilities. Probabilities are 

expressed in the form p(topic | F), where F is a feature vector containing all the semantic features 

found in the utterance. The topic prediction is trained with utterances from the Waxholm database. 

Waxholm implements a non-blackboard model of semantic storage. 

2.8.10. Spoken Image (SI)/SONAS 
Spoken Image (SI) and its successor, SONAS (Ó Nualláin et al. 1994, Ó Nualláin & Smith 1994, 

Kelleher et al. 2000), are systems for interacting with a 3D environment through natural language, 

gestures and other modes of communication. SI and SONAS are systems that enable users to 

communicate and interact with them in a multimodal manner, inspired by the way humans 

communicate with ease through multiple modalities. The original project, Spoken Image, enabled 

a user to quickly build a house or town scene by describing the scene with natural language. The 

user could then refine the details until the presented scene matches how the user has envisioned it. 

Each element of a scene is an instance of a class implemented in C++. SONAS is an intelligent 

multimedia system that enables input comprising a combination of several modalities. SONAS 
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enables objects in a 3D environment to be manipulated with natural language. Consider the 

following example, as discussed in Kelleher et al. (2000). With the input, “Put the book on the 

table”, the user sees the book moving onto the table. In order to achieve this, the following steps 

are necessary: 

• The input phrase is parsed and broken down into the figure, “the book”, the reference 

object, “the table”, the action, “put”, and the spatial relation, “on”. 

• Next the visual model is searched for the figure and reference objects. 

• Then, at the conceptual level, the objects are considered with respect to their position in the 

physical ontology of objects. 

• At the semantic level the objects are reduced to, e.g., geometric points, lines and planes. 

An important theme in developing SI/SONAS has been an effort to find a common semantics 

between language and vision, i.e., to develop a meaning representation scheme that is common to 

both the language and vision data. This presents many challenges as the same word can mean 

different things in different situations. For example, the word, “park”, can have different 

meanings, e.g., play park, park the car. SI/SONAS uses frames for semantic representation and 

uses a blackboard for semantic storage.  

2.8.11. Aesopworld 
Aesopworld (Okada 1996, Okada et al. 1999) aims to create an architectural foundation of 

intelligent agents. Aesopworld involves the creation of a computational agent that simulates 

various kinds of mental activities. A key objective of Aesopworld is the development of human-

friendly interfaces that can make decisions on a dialogue based on the user’s facial expressions, 

gestures and the tone of their voice. Aesopworld employs a frame-based method of semantic 

representation and a non-blackboard method of semantic storage. An example Aesopworld frame 

is shown in Figure 2.31. In its efforts to develop a truly intelligent agent, Aesopworld attempts to 

integrate seven intelligent activities: recognition, planning, action, desire, emotion, memory and 

language. 

2.8.12. Collagen 
Collagen (Rich & Sidner 1997) introduces the concept of a SharedPlan to represent the common 

goal of a user and a collaborative agent. Grosz and Sidner’s (1990) theory maintains that, in order 

to achieve successful collaboration, it is necessary that participants have mutual beliefs about the 

goals/actions that must be performed and the capabilities/intentions of the participants. In addition 
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to the concept of a SharedPlan, a recipe within Collagen is defined as an agreed sequence of 

actions necessary to accomplish a common goal. 

 

Figure 2.31: An example Aesopworld frame (Okada et al. 1999) 

Data structures and algorithms are provided within Collagen to represent and manipulate goals, 

actions, recipes and SharedPlans. Figure 2.32 illustrates how a user can collaborate with an agent 

using Collagen, whilst Figure 2.33 shows the internal architecture of Collagen.  

 

Figure 2.32: User-Agent Collaboration within Collagen (Rich & Sidner 1997) 

µ-agent( 

     name(evt_get_out_of), 

     domain(dom_evt_recognition), 

     description(...), 

     input( 

 msg(subs,evt_get_out_of,C_agent,(natural,movable)) , 

    msg(subs,evt_get_out_of,C_origin,(artificial,ha s_inside))), 

     execution( 

 event_extraction( 

  concept_feature_1([lapse(Before,After)]), 

  concept_feature_2([existence([C_agent,(Before,Aft er)]), 

  concept_feature_3([existence([C_origin,(Before,Af ter)]), 

  concept_feature_4([inside(C_agent,C_origin,Before )]), 

  concept_feature_5([movement([C_agent,(Before,Afte r)]), 

  concept_feature_6([outside([C_agent,C_origin,Afte r)]))), 

     output()). 
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Figure 2.33: Collagen architecture (Rich & Sidner 1997) 

Note from Figure 2.33, that the agent’s decision-making and execution is a, ‘black box’. That is, 

although Collagen provides a framework for communicating and recording decisions between the 

user and an agent, it does not offer a means of decision-making – this is left to the discretion of the 

developer. Collagen uses Sidner’s (1994) artificial discourse language to represent agent 

communication acts. Within the artificial discourse language there is a set of constructors for basic 

act types, e.g., proposing, accepting and rejecting proposals. Examples of such act types are PFA 

(Propose For Accept) and AP (Accept Proposal). The syntax of a PFA is as follows: 

PFA (t, participant1, belief, participant2) 

The above states that at time t, participant1 has a belief, communicates it to participant2 with the 

intention that participant2 will believe it also. If participant2 now responds with an AP act, i.e., 

accepts the proposal, then the belief is considered to be mutually believed. There are two 

additional application-independent operators to model a belief about an action, SHOULD (act) and 

RECIPE (act, recipe). The remainder of the belief sublanguage is application-specific. Collagen 

implements a frame-based method of semantic representation and a non-blackboard model for 

semantic storage. 

2.8.13. Oxygen 
Oxygen (Oxygen 2009) is motivated towards making computing available to everyone, 

everywhere in the world – just as accessible as the oxygen we breathe. Some of the aims of 

Oxygen are the development of a system that is: 
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• Human-centred and directly addresses human needs. 

• Pervasive, i.e., all around us. 

• Embedded in the world around us, sensing and affecting it. 

• Nomadic, i.e., allowing users and computations to move around freely as necessary. 

• Adaptable to changes in user requirements. 

• Intentional, i.e., enabling people to name a service or software object by intent, e.g., “the 

closest printer”, as opposed to by address. 

The meeting of these objectives creates a system that adapts to the needs of the user, as opposed to 

traditional computer systems that force the user to learn how to interact with the machine using the 

keyboard and mouse. Oxygen aims to enable pervasive, human-centred computing by integrating 

various technologies that address human needs. Within Oxygen, spoken language and visual cues 

form the main modes of user-machine interaction. Speech and vision technologies are used to 

enable the user to interact with the system as if communicating with another person. Knowledge 

access technology allows information to be found quickly by remembering what the user looked at 

previously. Semantic representation is in the form of frames, whilst semantic storage is 

implemented with a non-blackboard model. 

2.8.14. DARBS 
DARBS (Distributed Algorithmic and Rule-Based System) (Choy et al. 2004a,b; Nolle et al. 

2001) is a distributed system that enables several knowledge sources to operate in parallel to solve 

a problem. DARBS is an extension of ARBS, which was first developed in 1990. The original 

ARBS system only enabled one knowledge source to operate at any one time. A distributed 

version of the system was designed to deal with more complicated engineering problems. 

DARBS, programmed in standard C++, consists of a central blackboard with several knowledge 

source clients. A client is a separate process that may reside on a separate networked computer and 

can contribute to solving a problem when it has a contribution to make. Figure 2.34 shows the 

architecture of DARBS. As shown, DARBS comprises rule-based, procedural, neural network and 

genetic algorithm knowledge sources operating in parallel. DARBS uses frames for semantic 

representation. The major advantage that DARBS offers over its predecessor is parallelism. 

Knowledge about a problem is distributed across the client knowledge sources, with each of the 

clients seen as an expert in a specific area. DARBS implements client/server technology, with 

standard TCP/IP used for communication. The independent clients can only communicate via the 

central blackboard. This is illustrated in Figure 2.35. 
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Figure 2.34: Architecture of DARBS (Nolle et al. 2001) 

 

Figure 2.35: Communication within DARBS (Nolle et al. 2001) 

The DARBS knowledge sources constantly examine the blackboard and only activate themselves 

when the information is of interest to them. Thus the knowledge sources are deemed to be 

completely opportunistic and will activate themselves when they have a contribution to make. 

Rules within DARBS facilitate looking up information on the blackboard, writing information to 

the blackboard and making decisions about information on the blackboard. An example of a 

typical DARBS rule is shown in Figure 2.36. In order to demonstrate its flexibility, DARBS has 

been applied to several different AI applications, including interpreting ultrasonic non-destructive 

evaluation (NDE) and controlling plasma processes. 

2.8.15. EMBASSI 
The EMBASSI project (Kirste et al. 2001, EMBASSI 2009) aims to provide a platform that will 

give computer-based assistance to a user in achieving his/her individual objectives, i.e., the 

computer will act as a mediator between users and their personal environment. 
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Figure 2.36: A typical DARBS rule (Nolle et al. 2001) 

The ideas of human-computer interaction and human-environment interaction take focus in the 

EMBASSI project and effort is made to allow humans to more easily interact with their 

environment through the use of computers. This concept is illustrated in Figure 2.37, which shows 

the relationship between the user, the computer and the user’s personal environment.  

 

Figure 2.37: User-computer-environment relationship (Kirste et al. 2001) 

Another important concept in the EMBASSI project is the idea of goal-based interaction, where 

the user need only specify a desired effect or goal and doesn’t need to specify the actions 

necessary to achieve the goal. For example, a goal could be, “I want to watch the news”. In 

RULE ghost_echo_prediction_rule 
IF 
[ 
[on_partition [?centre1 is the CENTRE of the AREA = = corners ~area1] 
setsoflinechars] 
AND 
[on_partition [?centre2 is the CENTRE of the AREA = = corners ~area2] 
setsoflinechars] 
] 
THEN 
[ 
[add [ghost echoes for centres ~centre1 and ~centre 2 expected to pass thru 
~[run_algorithm [ghostecho_predict [~centre1 ~centr e2]] coords]] 
prediction_list] 
[report [ghost echoes for centres ~centre1 and ~cen tre2 expected to pass 
thru ~coords] nil] 
] 
BECAUSE [~centre1 is the centre of the area] 
END 
 
Where: 
The match variable, which is prefixed by a “?”, will be looked up from the blackboard; 
The insert variable, which is prefixed by a “~”, will be replaced by the instantiations of that variable. 
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response to the user’s goal, the system would then fill in the sequence of necessary actions to 

achieve this goal.  Thus, a major function of the EMBASSI framework is the translation of user 

utterances into goals. The generic EMBASSI architecture used to achieve this is shown in Figure 

2.38.  

 

Figure 2.38: Generic architecture of EMBASSI (Kirste et al. 2001) 

As shown in Figure 2.38, the MMI levels determine the goals of users from their utterance. The 

assistance levels are then responsible for mapping these goals to actual changes in the 

environment, i.e. real-world effects, such as showing the news. Below the EMBASSI protocol 

suite, the EMBASSI project makes use of existing standards. KQML (Knowledge Query and 

Manipulation Language) Agent Communication Language (ACL) (Finin et al. 1994) acts as a 

messaging infrastructure, whilst XML (eXtensible Mark-up Language) (W3C XML 2009) acts as 
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the content language. A non-blackboard based model of semantic storage is implemented within 

EMBASSI. The platform has been tested in three main technical environments – the home, 

automotive and public (terminal) environments. For example, in the home environment there is 

the, ‘living room scenario’, which involves the management of home entertainment infrastructures 

and the control of, e.g., lighting, temperature within the room. Another scenario, this time in the 

car domain, is the operation of the car radio where the user could use natural language to request a 

suitable station, e.g., “I want a station with traditional Irish music”. Many other scenarios are 

possible where the user can simply express a goal and leave the required technical functionality to 

the EMBASSI platform. 

2.8.16. MIAMM 
MIAMM (Multidimensional Information Access using Multiple Modalities) (Reithinger et al. 

2002; MIAMM 2009) facilitates fast and natural access to multimedia databases using multimodal 

dialogues. A multimedia framework for designing modular multimodal dialogue systems has been 

created. MIAMM offers a considerable benefit to the user in that access to information systems 

can be made easier through the use of a flexible intelligent user interface that adapts to the context 

of the user query. The MIAMM platform is based upon a series of interaction scenarios that use 

various modalities for multimedia interaction. Integrated within the platform is a haptic and tactile 

device for multidimensional interaction. This enables the interface to create tactile sensations on 

the skin of the user and to add the sensation of weight to the interaction. The result is a more 

natural user interface, with haptic technology applied where the eyes and ears of the user are 

focused elsewhere. The MIAMM architecture is shown in Figure 2.39.  

 

Figure 2.39: MIAMM architecture (Reithinger et al. 2002) 
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The exchange of information within MIAMM is facilitated through the XML-based Multi-Modal 

Interface Language (MMIL). MMIL comprises, amongst other components, information on 

gesture trajectory, speech recognition and understanding, as well as information specific to each 

individual user. A key objective of MMIL is to enable the incremental integration of multimodal 

data to provide a full understanding of the user’s multimodal input, i.e., speech or gesture, and to 

provide the necessary information for an appropriate system response (spoken output and 

graphical or haptic feedback). MIAMM implements a non-blackboard based model of semantic 

storage. Within MIAMM, a dialogue manager combines information from the underlying 

application, the haptic device, the language modules and the graphical user interface. As an 

example, suppose the user says, “Show me the song that I was listening to this morning” . Now, 

assuming the user has listened to some music in the morning, the utterance will be analysed and an 

intention based MMIL representation will be produced. MIAMM first retrieves the lists of songs 

from the dialogue history. The action planner then identifies displaying the list as the next system 

goal, passing the goal and the list to the visual-haptic agent. The interface shown in Figure 2.40 is 

then presented to the user. When the user has highlighted the desired track using the selection 

buttons on the left, he/she can select the song by simultaneously uttering, “I want this one”, and 

clicking the selection button on the right. Now both the Speech Analysis and Visual-Haptic 

Processing agents send time-stamped MMIL representations to the dialogue manager. Multimodal 

fusion then checks time and type constraints of each structure and the action planner invokes the 

domain model to retrieve the relevant information from the database. Finally, the action planner 

sends a display order to the visual-haptic agent. 

 

Figure 2.40: Example MIAMM hand-held device (Reithinger et al. 2002) 
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2.8.17. XWand 
XWand (Wilson & Shafer 2003; Wilson & Pham 2003) is an intelligent wand which employs 

Bayesian networks to control devices in the home environment, e.g., lights, hi-fis, televisions. 

XWand has been designed to help speed the day of truly intelligent environments – where 

computational ability will reside in everyday devices, enabling the creation of powerful integrated 

intelligent environments. XWand addresses the problem of selecting one of several devices in an 

intelligent environment by adopting the notion of the computing curser and using this familiar 

point-and-click paradigm in the physical world. With XWand users can select and control several 

networked devices in a natural way. For example, users can point at a lamp and press a button on 

the XWand to turn it on. The XWand is shown in Figure 2.41. 

 

Figure 2.41: The XWand (Wilson & Shafer 2003) 

In the XWand Dynamic Bayesian networks perform multimodal integration. The Dynamic 

Bayesian network determines the next action by combining wand, speech and world state inputs 

(Wilson & Shafer 2003). The technology offered by the XWand has been enhanced in the 

WorldCursor system (Wilson & Pham 2003). WorldCursor uses the XWand but removes the need 

for a geometric model, and hence the 3D position of the wand, instead using projection of a laser 

spot to indicate where the user is pointing, as believed by the system. A laser pointer is mounted 

on a motion platform, which in turn is mounted on the ceiling. The motion platform steers the 

laser point onto objects pointed to by the XWand. The WorldCursor motion platform is illustrated 

in Figure 2.42. 

 

Figure 2.42: WorldCursor motion platform (Wilson & Pham 2003) 
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User testing of WorldCursor and the XWand has shown that users use the XWand similar to the 

way they use a mouse. The user seldom looks at the XWand itself, instead focusing on the laser 

dot (or cursor). Hence the familiar point-and-click paradigm of interaction has been successfully 

transferred from the desktop computing environment into the physical world. 

2.8.18. COMIC/ViSoft 
COMIC (COnversational Multimodal Interaction with Computers) (Foster 2004) uses models and 

results from cognitive psychology to make interaction with the system more intuitive. A 

demonstrator multimodal dialogue system, ViSoft, has been developed that helps customers to 

choose new designs for their bathroom. The system facilitates spoken, hand written and pen 

gesture input. A ‘talking head’ avatar provides system output combined with synthesised speech, 

deictic gestures and a simulated mouse pointer. The talking head avatar and a screenshot of the 

system are depicted in Figure 2.43. ViSoft first enables the user to specify the size/shape of their 

bathroom and position of doors/windows. The user then chooses the positioning of sanitary ware, 

before deciding on the bathroom tiles. When satisfied with the design of the bathroom, the user is 

finally given a 3D tour. A fission module, implemented in Java, chooses and coordinates output 

across the multimodal output channels. 

 

Figure 2.43: Avatar and screen shot of ViSoft (Foster 2004) 

2.8.19. Microsoft Surface 
Microsoft Surface (Microsoft 2009) is a recent attempt to revolutionise the way humans interface 

with computational devices. The physical interface to Surface is a 30 inch table-like display. 

Surface can recognise physical objects, such as mobile phones, that are placed on the surface and 

enables hands-on direct manipulation of digital content such as ring tones, images and maps. 
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Users can interact with Surface using touch, gesture, or by simply placing objects on it. Catering 

for both commercial and non-commercial end users, Surface has been tested in a number of 

application domains including mobile phone sales, e.g., choosing price plans and selecting ring 

tones, intelligent restaurant services, e.g., viewing menus and ordering food, paying bills, and 

digital photography, e.g., viewing, sharing and printing photos. Figure 2.44 illustrates the 

application of Surface in the sale of mobile phones.  

 

Figure 2.44: Commercial application of Microsoft Surface (Microsoft 2009) 

As shown in Figure 2.44, the customer can easily compare mobile phones and packages simply by 

placing the phones side by side on the surface. Figure 2.45 shows Microsoft Surface in a non-

commercial setting – digital photography.  

 

Figure 2.45: Digital photography in Microsoft Surface (Microsoft 2009) 
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As shown in Figure 2.45, users can slide and flick photos around in Surface just as they would in 

the physical world. In addition to direct interaction using touch and object recognition, the system 

allows multi-touch, i.e., recognition of multiple points of contact in parallel, and multi-user, e.g., 

collaboration between users to share photos, ring-tones.   

2.8.20. Other multimodal systems 
QuickSet (Johnston et al. 1997), a training simulator that enables voice and pen input, is a 

distributed system that consists of a collection of interacting agents that communicate using the 

Open Agent Architecture (Cheyer et al. 1998, OAA 2009). QuickSet supports direct manipulation 

by enabling complex pen gestures, such as arrows and various types of lines. The QuickSet 

interface enables users to manipulate an intelligent map with natural language and pen-based 

gestures. Semantic representation within QuickSet is in the form of typed feature structures 

(Carpenter 1992). MATCH (Multimodal Access To City Help) (Johnston et al. 2002) allows users 

to interact with a dynamic map with speech and pen input. Users can perform a variety of tasks 

such as circling an area of a map while asking for information about restaurants in that area. Maps 

are also the focus of attention in CUBRICON (Neal & Shapiro 1991) where users can point to 

objects on a map and ask questions such as, “Is this an air-base?”. 

MATIS (Multimodal Airline Travel Information System) (Nigay & Coutaz 1995) enables 

users to access information about flight schedules with speech, keyboard, mouse and direct 

manipulation. The user can choose and freely switch between the various interaction modalities. 

The IHUB (Reithinger & Sonntag 2005) integration framework is intended for use in mobile 

multimodal dialogue systems that access the Semantic Web (Berners-Lee et al. 2001; SW 2009). 

IHUB, which constitutes a hub and spoke architecture, aims to allow users to perform real-time 

queries to the Semantic Web. The IHUB does not perform reasoning about message content, but 

simply validates the messages and routes them between the various modules of the system. 

2.9. Intelligent multimedia agents 
Authors use different terms to describe an intelligent multimedia agent that can engage with 

humans in a natural and intuitive way, using both verbal and non-verbal input/output 

communication, including, ‘intelligent agent’, ‘intelligent multimodal agent’, ‘conversational 

agent’, ‘Embodied Conservational Agent (ECA)’, ‘animated human simulation’, ‘animated 

presentation agent’, ‘interface agent’, ‘affective agent’ and ‘virtual human’. Whilst there are many 

different types of agents, e.g., talking heads, embodied, cartoon style, here the broad term, ‘agent’ 

shall refer to all such agents. There has been considerable research focusing on the development of 
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agents that can engage in human-like conversations with real users. Central to the design of such 

agents is the means by which they accept and react to multimodal input, implement a strategy for 

turn-taking, and coordinate output across a range of modalities.  

REA (Real Estate Agent) (Cassell et al. 2000) is an intelligent multimodal agent which 

acts as a salesperson in the real estate application domain. The real estate domain provides REA 

the opportunity to engage in both task- and socially-oriented dialogues. REA deploys computer 

vision techniques that enable it to understand the conversational intentions of a user. REA can 

respond using automated speech, facial expressions, and hand and body gestures. A user 

interacting with REA is depicted in Figure 2.46.  

 

Figure 2.46: The REA agent (Cassell et al. 2000) 

BEAT (Cassell et al. 2001), used for the implementation of REA, is an annotation tool which 

supplies input text to be spoken by an agent. Based on the same principle of Text-to-Speech (TTS) 

systems (Mc Tear 2004), which convert written text into speech, BEAT converts written text into 

verbal and non-verbal behaviours, e.g., hand gestures, head movements, facial expressions, eye-

gaze. SAM (Cassell et al. 2000) acts as a peer playmate for children, telling stories and sharing 

experiences in a shared collaborative space. SAM can share physical objects across the real and 

physical world. Real-time video of the child’s play space is projected behind SAM so that he can 

appear to exist in the child’s actual environment. A screenshot of SAM is shown in Figure 2.47.  

 

Figure 2.47: SAM (Cassell et al. 2000) 
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The Gandalf agent (Thórisson 1996, 1997), developed with the Ymir platform (Thórisson 1996, 

1999), gives information about the planets of the solar system. The computer animated face and 

hand of Gandalf is shown in Figure 2.48.  

 
 

Figure 2.48: Gandalf (Thórisson 1996) 

Gandalf can engage in natural, multimodal communication by coordinating output across speech, 

eye-gaze and gesture modalities. The agent can also sense the position of the user, determine what 

they are looking at, monitor their hand position, and perform automated speech recognition. A 

major focus in the design of Gandalf is its ability to handle turn-taking in an intelligent and 

human-like way. 

 de Rosis et al. (2003) focus on developing an expressive and believable agent, called 

Greta, which can communicate complex information using a combination of tightly synchronised 

verbal and non-verbal signals. Greta has been designed as an, ‘individual’, as opposed to a generic 

agent, to help encourage users to consider Greta a ‘friend’, not just an agent. Greta has been 

applied in the medical domain, giving information about treatments being proscribed by a doctor. 

Using facial expressions and behaviours, Greta is capable of performing many believable 

expressions as illustrated in Figure 2.49. Other agents include PPP Persona (André et al. 1996), a 

multipurpose agent that can present information retrieved from the Internet, Rapport (Gratch et al. 

2007), which can build rapport with the user by providing non-verbal listening feedback, Steve 

(Rickel et al. 2001), an intelligent tutor that cohabits a number of virtual words with its student,  

and MAX (Multimodal Assembly eXpert) (Kopp & Wachsmuth 2004), an assembly expert who, 

in a virtual environment, assists users with complex assembly procedures. 
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Figure 2.49: Greta’s expressions (de Rosis et al. 2003) 

2.9.1. Turn-taking in intelligent multimedia agents 
The problem of turn-taking is of huge importance in the design of agents. A well designed turn-

taking strategy can greatly enhance the believability of an agent, and hence the naturalness of a 

dialogue with such an agent. By the same token, failure to deal adequately with the issue of turn-

taking can have drastic effects on the naturalness of the human-agent interaction. Turn-taking is a 

key consideration in the design of the Gandalf agent (Thórisson 1996). Gandalf signals his 

intention to take a turn by using a common behaviour pattern in humans, i.e., moving eyebrows up 

and down quickly and glancing to the side and back. The Ymir Turn-taking Model (YTTM)   

(Thórisson 2002) is one of the most comprehensive computational models of multimodal turn-

taking. YTTM addresses the full perception-action loop that is necessary for real-time turn-taking 

including multimodal perception, knowledge representation, decision-making and action 

generation. Turn-taking is an important task involved with dialogue management, and much 

research is devoted to managing turn-taking as part of a broader dialogue management strategy 

(López-Cózar Delgado & Araki 2005; Mc Tear 2004). Turn-taking signals are typically composed 

of a combination of multimodal events, such as head and gaze direction, hand position, and speech 

intonation. Considerable advances in the area of dialogue management have seen the granularity 

of turn-taking increase. Next-generation spoken dialogue systems are likely to abandon today’s 

principles of turn-taking completely, since there will not be clearly defined transition points where 

a user will stop and wait for a system response. The challenge in turn-taking is the recognition that 

‘neutral’ ‘sorry-for’ 

‘relief’ ‘tiny’ 
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the user wishes to give or take a turn. As dialogue systems become increasingly multimodal the 

dialogue management strategy need to become more competent recognising turn-taking cues, e.g., 

speech, eye-gaze, head movement/direction, facial expression, simultaneously across multiple 

modalities. This requires that dialogue management systems are capable of complex, flexible 

decision-making over some or all of the relevant input modalities. 

  Table 2.2 gives a summary of the multimodal systems discussed in this chapter. The 

systems are categorised into three groups: (1) multimodal platforms, (2) multimodal systems and 

(3) intelligent multimedia agents. A symbol is used to indicate a capability of the system, 

whilst a symbol indicates little or no capability. Table 2.2 shows that all multimodal platforms 

are considered to offer full capability in each of the categories since they provide a framework for 

implementing a range of different multimodal systems. Note that F in the semantic representation 

column represents frames, whilst BB and D in the semantic storage column represent blackboard-

based and distributed. 

2.10. Multimodal corpora and annotation tools 
In order to develop intelligent multimodal systems it is necessary to semantically annotate 

multimodal input/output data that can be used to test such systems. Typically, multimodal data is 

collected from staged or naturally occurring situations, e.g., meetings, talk shows, Wizard-of-Oz 

experiments. Multimodal corpora aid study of the characteristics of human-human communication 

and the development of more natural human-computer interaction. Rules may also be derived 

from such corpora that can then be applied to decision-making within multimodal systems. The 

corpora can be annotated with varying levels of granularity, depending on their intended use. To 

assist the process of annotation various software tools have been developed. The Anvil tool 

(Martin & Kipp 2002) is widely used to annotate multimodal data from various application 

domains but, despite the existence of tools such as Anvil, annotation of multimodal data remains a 

difficult task.  

  The AMI corpus (Carletta et al. 2006), collected during staged and naturally occurring 

meetings, is one of the largest of its kind and is freely available for academic purposes. In 

Petukhova (2005), the author focuses on the detailed annotation of dialogue acts in the AMI 

corpus. The SACTI-2 (Simulated ASR Channel, Tourist Information) corpus (Weilhammer et al. 

2005) contains annotations relating to speech and mouse click input. The data was collected 

during task-oriented human-human dialogues with speech and an interactive map. The annotations 

were performed with the Anvil tool (Martin & Kipp 2002). 
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Categories System Year 

Semantic 
representation 

Semantic 
Storage 

Multimodal Interaction 

Input Media Output Media 

F XML BB D Text 
Pointing 
(haptic 
deixis) 

Speech Vision 

Text Audio Visual 

 Speech 
Non-

speech 
audio 

Graphics 
(static) 

Video or 
animation 

Multimodal 
Platforms  

 

Collagen 1996              
Ymir 1997              
Chameleon 1998              
Oxygen 1999              
EMBASSI 2001              
DARPA Galaxy 
Communicator 

2001              

DARBS 2001              
JASPIS 2000              
Psyclone 2003              

Multimodal 
Systems 

 

Waxholm 1992              
Spoken Image/ 
SONAS 

1994     
  

       

Aesopworld 1996              
InterACT 1996              
SmartKom 2000              
MIAMM 2001              
XWand 2003              
COMIC/ViSoft 2003              
CONFUCIUS 2003              
TeleMorph/ 
TeleTuras 

2004              

Intelligent 
Multimedia 

Agents 

Gandalf 1997              
SAM & REA 
(BEAT) 

1999              

Greta 2000              

Table 2.2: Summary of multimodal systems 
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The MUMIN multimodal annotation scheme (Allwood et al. 2007) caters for the annotation of 

gestures and facial expressions and focuses on their use in feedback, turn-taking and sequencing 

communicative functions. Other work is concerned with learning from multimodal corpora in 

order to automatically generate the multimodal behaviours of an agent (Kipp 2006). Available 

sources of multimodal corpora are discussed further in Rehm and André (2006) and López-

Cózar Delgado & Araki (2005), whilst Carletta et al. (2006) give a comprehensive review of 

existing annotation schemes.   

2.11. Dialogue act recognition 
In a multimodal dialogue system, a dialogue act (Mc Tear 2004) is a functional tag which 

represents the communicative intention of a user’s utterance or gesture. Determining the 

communicative intentions behind an utterance is considered an important first step in dialogue 

management (Webb et al. 2005). Considerable research concerns itself with the recognition of 

user intentions. Grosz and Sidner (1986) consider in detail the recognition of the intentions of a 

user. They consider the three components of discourse structure to be linguistic, intentional and 

attentional, where ‘attentional’ refers to the focus of attention of the user as a dialogue unfolds. 

Bunt and Keizer (2006) propose a multi-agent approach to multidimensional dialogue 

management, where dialogue act agents are designed to focus on tasks, feedback and social 

obligation management. A dialogue manager, called PARADIME, has been implemented to test 

the approach in a question-answering system which provides information in the medical 

application domain. The PARADIME architecture implements a context model, primarily 

concerned with linguistic, semantic, cognitive, and social context, though physical and 

perceptual context is also considered. The various dialogue act agents constantly monitor the 

context model and are automatically triggered by certain conditions.  

The recognition of dialogue acts, before the advent of multimodal systems, concerned 

only the analysis of words spoken by the participants in a dialogue. Dialogue act recognition for 

language alone is by no means a simple task, but clearly it becomes more complicated when 

one must consider multiple modalities such as eye-gaze, gesture and facial expression, in 

addition to speech. Of course, multimodality can do more than make dialogue act recognition 

more complicated – it can make it more accurate and, in instances where serious ambiguity 

occurs in one modality, the use of information from other modalities can facilitate multimodal 

decision-making. In order that dialogue act recognition can be effectively achieved over 

multiple modalities there is a requirement for more advanced and innovative approaches to 

decision-making. 
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2.12. Anaphora resolution  
Reference resolution is a key problem in the design of multimodal systems. Two types of 

references that regularly occur in day-to-day speech are anaphoric and deictic. Here we 

consider the term ‘anaphoric’ to broadly include references to preceding utterances, forward 

references (cataphora), and reference to objects in the physical world (exophora). Anaphoric 

expressions can frequently occur in a user’s interaction with a multimodal system. For example, 

the user could refer to the subject of a preceding utterance, e.g., “where is her office?”, or to an 

object in the user’s environment, e.g., “the table”. Deictic references often co-occur with 

pointing, e.g., when a user refers to a position on a map displayed on the screen, e.g., “is this a 

library?”. They can also refer to some time in the future, e.g., “I will give you the document 

then”. Resolving such references requires that the system has an understanding of current 

dialogue (contextual information), a record or past dialogue and an understanding of the current 

domain (domain model). 

  Bolt (1980) developed one of the first multimodal interfaces. His ‘Put That There’ 

system was one of the earliest attempts to address the issue of anaphora resolution in a 

multimodal system. The ‘Put That There’ interface allowed users to add, delete, and move 

graphical objects around a wall projection panel using speech and gesture input. In Brøndsted 

(1999) reference problems in the Chameleon platform (Brøndsted et al. 1998, 2001) are 

discussed. Brøndsted (1999) considers three linguistic reference types; (1) Endophora – 

covering both anaphora and cataphora, (2) deixis – depends on extralinguistic context, i.e. 

interpretation of the reference relies on the circumstance of the utterance, (3) cross-media 

(deictic) – reference to an antecedent in another communication channel, and (4) cross-

user/system - reference in the user input/system output to an antecedent in the system 

output/user input. Brøndsted (1999) emphasises the point that, in order to deal effectively with 

such decisions, a system must understand not just user input but also its own output. Pineda and 

Garza (1997) discuss a model for multimodal resolution where the focus is on establishing the 

referent of an expression in one modality using contextual information from another modality. 

André and Rist (1994) developed a model for referring to objects using text and pictures, which 

is demonstrated in a multimodal presentation system (Stock & Zancanaro 2005). The model 

outlined in André and Rist (1994) was implemented in the WIP multimodal presentation system 

(Wahlster et al. 1992). 

With all approaches concerned with reference resolution it is important that the system 

understands the current domain, e.g., to resolve queries such as, “whose office is this [�]?”, 

and, “how do I get from his office to that office [�]?”.  It is equally important that the system 

understands the meaning of not just the current utterance, and/or gesture, facial expressions, but 
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also previous dialogue acts, so that queries of the form, “what is his surname?”, and, “where is 

her office?”, can be more easily resolved, i.e., the system needs to maintain a dialogue history. 

A common means of maintaining a dialogue history is the use of a blackboard (Thórisson et al. 

2005), as discussed in Section 2.3. The storage of semantics over time enables multimodal 

systems to retrace dialogue history in order to address the problem of reference resolution. 

2.13. Limitations of current research 
The work discussed in this chapter has considerably advanced the capabilities of multimodal 

systems, enabling them to engage with real users in intelligent natural and human-like 

interaction. Such rich interaction would only have been imaginable when Richard Bolt took the 

first tentative steps towards a multimodal interface with his ‘Put That There’ system in the early 

eighties (Bolt 1980, 1987). Yet, if progress over the next thirty years matches the speed of the 

previous three decades then we can expect the systems of today to quickly appear primitive. Of 

course, such an opinion may be optimistic since the last thirty years have seen considerable 

advancements in the processing power of computers, which has enabled the development of 

more intelligent systems. How much intelligent systems can advance over the next thirty years 

is dependent upon how much we can be assured that hardware technology will continue to 

advance at a similar rate to before, i.e., will Moore’s Law (Brock 2006) continue to remain 

true? Whilst this question will continue to evoke debate within the research community, one 

thing is certain, there will always be hardware constraints that impose a glass ceiling on the 

development of intelligent systems. It is therefore important that AI researchers focus on (1) 

removing or reducing these constraints or (2) developing more efficient and innovative 

intelligent systems that can operate within the current hardware limitations. What AI 

researchers certainly must not be focused on, or rather be distracted by, is developing software 

and hardware technology that already exists. In other words, they need to avoid ‘reinventing the 

wheel’, since this practice distracts them from other work that can add real value by advancing 

the capabilities of multimodal systems. This is a view shared by Thórisson (2007, p. 13) who 

states that, “instead of trying to build directly on systems already implemented, researchers do 

one of two things: they either re-implement (some of the) functionality of the former student’s 

software from scratch or they choose to do their research in isolation from the functionality and 

context that that software would have provided…the result is a state where researchers either 

constantly reinvent the wheel or produce their work in increased isolation.”   

 Much of the work discussed in this chapter could, to a certain extent, be considered to 

re-implement existing technology. For example, one could find similarities between the hub of 

Chameleon (Brøndsted et al. 1998, 2001) and the hub implemented in Galaxy Communicator 
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(Bayer et al. 2001), but both platforms were developed independently of each other using 

different tools to implement distributed processing. DARBS (Distributed Algorithmic and Rule-

Based System) (Choy et al. 2004a, 2004b; Nolle et al. 2001) and Chameleon both implement a 

centralised blackboard but both blackboards have been developed from scratch to operate 

within their respective systems. Similarly, the functionality of the blackboards in Ymir is 

similar to that of the multiple blackboards in SmartKom, yet both platforms used different tools 

to develop their blackboards. Few of the systems discussed here, with the notable exceptions of 

some, including Psyclone (Thórisson et al. 2005) and OpenAir (Mindmakers 2009; Thórisson et 

al. 2005), have made their work freely available to others in the community so that it may form 

the basis of future research. Should this trend prevail, the constant reimplementation discussed 

in Thórisson (2007, p. 14) will continue indefinitely and the advancement of multimodal 

systems will continue to be stifled by the practice of isolated researchers constantly reinventing 

the wheel. Two points are key to ensuring this trend is not continued: (1) reversal of the culture 

within many academic institutions that forces researchers and Ph.D. students to work in 

isolation and subsequently focus to a large extend on developing technology that already exists, 

and (2) researchers focus more on building on existing tools and technology to advance towards 

more intelligent multimodal systems. It is the change in culture that poses the greatest challenge 

and overcoming this would go some way to ensuring that researchers focus more of their effort 

on exciting new research and less on the replication of existing work.  

 Further evidence of a lack of synergy in AI research can be found in the area of 

multimodal corpora and annotation tools. As discussed in Section 2.10, there is an abundance of 

existing multimodal corpora (Carletta et al. 2006; Petukhova 2005; Weilhammer et al. 2005;  

Kipp 2006; Rehm & André 2006) and annotation tools (Martin & Kipp 2002). However, many 

of these corpora are developed for the very specific needs of different applications. The corpora 

are therefore often difficult to utilise outside of that particular application domain. One possible 

way to maximise the use of existing multimodal data is to increase collaboration between 

researchers and academic institutions on shared projects and, in turn, build synergy within the 

AI research community and reduce the replication of work and academic effort. Another option 

is to further standardise the annotation schemes for multimodal corpora, thus ensuring that 

future corpora will be of maximum benefit to the research community as a whole and not just of 

use in one system or a small subset of systems. The latter is obviously a huge challenge since, 

as multimodal systems constantly advance, so too do their requirements in respect of semantic 

representation.  

 In summary, there are two key limitations of current research: (1) replication of work 

due to lack of collaboration between researchers who subsequently often work in isolation and 
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reinvent the wheel and (2) lack of standardised multimodal corpora that could be applied across 

multiple application domains. Overall, it follows that there is a general lack of synergy in AI 

research. So how can this be addressed in the short term? First, it is important to utilise existing 

tools and technology wherever possible. For example, Psyclone (Thórisson et al. 2005) 

facilitates distributed processing and is free to use for academic purposes. Likewise, other tools 

exist for semantic representation, communication and decision-making and all these should be 

explored in detail before deciding to re-implement such technology. By utilising existing 

technology researchers can focus on more novel aspects of their work and subsequently add 

more value to their academic endeavours. Second, systems should be constructed in a modular 

way using standard tools for programming and representation that maximise their potential use 

by others in the field. For example, it would be better to use an XML-based approach to 

semantic representation than to develop a representation framework bespoke to a particular 

application domain. Finally, more researchers should focus on building systems or components 

that can form the basis of future research in the area of multimodal systems. 

2.14. Summary 
This chapter has reviewed a number of areas key to the field of multimodal systems. First, the 

problem of multimodal semantic fusion and synchronisation was discussed. A review of 

multimodal semantic representation techniques was then presented. Next, communication in 

multimodal systems was considered, before a discussion on four AI methods for decision-

making in multimodal systems: fuzzy logic, genetic algorithms, neural networks and Bayesian 

networks. Distributed processing was considered and a summary of available tools for 

distributed processing was given. We then focused on existing multimodal systems and 

platforms, with discussion primarily around their individual approach to semantic storage and 

representation, communication and decision-making. Some intelligent multimedia agents were 

presented to give a flavour of progress in this area, before a discussion on the pertinent issue of 

turn-taking in such agents. Existing multimodal corpora and annotation tools were then 

reviewed, before consideration of the important challenges of dialogue act recognition and 

anaphora resolution, which are key to this thesis. The chapter concluded with a discussion on 

the limitations of current research. 
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Chapter 3 Bayesian Networks 

 

This chapter provides a background discussion of Bayesian networks and their application to 

decision-making. First, a definition and discussion of the history of Bayesian networks is 

provided. The structure of Bayesian networks is then given and their ability to perform 

intercausal reasoning is considered. An example Bayesian network is presented before 

consideration of influence diagrams, which are Bayesian networks extended to include utility 

and decision nodes. Key problems in constructing Bayesian networks are highlighted followed 

by a discussion of their advantages over other approaches to decision-making. Next, the 

limitations of Bayesian networks are considered. Applications of Bayesian networks are then 

addressed and their deployment to date in multimodal systems presented. The chapter 

concludes with an evaluation of existing software and tools for implementing Bayesian 

networks. 

3.1. Definition and brief history 
Bayesian networks (Pearl 1988; Charniak 1991; Jensen 1996, 2000; Kjærulff & Madsen 2006; 

Jensen & Nielsen 2007; Pourret et al. 2008) are an AI technique for probabilistic reasoning 

under conditions of uncertainty. As observed by Charniak (1991, p. 62), Bayesian networks 

provide, “a convenient way to attack a multitude of problems in which one wants to come to 

conclusions that are not warranted logically but, rather, probabilistically”. Although they have 

come to greater prominence in the last two decades, the origins of Bayesian networks are 

several centuries old. The term ‘Bayesian’ is derived from the surname of Thomas Bayes who, 

in 1763, presented his ratio formula for computing conditional probabilities (Bayes, 1763): 
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CAP =               (3.1) 

In deriving this equation, Thomas Bayes gave scientific notation to the phrase, “…given that 

what I know is C” (Pearl 1988, p. 17). C in Equation 3.1 represents the context of the belief in 

A. The notation P(A|C) is referred to as Bayes conditionalisation and represents the probability 

P of an event A occurring given the knowledge or evidence C. Equation 3.1 was developed to 

form Bayes’ Theorem: 
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Bayes’ Theorem enables the belief of hypothesis A to be updated in light of new evidence C. 

Bayesian networks provide a compact graphical means of implementing Bayes’ Theorem. 

P(A|C) can also be read as, “the probability of A being true in the context of evidence C being 

observed”. 

 More generally, network representations have been used extensively in AI reasoning 

systems to encode relevancies between variables and facts, e.g., pointers, frames, inheritance 

hierarchies (Pearl 1988, p. 13). A major reason for their use is their ability to represent causal 

relations (Pearl 2000). The notion of causality has intrigued mankind for centuries. In a public 

lecture delivered in 1996 entitled, “The Art and Science of Cause and Effect”, Judea Pearl 

presents a history of causality dating back to the earliest days of human development. He 

observes that even Adam and Eve in the Garden of Eden were well versed on causality when 

they gave explanations of what caused them to eat fruit from the tree (Pearl 2000, p. 332). Pearl 

illustrates the wide scope of causality when he says that, “whether you are evaluating the 

impact of bilingual education programs or running an experiment on how mice distinguish food 

from danger or speculating about why Julius Caesar crossed the Rubicon or diagnosing a 

patient or predicting who will win the presidential election, you are dealing with a tangled web 

of cause-effect considerations” (Pearl 2000, p. 331). Causation is a concept that can easily be 

understood by humans. As discussed in Pearl (2000, p. 1), humans often use causal utterances 

in situations where there exists uncertainty. For example, we say, “tonight’s football match will 

be cancelled if that rain keeps up”, or, “if we can score another point, we will win the match”, 

when we are entirely uncertain that the game will be cancelled if it keeps raining, or that 

another point will mean our team will win the match. Such causal statements are an everyday 

occurrence in human speech and are typically used under conditions of uncertainty. It is 

therefore intuitive for humans to consider causes and effects, and to build Bayesian networks to 

represent the causal relationships between variables and events. Three other relationships:  

likelihood, conditioning and relevance, are considered, with causation, as the basic primitives of 

the language of probability (Pearl 1988). These, too, are relationships which humans can easily 

comprehend and can be effectively represented using the cause-effect structure of Bayesian 

networks. Bayesian networks are therefore an intuitive means of modelling human-like 

decision-making and provide a more developer-friendly method of implementing the power of 

probabilistic reasoning under uncertainty. 
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3.2. Structure of Bayesian networks 
The Bayesian network itself consists of chance nodes (random variables, uncertain quantities) 

and directed edges (arcs, arrows, links) between the nodes. The nodes represent variables in the 

domain and directed edges represent influences between nodes in the network. The graph, 

consisting of the nodes and edges, represents the qualitative part of the Bayesian network. A 

Conditional Probability Table (CPT) specifies the quantitative part of the network. The 

conditional probabilities are updated dynamically when new information is input to the 

network, i.e., new observations or evidence. The term prior probability is used before any 

evidence is considered, whilst the term posterior probability applies after evidence has been 

added. Bayesian networks are a compact means of explicitly representing relationships, e.g., 

causation, dependence and independence, between variables of a domain. As observed by 

Pfeffer (2000, p. 27), “the graphical structure of the network reflects the causal structure of the 

domain”. A drawback of probability theory per se is the vast amount of numbers that need to be 

considered in order to reach a conclusion, i.e., for n binary variables, we have 2n-1 joint 

probabilities (Charniak 1991). The structure of Bayesian networks enables us to encode 

knowledge in such a way that important, and ignorable, information is easily recognisable 

(Pearl 1988, p. 12). As Charniak (1991) alludes to, the conclusions of a Bayesian network may 

be reached with minimal computation due to the compact nature of the networks. Because 

graphs are easy to understand they provide, “an excellent language for communicating and 

discussing dependence and independence relations among problem-domain variables” (Kjærulff 

& Madsen 2006, p. 3). The efficiency of a Bayesian network is due to the built-in independence 

assumptions about variables of the problem domain. Thus, the secret to developing efficient 

Bayesian networks is our understanding of the (conditional) dependence and independence 

relationships between the variables of the domain, or nodes in our network. Bayesian networks 

allow us to represent these dependence and independence relations using directed links from 

causes to effects. 

3.3. Intercausal inference 
Bayesian networks have the intrinsic ability to perform deductive, abductive and intercausal 

reasoning (Kjærulff & Madsen 2006). Deductive (causal) reasoning considers the direction of 

causal links, edges, arcs or arrows between variables of the network, i.e., from cause to effect. 

For example, observing a cause increases our belief about a possible effect. Abductive 

reasoning is the opposite of deductive reasoning, i.e., from effect to cause, where observing an 

effect increases our belief about a possible cause. Hence reasoning follows, and goes against, 

the direction of causal links. Intercausal reasoning, sometimes referred to as intercausal 
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inference or the explaining away effect, is a powerful property of graphical models, i.e., 

Bayesian networks. Intercausal inference occurs when evidence on one possible cause 

disconfirms, or explains away, another possible cause. For example, suppose there are two 

possible causes for a person not arriving at work: (1) the employee is ill, and (2) the employee 

has been delayed by road works. If we now get evidence that the employee was ill yesterday 

and that there are no road works today, then it becomes more likely that illness is the reason for 

the employee’s non-attendance, and less likely that road works are responsible. Hence, road 

works as a cause for the employee not arriving at work has been explained away. Intercausal 

reasoning is an inherent property of Bayesian networks, whilst its implementation in a rule-

based system would require the specification of numerous and complex rules. 

3.4. An example Bayesian network 
To further illustrate Bayesian networks we will consider an example network given in Pfeffer 

(2000). The simple Bayesian network discussed in Pfeffer (2000), shown in Figure 3.1, can be 

used to predict the performance of a student on a course.  

 

Figure 3.1: Example Bayesian network (Pfeffer 2000) 

Six nodes are used in the Bayesian network in Figure 3.1: Smart, Hard working, Good Test 

Taker, Understands Material, Exam Grade and Homework Grade. The nodes Smart, Hard 

Working, Good Test Taker and Understands Material all take Boolean values of True or False. 

Both Exam Grade and Homework Grade have a set of grades {A, B, C, D, F} as their type. The 

node Smart is a parent of Good Test Taker to reflect the fact that being a good test taker 

depends on smartness. Causal relations within the domain are further indicated by the arrows 

from Smart and Hard Working nodes to the Understands Material node, i.e., it is believed that 

smartness and the fact that a student is hardworking have influence over the student’s 

Smart Hard working 

Understands 
Material  Good Test Taker 

Exam Grade 
Homework Grade 
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understanding of the learning material. The student’s understanding of the material has an 

influence over both the homework grade and the exam grade. Good Test Taker is also a parent 

of Exam Grade to model the fact that some students may perform better in exams than others. 

The conditional probability functions of this example network are shown in the tables in Figure 

3.2.  

Smart 

True False 

0.5 0.5 

 

 

 

Good Test 

Taker 

Understands 

Material 

Exam Grade 

A B C D F 

True True 0.7 0.25 0.03 0.01 0.01 

True False 0.3 0.4 0.2 0.05 0.05 

False True 0.4 0.3 0.2 0.08 0.02 

False False 0.05 0.2 0.3 0.3 0.15 

 

Understands 

Material  

Homework Grade 

A B C D F 

True 0.7 0.25 0.03 0.01 0.01 

False 0.2 0.3 0.4 0.05 0.05 

 

Figure 3.2: Conditional Probability Tables for student grades example (Pfeffer 2000) 

The tables in Figure 3.2 represent conditional probability functions of the domain. For example, 

the function CPFHG, Conditional Probability Function for Homework Grade node, specifies 

that, if the student understands the learning material, he/she will get a grade A with a 

probability of 0.7, but if the student does not understand the material then the probability that 

Hard Working 

True False 

0.5 0.5 

Smart Good Test Taker 

True False 

True 0.75 0.25 

False 0.25 0.75 

Smart 
Hard 

Working 

Understands Material 

True False 

True True 0.95 0.05 

True False 0.6 0.4 

False True 0.6 0.4 

False False 0.2 0.8 
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the student will get a grade A is reduced to 0.2. Note that, for each of the tables in Figure 3.2, 

the sum of every row is equal to unity. 

3.5. Influence diagrams  
Influence diagrams are essentially Bayesian networks extended to include decision and utility 

nodes, in addition to the standard chance nodes. A decision node is represented as a square and 

contains states that describe the choices available to the decision-maker. The utility (value) 

node is shown as a diamond and represents the expected utility or value of a particular decision. 

An influence diagram may contain multiple decision nodes, as is the case in the oil wildcatter 

example discussed in Hugin (2009). The influence diagram for this example is depicted in 

Figure 3.3.  

 

Figure 3.3: Example influence diagram (Hugin 2009) 

There are two decisions in this example: whether or not to test for oil using seismic soundings 

and whether or not to drill for oil. The cost of testing is $10,000, whilst the cost of drilling for 

oil is $7,000. Note that, in the influence diagram in Figure 3.3, the arrow from Seismic to Drill 

does not represent a causal relation. This is because a decision node does not have a conditional 

probability table assigned to it. The arrow from Seismic to Drill  does however indicate that, 

when the decision must be made on whether or not to drill, the state of Seismic is known. The 

chance node Oil has three states: “dry”, “wet” and “soak”. The chance node Seismic also has 

three states: “closed” (closed reflection pattern – suggesting much oil is present), “open” (open 

pattern – suggesting that some oil is present) and “diff” (diffuse pattern – highly unlikely that 

there will be any oil). The Test node of the influence diagram in Figure 3.3 has two states (or 

actions): “test” and “not”.  Tables 3.1 and 3.2 show the utility tables for the Pay and Cost utility 

nodes respectively. Similarly, the Drill  decision node has “drill” and “not” as its actions. 
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Drill = “drill” Drill = “not” 

Oil = “dry” Oil = “wet” Oil = “soak” Oil = “dry” Oi l = “wet” Oil = “soak” 

-70 50 200 0 0 0 

U(Pay) 

Table 3.1: Utility tables for Drill decision node (Hugin 2009) 

Test = “test” Test = “not” 

-10 0 

U(Cost) 

Table 3.2: Utility tables for Test decision node (Hugin 2009) 

Tables 3.1 and 3.2 present the potential financial gains and costs associated with the decisions 

to test and drill for oil. As shown, deciding to drill for oil when Oil = “dry” would cost $70,000, 

whilst drilling when Oil = “soak” would yield a profit of $200,000. Of course, the influence 

diagram takes into consideration the probabilities of the Oil and Seismic variables, i.e. P(Oil) 

and P(Seismic | Oil, Test). Running the network in Figure 3.3 using the Hugin decision engine 

processes these probabilities, along with the potential value and cost, before recommending 

whether or not it is advisable to drill for oil. 

3.6. Challenges in constructing Bayesian networks 

Bayesian networks can be constructed either manually, (semi-) automatically from data, or 

through a combination of both approaches. Whilst it is relatively easy to quickly construct a 

Bayesian network for a given problem domain, ensuring that the network correctly represents 

causal dependence and independence relations within the domain can be a difficult and time-

expensive task. The process of constructing a Bayesian network frequently involves several 

iterations of the design, implementation, analysis and testing phases. The iterative process of 

constructing a Bayesian network is illustrated in Figure 3.4. The design phase of construction 

requires the identification of variables of the problem domain, defining the relationship between 

the variables and performing verification of the Bayesian model, i.e., the qualitative component. 

This requires a detailed knowledge of the problem domain and can often require close 

collaboration with problem domain experts. The implementation phase involves eliciting the 

parameter values, i.e., the quantitative component. Eliciting the values, i.e., completing the 

conditional probability tables, is often a labour intensive task. It is important, therefore, that one 

is satisfied that the qualitative component, i.e., the graphical structure, is correct before 
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proceeding to the quantitative part. The third phase in the Bayesian model construction process 

is running test cases with known outcomes. The final stage is to analyse the Bayesian network 

to confirm correctness. As illustrated in Figure 3.4, these four phases are iterated until the 

designer is satisfied that the network is correct.  

 

Figure 3.4: Iterative process of Bayesian network construction (Kjærulff & Madsen 2006) 

Correctly identifying the variables of a given problem domain can sometimes be difficult. It is 

important to focus on two aspects: (1) the problem to be solved and (2) the information required 

to solve it. Information not related to the problem and its solution should not be captured in the 

Bayesian network. Kjærulff & Madsen (2006, p. 132) point out that, “defining variables 

corresponding to the (physical) objects of a problem domain is a common mistake made by 

most novices. Instead of focusing on objects of the problem domain, one needs to focus on the 

problem (e.g. possible diagnoses, classifications, predictions, decisions to be made) and the 

relevant pieces of information for solving the problem”.  

Another major challenge in the construction of Bayesian networks is the correct 

modelling of causality. Whilst the notion of causality is easily understood by humans, care is 

needed to ensure that the causes and effects in a problem domain are correctly identified. As 

discussed in Kjærulff & Madsen (2006, p. 16), “it is a common modeling mistake to let arrows 

point from effect to cause, leading to faulty statements of (conditional) dependence and 
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independence and, consequently, faulty inference”. As an example, consider the Bayesian 

network shown in Figure 3.5. At a glance, the network in Figure 3.5 may look correct, i.e., if a 

person is laughing and/or smiling then the person is happy. However, the directed links from 

the Laughing and Smiling nodes suggest that the fact that a person is laughing or smiling causes 

that person to be happy. This is obviously incorrect, it is the fact that the person is happy that 

causes the person to laugh or smile. Reversing the links of the network in Figure 3.5 gives 

correct modelling of causality in this problem domain as shown in Figure 3.6. This very simple 

example illustrates how mistakes can easily be made when modelling causal relations in a 

problem domain. Careful consideration therefore needs to be given to the causes and effects 

before attempting to construct a Bayesian network to model a particular problem domain.  

 

Figure 3.5: Incorrect modelling of causality 

 

Figure 3.6: Correct modelling of causality 

It should be noted that it is not essential that the links of a Bayesian network follow a causal 

interpretation (Kjærulff & Madsen 2006, p. 11), but doing so makes model construction much 

more intuitive. Implementation of the causal relations using a graphical model also helps ensure 

correct representation of the dependence and independence relationships existing between 

variables of the problem domain. The graphical structure encodes these relationships and a very 

compact representation of the dependence and independence relations amongst problem-

domain variables is obtained. A more in-depth discussion on the subject of causal relations may 

be found in Pearl (2000). 
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3.7. Advantages of Bayesian networks 
Bayesian networks are increasingly becoming the paradigm of choice for reasoning under 

uncertainty. Their increased popularity is due to a number of factors. As discussed in Kjærulff 

& Madsen (2006, p. v), “the graphical-based language for probabilistic networks is a powerful 

tool for expressing causal interactions while in the same time expressing dependence and 

independence relations among entities of a problem domain”. The notion of causality sits easily 

with the human mind and we can therefore very quickly construct useful networks that are 

capable of human-like reasoning under conditions of uncertainty. Representing exactly the 

causal dependence and independence relations within a problem domain may prove difficult. 

However, as Kjærulff & Madsen (2006, p. 136) observe, “it is important to bear in mind that all 

models are wrong, but that some might be useful”.  

 Due to Bayesian networks’ ability to handle causal independence, inference can be 

efficiently performed on models containing a very large numbers of variables. The inference 

that is performed by Bayesian networks is based on a deep-rooted theoretical foundation that is 

centuries old. Bayesian networks have a major advantage over rule-based systems, in that they 

can perform deductive, abductive and intercausal reasoning; the latter, according to Kjærulff & 

Madsen (2006, p. 4), being the property that sets Bayesian networks apart from other reasoning 

paradigms. It is also advantageous that many efficient algorithms exist for learning and 

adapting Bayesian networks from data. According to Zou and Bhanu (2005, p. 7), a Bayesian 

network is, “an attractive framework for statistical modeling, as it combines an intuitive 

graphical representation with efficient algorithms for inference and learning.” The marriage of a 

compact intuitive graphical representation with a powerful reasoning mechanism make 

Bayesian networks a popular choice for a plethora of applications. 

Bayesian networks offer a lot of flexibility to the developer in modelling a problem 

domain. As observed by Kjærulff & Madsen (2006, p. vi), “probabilistic networks are “white 

boxes” in the sense that the model components (variables, links, probability and utility 

parameters) are open to interpretation, which makes it possible to perform a whole range of 

different analyses of the networks (e.g., conflict analysis, explanation analysis, sensitivity 

analysis, and value of information analysis)”. A key benefit of Bayesian networks, as observed 

by Zou and Bhanu (2005), is their ability to be extended in order to handle time series data, e.g., 

dynamic Bayesian networks. Another advantage of Bayesian networks over other approaches to 

decision-making is their capability to handle missing data. When a Bayesian network has been 

constructed it will always run with or without data, or evidence, being added. As new 

information becomes available it can be added on the fly to the network and the accuracy of the 

conclusion reached by the network can be improved. The compact graphical nature of Bayesian 
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networks also renders them useful in communicating ideas about a problem domain amongst 

different members of a development team, e.g., knowledge engineers and problem domain 

experts. 

3.8. Limitations of Bayesian networks 
Whilst Bayesian networks are suitable for, and have been successfully applied in, a wide variety 

of application domains there are problem domains where they are not ideal and where other 

modelling paradigms may be a better choice. A problem domain where it is particularly 

difficult to define the variables would be less suitable for Bayesian networks. For example, as 

discussed in Kjærulff & Madsen (2006, p. 119), in the medical application domain the set of 

possible symptoms for a particular illness are normally well-defined, e.g., sore throat, headache, 

fever, but the variables relevant in modelling a person’s like or dislike for a painting are likely 

to be harder to define. Problem domains where it is hard to identity the causal relations are less 

suitable to the deployment of Bayesian networks. Similarly, where there is no uncertainty about 

the cause-effect relationships, e.g., the conditional probabilities are deterministic, i.e., they take 

the value 1 or 0, a better approach for decision-making probably exists.    

For some problems of pattern recognition, e.g. of fingerprints, there may be no clearly 

defined mechanism that controls the layout of the pattern. It would therefore be difficult to 

build Bayesian networks that would be of significant use in this problem area. Finally, in order 

that the time and effort spent in constructing a Bayesian network is justified, it is important that 

the problem solving is repetitive in nature. Examples of problems that need to be solved 

repeatedly include deciding whether or not to offer car insurance to a driver or deciding if 

rainfall is likely, whilst the decision on the best location for a new national sports stadium is not 

likely to be needed more than once. It is worth noting that the majority of real-world decisions 

are repetitive in nature. Whilst there are situations where Bayesian networks may not be the 

most suitable choice for decision-making, the proliferation of applications that they have been 

applied to highlights their importance. 

3.9. Applications of Bayesian networks 
The greatest testament to any technology is the extent to which it is used. There are numerous 

practical applications of Bayesian decision-making across a wide range of different and diverse 

areas. Microsoft’s Lumiere project (Horvitz et al. 1998; Lumiere 1998) developed an 

architecture for reasoning about the goals and needs of software users.  In Lumiere, Bayesian 

networks model relationships between the goals and needs of a user and observations about the 

current program state. The user’s intentions and needs are inferred based on the current context, 

previous actions and queries. Additionally, the system also computes the likelihood that the 
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user would like help completing their current task. The technology developed in Lumiere was 

applied in the design of the Bayesian help system in the Office 1997 and Office 2003 product 

suites. Microsoft also used Bayesian networks in the design of Microsoft Pregnancy and Child 

Care (Haddawy 1999), which provides online heath information to parents. This involved the 

construction of Bayesian networks for common symptoms in children. The appropriate model is 

then chosen at run-time based on the primary complaint. 

 The VISTA project (Horvitz & Barry 1995) focused on providing online decision 

support for space shuttle flight controllers. A key aspect of this work was the management of 

the time-critical, complex information that is displayed to the flight controller. Bayesian 

networks are used to interpret live telemetry and determine the likelihood of problems in the 

propulsion systems in the space shuttle. A list of problems ordered by criticality and likelihood 

are presented. The level of detail displayed is controlled by a model of time criticality, enabling 

the flight controller to focus on the most important information at any given time. Lockheed 

Martin’s Marine Systems have developed an Autonomous Control Logic (ACL) system for use 

in an Unmanned Underwater Vehicle (UUV) (Haddawy 1999). The ACL architecture applies 

both rule-based and Bayesian decision-making to guide the UUV. The rule-based component is 

concerned with real-time response, whilst the Bayesian model-based component focuses on 

diagnosis, analysis and decision-making about unexpected events. A Bayesian network models 

both the capabilities of the vehicle and the uncertainty on the current state of these capabilities, 

before deciding on the best possible response to the event. 

 Pathfinder (Heckerman et al. 1992) is an expert system for providing advice to surgical 

pathologists to assist the diagnosis of lymph-node diseases. Pathfinder is, “one of a growing 

number of normative expert systems that use probability and decision theory to acquire, 

represent, manipulate, and explain uncertain medical knowledge” (Heckerman et al. 1992, p.1). 

The Pathfinder technology evolved into the commercialised Intellipath group of systems. The 

Intellipath modules present competing diagnoses of possible diseases based on histological 

features that are input to the system. The user can then identify the features that best distinguish 

between competing diagnoses, whilst considering the cost and potential benefits of each 

observation or test. Another example of Bayesian networks being applied in medical diagnosis 

is discussed in Milho & Fred (2000) which presents a Web supported development tool for 

medical diagnostic applications. More information on the application of abductive inference 

models to medical diagnosis can be found Peng & Reggia (1990), whilst Browne et al. (2006) 

discuss the application of Bayesian network approaches to predict Protein-Protein Interactions 

(PPI) in biological systems. Bayesian network have also been applied in the areas of machine 

vision (Levitt et al. 1990), story understanding (Charniak & Goldman 1989, 1991), economic 
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forecasting (Abramson 1991) and risk analysis (Agena 2009). Hugin (2009) gives case studies 

of where Bayesian networks have been applied in many different areas, including business 

intelligence, earthquake risk management, crime control planning, food production design, 

customer support operations and mobile robotics. 

3.10. Bayesian networks in multimodal systems 
Bayesian networks are becoming utilised increasingly in the field of multimodal systems. 

XWand (Wilson & Shafer 2003), as discussed in Chapter 2, Section 2.8.17, is a wireless sensor 

package enabling natural interaction within intelligent environments. XWand implements a 

dynamic Bayesian network for action selection within an intelligent space - focussing on the 

home environment. XWand can be used to turn a lamp off and on, control a media player, and 

act as a mouse - controlling the windows curser. XWand uses a dynamic Bayesian network (see 

Figure 3.7) to perform multimodal integration. The network in Figure 3.7 makes decisions 

based on sensors, referent, i.e., what the user is believed to be referring to, and a command that 

corresponds to the referent.  

 

Figure 3.7: Dynamic Bayesian network in XWAND (XWAND 2009) 

The Bayesian network in Figure 3.7 enables the referent to be identified in two ways: (1) it is 

determined by where the wand is pointing, and (2) it may be identified using speech recognition 

events. There are three ways to issue a command: (1) performing a wand gesture, (2) clicking a 

button or (3) issuing a spoken command.  It is therefore possible for the same action to be 
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specified in different ways, e.g., speech, gesture, pointing, clicking. For example, as discussed 

in Wilson & Shafer (2003), all the following are possible ways of turning on a lamp: 

• Uttering “turn on the desk lamp” 

• Pointing at the desk lamp and saying “turn on” 

• Pointing at the lamp and performing the “turn on” gesture with the wand 

• Uttering “desk lamp” and performing the “turn on” gesture 

The mechanism also ensures that spurious speech recognition results are ignored, e.g., “volume 

up” while the wand is pointing at the desk lamp. As an example of how the Bayesian network 

in Figure 3.7 works in practice, suppose that the wand is pointing at a light. This causes the 

PointingTarget variable to be set to Light1. The Action node assigns equal probability to its two 

possible states: TurnOnLight and TurnOffLight. If the user says “turn on”, the speech node is 

then set to TurnOn; the probabilities of the Light1 node are dynamically updated, i.e., the 

probability of TurnLightOn drastically increases whilst the probability of TurnLightOff is 

decreased. Based on the new probability distribution the system then decides to turn the light 

on.  

Greta (de Rosis et al. 2003), as discussed in Chapter 2, Section 2.9, is an Embodied 

Conversational Agent (ECA) that can engage in natural and believable conversation with both 

real users and other agents. Greta denotes both a real user and another agent as an Interlocutor 

(I). Greta implements Bayesian networks for computing probabilities of all possible gaze states 

of the agent. Bayesian networks have been developed to represent the triggering of emotional 

states for the agent such as ‘envy’ and ‘happy-for’. More specifically, Bayesian networks are 

used to represent the uncertainty in the agent’s belief about the possibility of achieving certain 

goals and the utility assigned to achieving these goals. Bayesian networks model the 

relationships between the beliefs in Greta’s mind by using nodes to represent goal achievement. 

Figure 3.8 shows the Bayesian network for triggering ‘envy’.  In the triggering of ‘envy’ the 

goal is to not have less power than others (or to dominate others). As stated in de Rosis et al. 

(2003, p. 90), “the Agent’s belief about the probability of achieving this goal is influenced by 

her belief that some desirable event occurred to some other agent I and that the same event 

cannot occur to itself because the two events are ‘exclusive’: when some desirable event occurs 

to I, envy towards I may then increase, in Greta”. The Bayesian network depicted in Figure 3.8 

consists of two sub-networks which represent the state of Greta’s mind at time T and time T+1. 

Considering the left sub-network first, we see that Greta (G) believes that the Interlocutor (I) 

will gain more power over her (represented by Bel G (MPow I G i)) if I is in possession of an 

object i (Bel G (Has I i)) that Greta wants to get (Goal G (Has G i)) and if she is unable to get 
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the same object herself (Bel G n(Has G i)). The sub-network on the right models the state of 

Greta’s mind at time T+1. As shown at time T+1, the Interlocutor (I) saying he/she has the 

winning lottery ticket increases Greta’s belief that I has the winning ticket (indicated by the 

directed edge from the Say I G “I’ve got the winning ticket” node to the p (Bel G (Has I i) 

node). This, coupled with Greta’s desire to dominate others ((Bel G Ach (Domin G I)) increases 

the likelihood that Greta will be jealous of I (Feel G (Envy I)). As discussed in de Rosis (2003), 

the intensity of the ‘envy’ emotion is dependent upon whether or not Greta is a ‘dominant’ 

agent. A counteracting event may cause the intensity of the emotion to decrease. For example, 

if Greta learns in the time interval T+2 that the prize for the winning ticket is very small, then 

Greta’s envy will decrease. 

 

Figure 3.8: Bayesian network for triggering ‘envy’ (de Rosis et al. 2003) 

In Vybornova et al. (2007), Bayesian networks are applied to multimodal fusion using 

contextual information. An initial application of the technology is an intelligent diary that 

assists elderly people who live alone. The intelligent diary aims to help the elderly, “perform 

their daily activities, prolong their safety, security and personal autonomy, and support social 

cohesion” (Vybornova et al. 2007, p. 61). In order to allow more natural interaction with human 

users the research focuses on the interpretation of human behaviour and the recognition of the 

user's intentions. This requires both low level (signal) and high level (semantic) multimodal 

fusion. Vybornova et al. (2007, p. 61) observe that, “everything said or done is meaningful only 

in its particular context”, and therefore, to perform semantic fusion, information is taken from 

at least three contexts: (1) domain context, (2) linguistic context and (3) visual context. 

Bayesian networks are utilised for analysing and combining the modalities. Robust contextual 
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fusion is achieved by applying probabilistic weighting of the multimodal data streams. This 

enables recognition of user intention, prediction of human behaviour and interpretation and 

reasoning about the user’s cognitive status. 

 A Bayesian network approach to fusion within a multimodal automated surveillance 

system is discussed in Zou and Bhanu (2005, p. 4) who explain that automated surveillance, 

“addresses real-time observation of people, vehicles and other moving objects within a 

complicated environment, leading to a description of their actions and interactions”. Zou and 

Bhanu (2005) compare two approaches to multimodal fusion in the human detection and 

tracking application domain: time-delay neural networks and Bayesian networks. Two signal 

modalities, visual and audio are fused in order to detect a person walking in a scene. The fusion 

mechanism is motivated by their investigation of the relationship between step sounds and 

visual motions. These relationships are subsequently modelled with Bayesian networks. 

 IM2 (Interactive Multimodal Information Management) (IM2 2009) aims to develop 

innovative technologies that support multimodal human-computer interaction. This objective is 

pursued through research in computer vision, multimedia indexing, speech understanding and 

multi-channel fusion. Multimodal input modalities include speech, pen, gesture and head/body 

movements, whilst multimedia system output includes speech, sound, animation, images and 

3D graphics. One of the main applications of the work developed by IM2 is smart meeting 

rooms. Bayesian networks have been proposed by IM2 researchers as a means of addressing 

problems associated with dynamic data fusion. 

Cohen-Rose and Christiansen (2002) discuss a storytelling system (called Guide) that 

assists the user by answering queries about where to eat and drink. Guide’s interface combines 

speech, text, graphics, mouse-based and pen-based pointing and positional input (e.g. GPS). 

Guide is inspired by the science fiction novel, “The Hitchhikers Guide to the Galaxy” (Adams 

1979), which is based on the existence of an electronic guide to absolutely everything. Cohen-

Rose and Christiansen (2002) suggest that the Internet could be viewed as being similar to the 

fictional guide envisaged in Adams (1979) and discuss the limitations of existing search 

engines. The authors explain how Guide uses Bayesian decision-making to present more 

relevant information from a variety of sources in a contextual setting.  

3.11. Tools for implementing Bayesian networks 
This section reviews tools for performing Bayesian decision-making. Such tools enable the 

implementation of Bayesian networks using a Graphical User Interface (GUI), an Application 

Programming Interface (API), or both. The use of a GUI enables networks to be constructed 
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using the familiar notion of cause and effect, whilst the use of an API is necessary to access the 

decision-making capabilities of the networks from within a software program. 

3.11.1. MSBNx 
MSBNx (Kadie et al. 2001, MSBNx 2009) is a Windows application for creating and 

evaluating Bayesian networks. It is available at no cost for non-commercial use and can be 

downloaded from MSBNx (2009). Components of this Microsoft application can be integrated 

into programs, enabling them to perform inference and decision-making under uncertainty. In 

addition to the components provided by MSBNx, developers and researchers can create their 

own add-in components that can be used within MSBNx. The package itself includes an add-in 

for editing and evaluating Hidden Markov Models. Bayesian networks are encoded in an XML-

based format and the application will run on any Windows operating system from Windows 98 

to XP. The MSBNx Model Diagram Window is shown in Figure 3.9.  

 

Figure 3.9: Model Diagram Window in MSDNx Editor (Kadie et al. 2001) 

MSBN3, an ActiveX DLL, is the most important component of MSBNx. MSBN3 provides 

developers with a powerful COM-based API for creating and evaluating Bayesian networks. 

The API is particularly suited for use with COM-friendly programming languages such as 

Visual Basic and JScript. If Bayesian networks have been developed with machine learning 

tools, MSBNx can edit and evaluate the results. The WinMine Toolkit (WinMine 2009), also 

developed by Microsoft, can create Bayesian networks with machine learning and statistical 

methods. Models created by WinMine can be loaded, edited and evaluated with MSBNx. 

3.11.2. GeNIe 
The GeNIe GUI (Genie 2009) is shown in Figure 3.10. GeNIe is the graphical user interface to 

SMILE (Structural Modelling, Inference, and Learning Engine) (Genie 2009). GeNIe supports 
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all major file types, including Bayesian networks developed using the Hugin (Hugin 2009) and 

Netica (Norsys 2009) software tools. GeNIe is implemented in Visual C++ and only runs under 

the Windows family of operating systems (98, NT, 2000, XP).  

 

Figure 3.10: GeNIe GUI (Genie 2009) 

GeNIe can learn the structure of Bayesian networks from data. It also contains a background 

knowledge editor which enables the developer to force or forbid arcs between variables and 

assign variables to temporal tiers. Background knowledge can be saved and previous 

knowledge loaded to influence the learning process. GeNIe also enables the parameters of an 

existing network to be learned from a data file. SMILE (Genie 2009) is a platform independent 

library of functions that can be used by programmers and developers to implement Bayesian 

networks and influence diagrams. SMILE is implemented in C++ and defines functions for 

creating, editing, saving and loading graphical models for probabilistic reasoning and decision-

making under uncertainty. The SMILE library acts as a set of tools that can be used by the 

application program, which has full control over the model building and reasoning process. 

3.11.3. Netica 
Netica (Norsys 2009) enables problem solving with Bayesian networks and influence diagrams. 

A demo version can be downloaded at no cost from Norsys (2009). The demo version has full 

functionality, but is limited in model size. The complete application enables the building, 

editing and learning of Bayesian networks and influence diagrams. Netica compiles belief 



 

  

89

networks into junction trees of cliques to enable fast probabilistic reasoning.  Netica’s GUI is 

shown in Figure 3.11.  

 

Figure 3.11: Netica GUI (Norsys 2009) 

Netica also offers the Netica Programmers Library, or the Netica API, to enable programmers 

to embed the functionality of Netica within their own applications. The API is available in C, 

C++, C#, Java, Visual Basic, Matlab and CLisp. Versions of the API are available for 

Windows, Solaris and Macintosh. The interface for each of these operating systems is identical, 

so code is fully portable across all of the platforms. To facilitate learning from data (EM and 

gradient descent learning) Netica can be connected to a database or a Microsoft Excel 

spreadsheet. 

3.11.4. Elvira 
Elvira (Elvira 2009) (see Figure 3.12) is a tool for constructing and evaluating Bayesian 

networks and influence diagrams. Elvira is the product of a joint program of research and 

development by a consortium of Spanish researchers. The Elvira program is written in Java and 

can therefore run on different operating systems, including Windows, Linux and Solaris. Figure 

3.12 shows the Elvira GUI in edit mode for a simple Bayesian network containing 2 nodes: 

Disease and Test. The program is switched to Inference mode, i.e., run mode, by selecting 

Inference from the drop down menu on the top toolbar. This causes the Bayesian network to be 

compiled (see Figure 3.13) and, in this example, computes the values of the Test node based on 

the values of the Disease node. As shown in Figure 3.13, in inference mode Elvira shows the 

probability of each value using both a number and a pair of horizontal bars. Elvira offers exact 
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and approximate algorithms for both discrete and continuous variables. Explanation methods 

and decision-making algorithms are also available, as is the ability to learn from a database. 

 

Figure 3.12: Elvira’s main screen (Elvira 2009) 

 

Figure 3.13: Elvira in inference mode (Elvira, 2009) 

3.11.5. Hugin 
Hugin (HUGIN 2009; Jensen 1996) offers both a Graphical User Interface (GUI) and an 

Application Programming Interface (API) for constructing and running Bayesian networks. The 

Hugin GUI (Graphical User Interface) is a tool for creating and implementing Bayesian 

networks and influence diagrams for decision-making. The GUI provides an intuitive interface 

to the Hugin decision engine. APIs are available in C, C++ and Java. There is also an ActiveX 

server for use with Visual Basic for Applications. Hugin is compatible with the Windows 

2000/XP/Vista, MAC, Linux and Solaris operating systems. Hugin can also learn the structure 
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of a Bayesian network from a database of cases. When the Hugin GUI is started the main 

window is displayed, as shown in Figure 3.14. 

 

Figure 3.14: Main window of Hugin GUI (Hugin 2009) 

As shown in Figure 3.14, the main window contains a toolbar, a node edit pane and a document 

pane. The GUI automatically starts up in edit mode, enabling developers to immediately start 

constructing their Bayesian networks. Nodes can be added to the network by selecting the 

Discrete chance tool from the toolbar and clicking anywhere on the network pane. Links are 

added between nodes by selecting the Link tool button from the toolbar and dragging a link 

from the influencing node to the influenced node. Figure 3.15 shows a simple example of a 

Bayesian network implemented in the Hugin GUI. Note from Figure 3.15, that the nodes Diet 

and Exercise both have influence over the Weight Loss node, as indicated by the causal arrows. 

Diet and Exercise nodes are therefore influencing nodes, while Weight Loss is the influenced 

node. 

 

Figure 3.15: Simple example of a Bayesian network in Hugin 
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The next step in this example is to specify the states for each of the nodes. This requires that we 

open the tables pane by clicking on the Show node tables button. To specify the states of Diet, 

we must do the following: 

• Select the Diet node by left clicking inside the node. This causes the table for Diet to 

appear in the tables pane, as shown in Figure 3.16. 

• We can now rename the “State 1” and “State 2” states to more meaningful names such 

as “Good” and “Bad”. 

• We now enter values into the Conditional Probability Table (CPT) for the Diet node. 

Note that, by default, the Hugin GUI has given all entries in the CPT a value of 1. 

The previous procedure would then be repeated for the Exercise and Weight Loss nodes. To 

continue this example we will assign 0.5 to the “Good” and “Bad” states of the Diet node, and 

to the “Yes” and “No” states of the Exercise node. We then assign appropriate values to the 

states of Weight Loss as illustrated in Figure 3.17. Note from Figure 3.17, that the CPT of 

Weight Loss is larger since it accounts for the parent nodes of Diet and Exercise.  Pressing the 

Switch to Run Mode button on the toolbar causes the network to be compiled. This involves 

checking for errors, for example, making sure that the probabilities of each state has a sum of 1. 

Figure 3.18 shows the weight loss example in run mode. 

 We now add evidence to the network. To do this we can double-click on a state in the 

tree structure to assert 100% belief, or we can right click and select, ‘Enter Likelihood …’, 

which enables us to enter a value between 0 and 100. To assert the belief that Diet is definitely 

good we double-click on the “Good” state causing it to turn red, indicating that evidence has 

been added. 

 

Figure 3.16: View of table for Diet node 
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Figure 3.17: CPT of Weight Loss node 

 

Figure 3.18: Example of run mode 

Note from Figure 3.19, that a red coloured letter ‘e’ appears beside the Diet node in the 

Bayesian network, indicating that evidence has been added to the node. 

 

Figure 3.19: Evidence added to the Diet node 
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As shown in Figure 3.19, when evidence has been added that Diet is “Good”, the probability of 

weight loss has risen from 55% to 82.5%. If we now add evidence that we are certain that the 

person does regular exercise, the probability of weight loss rises to 100% (see Figure 3.20). 

 

Figure 3.20: Evidence of a good diet and exercise 

To continue the example we will remove the evidence from the Exercise node, by right clicking 

and selecting ‘Retract Evidence’, and change the evidence on the Diet node to indicate the 

certainty that the diet is definitely bad. This, as expected, causes the probability that there will 

be weight loss to reduce drastically. This is illustrated in Figure 3.21, where the probability of 

weight loss has become 27.5%. If we now assert the belief that there is a bad diet and no 

exercise, then the probability of weight loss changes to 0%, as shown in Figure 3.22. Therefore 

we are absolutely certain that a bad diet and no exercise will not result in any weight loss. 

Thus, the Hugin software tools enable the creation of Bayesian networks to model real 

world scenarios. The simple weight loss example discussed here did not involve any decisions, 

but it could be easily changed to do so. For example, the Weight Loss node could be replaced 

with a Join a Gym or a Make changes to Lifestyle decision node. When our Bayesian network 

has been constructed, we can enter evidence into the model and view the results dynamically. 

Hugin automatically performs all the mathematical calculations and computes new probabilities 

whenever additional information has been added. The Hugin API is implemented in the form of 

a library written in the C, C++ and Java programming languages. The API can be used like any 

other library and can be linked to applications, enabling them to implement Bayesian decision-

making. The Hugin API encloses a high performance inference engine that, when given 

descriptions of causal relationships, can perform fast and accurate reasoning. Full 

documentation is provided for the C, C++ and Java versions of the API (Hugin 2009). The 

Hugin API allows a flexible approach to error handling. When errors occur, the API informs the 

application program and lets it decide on an appropriate action. Thus the developer is given 
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maximum freedom regarding how to deal with errors. Errors are communicated to the user of 

the API using the h_error_t enumeration type. All of the API functions return a value. 

Functions that don’t return anything, i.e., void return type, have a return type h_status_t. In 

such cases, if a zero is returned then the function has run successfully, while a non-zero result 

indicates failure, i.e., an error has occurred. 

 

Figure 3.21: Evidence of a bad diet added 

 

Figure 3.22: Evidence of bad diet and no exercise added 

Within the Hugin API, all objects are represented as opaque pointers. An opaque pointer points 

to data that is not further defined. Opaque pointers enable the references to data to be 

manipulated, without requiring knowledge of the structure of the actual data. The Hugin API 

enables several data types including integer, string and boolean. Functions exist for creating 

new domains, inserting nodes and adding directed edges between nodes. Functions are also 

provided for removing parents from a node, replacing one parent with another parent, reversing 

a directed edge between two nodes and numerous other operations such as retrieving the current 

parents and children of a node and specifying the number of states associated with a node. 
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Hugin can facilitate two types of learning: structural learning and parametric learning. 

Structural learning is performed using the PC algorithm and can be accessed via the File menu 

and the structural learning icon. The PC (Peter-Clark) algorithm (Spirtes et al. 2000) is an 

extension of the IC (Inductive Causation) algorithm (Pearl 2000, p. 50) that tests for conditional 

independence, or partial correlation, between variables. Therefore, in structural learning, Hugin 

learns the dependencies between variables in the data and, based on these relations, determines 

the structure of the Bayesian network. Consider the segment of the data file presented in Figure 

3.23. 

 

Figure 3.23: Data file for structural learning (Hugin 2009) 

Running the structural learning algorithm on the data file illustrated in Figure 3.23 enables 

Hugin to learn the structure of a Bayesian network that represents the cause-effect relationships 

embedded in the data, as shown in Figure 3.24. 

 

Figure 3.24: The Bayesian network learned (Hugin 2009) 

X,B,D,A,S,L,T 
no,no,no,no,no,no,no 
yes,yes,yes,no,yes,yes,no 
yes,yes,yes,no,yes,yes,no 
no,no,yes,no,no,no,no 
no,no,no,no,no,no,no 
no,yes,yes,no,yes,no,no 
no,yes,no,no,N/A,no,no 
no,no,no,yes,yes,no,no 
no,yes,yes,no,yes,no,no 
no,no,no,no,no,no,no 
no,yes,no,no,N/A,no,no 
no,no,no,no,yes,no,no 
no,no,no,no,no,no,no 
no,yes,yes,no,yes,no,no 
no,no,no,no,no,no,no 
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The previous example discusses only learning the structure of a Bayesian network. To learn the 

parameters of a network, or Conditional Probability Tables (CPTs), parametric learning is used. 

There are two types of parametric learning supported by Hugin: Adaptive learning and EM 

(Estimation-Maximum) learning. Adaptive learning can adapt the CPTs of a Bayesian network 

to a new dataset. Experience tables are used to perform adaptation. Experience nodes can be 

added to some or all of the discrete chance nodes in a Bayesian network. The adaptation 

process involves entering evidence, propagating the evidence through the Bayesian network and 

updating (or adapting) the CPTs and experience tables. Following adaptation the experience 

nodes can be deleted and the current values of the CPTs will then form the new conditional 

distribution probabilities of the nodes in the Bayesian network. EM learning uses data stored in 

a database to generate CPTs in a Bayesian network. The EM learning facility is accessed via the 

‘EM Learning’ icon. Clicking on this icon opens the EM Learning window shown in Figure 

3.25.  

 

Figure 3.25: EM Learning window (Hugin 2009) 

Selecting the data file and clicking OK runs the EM algorithm and computes new conditional 

distribution probabilities for each of the nodes based on the case set given in the data file. 

3.11.6. Additional Bayesian modelling software 
The Bayes Net Toolbox (BNT) (Murphy 2009) is an open source Matlab package for 

developing probabilistic graphical models for use in statistics, machine learning and 

engineering. Although BNT is marketed as an ‘open-source’ package, it can be argued that it is 

not truly open-source due to its reliance on Matlab. BNT was initially designed for use with 

Bayesian networks (hence the name Bayes Net), but it has since been extended to deal with 

influence diagrams. Bayesian networks are represented within BNT as a structure containing 

the graph as well as the Conditional Probability Distributions (CPDs). One of the main 

advantages of BNT is the wide variety of inference algorithms that it offers. It also offers 
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multiple implementations of the same algorithm, e.g. Matlab and C versions. Bayesian and 

constraint-based structure learning are both supported in BNT. Several methods of parameter 

learning are also supported, including EM (Estimation-Maximum), and additional methods of 

structure and parameter learning can be easily added. 

 BUGS (Bayesian inference Using Gibbs Sampling) (BUGS 2009) can perform Bayesian 

analysis of complex statistical models using Markov Chain Monte Carlo (MCMC) Methods 

(Neal 1993). Since its development began in 1989, several versions of BUGS have been 

released. WinBUGS 1.4.1, released in September 2004, aims to make practical MCMC 

methods available for use in probabilistic inference. Although WinBUGS does not provide an 

API, it is possible to call WinBUGS from other programs. The package allows graphical 

representations of Bayesian models through the use of its DoodleBUGS facility. JavaBayes 

(CMU 2009) is a set of software tools for creating and manipulating Bayesian networks using 

Java. JavaBayes offers a graphical Interface, an inference engine, a collection of parsers and is 

freely available under the GNU General Public License. JavaBayes can be run both as an 

application and as an applet within a HTML document. A more comprehensive list of available 

Bayesian network software can be found in Murphy (2009). 

3.11.7. Summary 
This chapter has discussed a definition and brief history of Bayesian networks. This was 

followed by a discussion on the structure of Bayesian networks and on their ability to perform 

intercausal reasoning. An example Bayesian network was presented, before influence diagrams 

were discussed. Consideration was then given to the challenges, advantages and limitations of 

Bayesian networks. Previous applications of Bayesian networks were reviewed, with particular 

focus on their use in multimodal systems. Finally, a review of existing software and tools for 

implementing Bayesian networks was presented. 
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Chapter 4 Bayesian Decision-making in Multimodal Fusion and 
Synchronisation 

 
Decision-making in multimodal systems is a complex task (Thórisson 2002), involving the 

representation and understanding of input and output semantics, distributed processing and 

maintenance of dialogue history along with domain-specific information, e.g., the number of 

movies currently showing, the coordinates of an office. Decision-making in such systems is 

becoming increasingly complex as advances in technology enable a much wider range of 

modalities to be captured and generated. The hub of a multimodal distributed platform must be 

capable of processing information relating to the various input/output modalities. The hub is 

primarily concerned with three key problems: (1) Semantic storage - often using a blackboard, 

(2) dialogue management – often involving fusion and synchronisation, and (3) decision-

making. It must also act as a conduit between the various components of the system and the 

outside world and it must deploy an appropriate decision-making mechanism that enables the 

interaction between the system and user to be as intelligent and natural as possible. Decision-

making must consider the current context and domain, the dialogue history and the beliefs 

associated with the various modalities. 

This chapter presents a Bayesian approach to multimodal decision-making in a distributed 

platform hub. First, a generic architecture for a multimodal platform hub is presented. Then a 

discussion on the key problems and the nature of decision-making within multimodal systems is 

considered, with decisions categorised into two areas: (1) synchronisation of multimodal data 

and (2) multimodal data fusion. The problem of synchronisation is only partially addressed. The 

focus here is on decision-making with respect to multimodal semantic fusion. Semantic 

representation and ambiguity resolution are also considered in the context of decision-making. 

Features of a multimodal system that aid decision-making are discussed including distributed 

processing, dialogue history, domain-specific information and learning. A list of necessary and 

sufficient criteria required for a multimodal distributed platform hub is then presented. Finally, 

the rationale for a Bayesian approach to multimodal decision-making is proposed with a 

discussion on its advantages.  
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4.1. Generic architecture of a multimodal distributed platform hub 
A typical architecture of a multimodal distributed platform hub is presented in Figure 4.1. The 

key functions, dialogue management, semantic representation and storage, decision-making and 

domain knowledge, of the platform hub are represented by separate modules in the conceptual 

architecture in Figure 4.1. 

 

Figure 4.1: Generic architecture of a multimodal distributed platform hub 

The Dialogue Management module of Figure 4.1 is responsible for coordinating the dialogue 

between the user and the multimodal system, and the communication between its internal 

modules. The Decision-making module is a crucial component of a multimodal system. The 

decision-making mechanism would typically use dialogue history and domain-specific 

information to make intelligent decisions that support multimodal interaction with the user. 

Examples of domain-specific information are the titles of movies currently showing in a 

cinema, the location and occupant of an office and the number of emergency exits in an 

auditorium. Examples of context information are the current speaker in a multimodal dialogue, 

the fact that a car is moving or stationary, and the current intentional state of a user. Multimodal 

semantics is usually stored in a shared space and a full dialogue history is maintained in this 

shared space to support future decision-making during a multimodal dialogue. Maintenance of 

dialogue history is the primary function of the Semantic Representation and Storage (SRS) 

module depicted in Figure 4.1. The SRS module is usually implemented in the form of a 

blackboard, as discussed in Chapter 2, Section 2.3. Multimodal semantics stored in the SRS 

module is processed by input and output processing modules such as NLP, eye-gaze tracking 

and image processing modules. Contextual knowledge is also stored in the SRS module. 

Information on the current context is used in conjunction with domain-specific information 

from the Domain Knowledge module to support intelligent multimodal decision-making. The 

generic architecture depicted in Figure 4.1 could take a number of alternative forms. For 
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example, since decision-making is normally the responsibility of the Dialogue Management 

module, the Decision-making module may not be explicitly represented. It is also possible that 

the functionality of the distributed platform hub may be spread across different machines. 

Whatever the exact setup of the hub, it will always need to have mechanisms in place to support 

the key functionalities of dialogue management, domain knowledge retention and retrieval, 

semantic representation and storage, and decision-making.  

4.2. Decision-making in multimodal systems 
Although much has been achieved in the development of intelligent multimodal systems in 

recent years, many challenges still remain. Whilst recent research has resulted in systems 

capable of multimodal communication, this communication is very much on the computer’s 

terms. The user must learn to use the system and the communication is constrained to suit the 

application. If we are to achieve truly human-like communication with computers, then the user 

must be able to dictate the terms of communication, i.e., the system must learn to meet the 

needs of the user instead of the user learning to use the system. In order to realise such systems 

we must investigate new, more intelligent, methods of representing multimodal input/output, 

communication and decision-making in multimodal systems.  

Humans use a vast array of modalities to interact with each other including speech, 

gesture, facial expression, eye-gaze and touch. In order to achieve truly natural human-

computer interaction, multimodal systems must be able to process these modalities in an 

intelligent and complementary manner. Such systems should be flexible, enabling the user to 

have appropriate control over the interaction modality. They must adapt to the changing needs 

of user interaction, switching from one modality to another as required. Communication must 

not be restricted to a particular modality, but should be facilitated using a variety of interaction 

modalities. Multimodal systems must also facilitate communication using a combination of 

modalities in parallel, e.g., speech and gesture, speech and gaze.  

4.3. Semantic representation and understanding 
Various approaches to semantic representation were discussed in Chapter 2, Section 2.2. 

Representing and understanding the semantics of multimodal input and output is an important 

task that must be performed in multimodal systems. Whilst the method of representing and 

understanding semantic content varies from system to system, the basic principle of 

representing information, using either frames (Minsky 1975) or XML, is prevalent within the 

majority of approaches. The marked-up semantics contains contextual information that is 

crucial to the decision-making process such as the current context, the current speaker, the 

module that produced the semantics, the module that should receive the semantics, the time the 
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input was received, the time the output semantics was generated, the time at which the 

input/output becomes invalid (time to live), the confidence relating to multimodal recognition 

and the confidence associated with a decision or conclusion.  

4.3.1. Frame-based semantic representation 
An example semantic representation frame of multimodal input is shown in Figure 4.2. The 

example semantics given in Figure 4.2 contains frame-based semantic information sent from a 

posture recogniser to a dialogue manager of an intelligent in-car information presentation 

system. The first slot in the POSTURE frame is called CONTEXT:. Context information is 

important in enabling multimodal systems to behave differently depending on the current 

context. In this example, the value of the CONTEXT: slot is CarMoving and this information 

can be used by the in-car information presentation system to adapt its multimodal output 

accordingly, e.g., audio output only instead of an animated agent or graphical display. 

 

Figure 4.2: Example semantic representation of multimodal input 

The second and third slots of the frame in Figure 4.2, FROM: and TO:, contain the module that 

produce the semantics and the module(s) which receive it. In this case, the semantics is 

produced by the PostureRecogniser module and is being sent to the DialogueManager module. 

The fourth slot of the example frame is INPUT TYPE: which in this case is simply posture. The 

INTENTION: slot is used here to indicate the purpose of the recognised input, i.e., to warn that 

the driver of the vehicle looks tired or angry. The sixth slot of the frame in Figure 4.2 is called 

HYPOTHESES: which contains one or more hypothesis about the mental state of the driver. In 

this case, there are two hypotheses: (1) that the driver is tired and (2) that the driver is angry. 

Note that each hypothesis slot also contains a CONFIDENCE: slot that identifies the 

confidence associated with each hypothesis. The TIMESTAMP: slot contains the time at which 

[POSTURE 
CONTEXT: CarMoving 
FROM: PostureRecogniser 
TO: DialogueManager 
INPUT TYPE: posture 
INTENTION: warning 
HYPOTHESES [ 
HYPOTHESIS 1 [ 
 POSTURE: tired 
 CONFIDENCE: 56.04% 
   ] 
HYPOTHESIS 2 [ 
 POSTURE: angry 
 CONFIDENCE: 43.96% 
   ] 
 ] 
TIMESTAMP: 011237432 
TIMETOLIVE: 011239432 
] 
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the input was detected. In this example, the format of the timestamp is a continuous string 

containing hour, minute, second, thousandth of a second, i.e., 011237432 represents 1:12 am 

and 37.432 seconds. Note that any format of timestamp can be used, provided it is 

understandable by the system and of a sufficient level of accuracy. Some applications may not 

need to be accurate to one thousandth of a second and, in these cases, a simpler timestamp 

would suffice. The final slot in the example frame of Figure 4.2 is TIMETOLIVE: and this 

contains the time at which the information contained in the frame becomes invalid. In this 

example, the input is valid for 2 seconds, after which time it may be discarded by the system. 

Whilst much work is focused on representing the semantic content at the input of a 

multimodal system, representing the semantics of output is equally important. As observed by 

Wahlster (2003, p. 12), for a system to understand the semantics of its own output there should 

be, “no presentation without representation”. Adherence to this principle is critical if a 

multimodal system is to handle commands such as, “show me a list of similar recipes to this 

one”, “can you compare the features of this mobile phone to the previous two that I looked at?”, 

and, “can I book two tickets to see the second movie you showed me?”. These are examples of 

only a few requests that would become impossible to process if the system does not understand 

and keep a record of previous input/output.  

4.3.2. XML-based semantic representation 
Figure 4.3 shows an example semantic representation of multimodal output marked up in XML. 

 

Figure 4.3: Example semantics for multimodal output presentation 

 <output> 
    <id>4454-1211-8754-3342</id> 
    <from>DialogueManager</from> 
    <to>PresentationPlanner</to> 
    <text>The following movies are now showing:</te xt> 
    <list> 
    <item> 

<title>The Whole Nine Yards</title> 
<no>1</no> 

    </item> 
    <item> 
       <title>The Green Mile</title> 
       <no>2</no> 
    </item> 
    <item> 

<title>The Life of David Gale</title> 
      <no>3</no> 
    </item> 
    </list> 
    <speech>Which movie would you like to reserve?< /speech> 
    <timestamp>153421569</timestamp> 
 </output> 
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Figure 4.3 contains a segment of XML-based semantic representation sent from the dialogue 

manager to the presentation planning module of a cinema ticket reservation system. As with the 

example frame in Figure 4.2, the semantics encodes the sending and receiving modules, only 

this time using the <from> and <to>  XML tags. Additionally, in this example an <id>  tag is 

used to delimit an identification number for the segment. The semantic representation contains 

information relating to two output modalities: text and speech. The <text> tag contains the text 

to be presented on screen. The <list>  tag is used to identify the items to appear in a list on the 

display. Each item in the list is delimited by the <item> tag and within this tag are the <title>  

and <no> tags, which contain the title of the film and its order in the presented list. The 

<speech> tag contains text that the presentation planner can forward to a text-to-speech module. 

In this example, not all the information needed by the presentation planning module is 

contained in the semantic representation. For example, there is no information on the font size 

of the text, the colour of the background screen or the exact positioning of the films list. 

Obviously this information is important but, in this example, it is being obtained from another 

source by the PresentationPlanner. Semantic representations should only contain information 

that is strictly necessary to reduce the processing time and effort in the sending and receiving 

module and to minimise the strain on system resources. If information is already available in, 

for example, a domain model or semantic storage then it is not necessary to include this 

information in the semantics.  

4.4. Multimodal data fusion 
Multimodal data fusion requires several problems to be addressed including establishing criteria 

for fusing the information chunks, determining the abstraction level at which the fusion will be 

done and what to do if there is contradiction between the different information chunks. Often 

temporal information (timestamps) becomes important in the fusion process, e.g., to fuse the 

speech segment, “whose office is this?”, with the corresponding deictic gesture. As an example, 

consider the following dialogue between a user and an intelligent agent: 

1 U: Whose office is this [�] 2?   

2 S: That is Paul’s office.  
 
The semantics of the speech input of turn 1 can be encoded in the segment of XML mark-up 

shown in Figure 4.4. The <speech> tag of the semantic representation shown in Figure 4.4 is 

used to delimit four tags containing information on the speech input: (1) the <stype> tag 

contains the speech type query-partial which tells the multimodal system that the speech is one 

                                                 
 
2 [�] is used here to indicate a deictic gesture. 
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part of a multimodal query, (2) <category> contains the text who which gives more 

information on the meaning of the speech input, (3) the <subject> tag identifies the subject of 

the query and (4) <stimestamp> contains a timestamp for the speech segment. 

 

Figure 4.4: XML semantic representation of “Whose office is this?” 

The corresponding gesture input of turn 1 can be encoded, this time using a frame-based 

approach, as presented in Figure 4.5. 

 

Figure 4.5: Frame-based semantic representation of deictic gesture 

Here, the information on the gesture input is marked up in the GTYPE:, COORDINATES: and 

GTIMESTAMP: slots. The timestamps are important so that the pointing gesture can be fused 

with the corresponding speech input. The value of GTIMESTAMP: would be particularly 

important if a gesture recognition module recognises another deictic gesture input several 

milliseconds after the first deictic gesture. The temporal information can then be used to discard 

the least likely gesture input or to assign probabilities to each of the two possible gesture 

hypotheses. 

  It is important to appreciate that multimodal input processing modules, e.g., for 

speech/images, may take different amounts of time to analyse various input data. This can mean 

that the marked up information will arrive in the wrong order. It is therefore common that 

timestamps are assigned to the individual multimodal information chunks. These timestamps 

can then be used to determine the exact order of several potentially corresponding inputs, to 

decide whether a separate information chunk corresponds to the current or different input and to 

discard input not relevant to the current situation, e.g., a third pointing gesture with the speech 

input, “check room availability and pricing at these two hotels”. As an example, consider the 

XML semantic representation segments shown in Figure 4.6. The marked-up speech segment of 

Figure 4.6 (a) has been generated by a speech understanding component after analysing the 

utterance, “Please check room availability at these two hotels”. The gesture recogniser has 

recognised three deictic gestures in close proximity to the speech input and the semantics of 

<speech> 
<stype>query-partial</stype> 
<category>who</category> 
<subject>office</subject> 
<stimestamp>10345</stimestamp> 
</speech> 

[GESTURE 

GTYPE: pointing 

COORDINATES: 1155, 2234 

GTIMESTAMP: 10312] 
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each of these is shown in Figure 4.6 (b) - (d) respectively. Clearly, one of these deictic gestures 

is not related to the spoken utterance represented in Figure 4.6 (a) and may be unintentional or 

related to a later utterance. In this example, the deictic gesture represented in Figure 4.6 (d) may 

be discarded since it was detected over four seconds after the deictic gesture marked-up in 

Figure 4.6 (c). The deictic gestures represented by Figure 4.6 (b) and (c) are both detected 

within 2 seconds of the speech input and are therefore deemed more likely to have been related 

to the speech utterance. The system could also use domain-specific information to discard the 

erroneous gesture if, for example, there is no hotel at or near the coordinates given in the 

semantics. 

 

Figure 4.6: Semantic representations for ‘hotel availability’ example 

As discussed in Chapter 2, Section 2.1, decisions on the synchronisation of modalities are often 

required at the output of a multimodal system where, for example, the system may need to 

synchronise the movement of a pointing laser with corresponding speech output. A decision 

may also need to be made on what is the best modality to use at the output, i.e., language or 

vision? For example, the directions from one office to another may be best presented visually 

using a laser, whilst a response to a user’s query may be better presented using speech output. 

Another example could be when the driver of a car asks an in-car intelligent information system 

for directions to the nearest petrol station. Here the system could respond by presenting a map 

to the driver or by dictating directions using speech output. The system response in this case 

would depend on whether or not the car was moving. That is, if the car is stopped in a lay-by 

the response could be given via the map. If however the car is moving, i.e., the driver’s eyes are 

pre-occupied on the road, then the system would respond using speech output. 

<speech> 
   <type>booking-query</type> 
  <category>hotel</category> 
   
<subject>availability</subject> 
  <noOfHotels>2</noOfHotels> 
 <timestamp>101453232</timestamp> 
</speech> 

 

(a) 

<gesture> 
   <type>deictic</type> 
  <coordinates> 
      <x>700</x> 
      <y>893</y> 
  </coordinates> 
 <timestamp>101453231</timestamp> 
</gesture> 

(b) 

<gesture> 
   <type>deictic</type> 
  <coordinates> 
      <x>1232</x> 
      <y>543</y> 
  </coordinates> 
 <timestamp>101454561</timestamp> 
</gesture> 

(c) 

<gesture> 
   <type>deictic</type> 
  <coordinates> 
      <x>1454</x> 
      <y>678</y> 
  </coordinates> 
 <timestamp>101458683</timestamp> 
</gesture> 

(d) 
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Multimodal semantic fusion, as discussed in Chapter 2, Section 2.1, can be performed at 

a number of levels. Whilst the level of fusion that is necessary depends on the application, 

fusion is a key problem that must be addressed in multimodal decision-making. It is important 

that the correct level of fusion is chosen for a particular application. It would be pointless 

performing low level fusion of signals if this is not a requirement of the system. For example, if 

an intelligent space recognises simple commands such as, “turn the heating on”, “turn off the 

television”, “draw the curtains” and “dim the lights”, a low level analysis of the intonation of 

the speaker’s voice is not necessary. It would be equally unhelpful if high level semantic fusion 

was being applied when a high level interpretation is not important to the multimodal system. 

For, example, a high level interpretation of a user’s facial expressions and body language is not 

necessary if the system only needs to know the user’s head orientation and gaze direction 

within an intelligent space. It is often the case that best results are achieved when a combination 

of low level (signal) and high level (semantic) fusion is performed. That is, the first stage of the 

fusion process combines low level multimodal events such as speech and lip movement and the 

second stage of the fusion process extracts the high level meaning of the multimodal 

combinations. 

4.5. Multimodal ambiguity resolution 
Ambiguity does not necessarily always occur in multimodal systems but, when it does, it 

presents a difficult challenge that needs to be addressed. Where ambiguity occurs in one input 

modality, e.g. speech, information from other input modalities, e.g., gesture, eye-gaze, facial 

expression and touch, may be used to resolve the ambiguity. An example of ambiguity at the 

input could be when a user’s deictic gesture is accidentally logged as input. Consider the 

following example dialogue: 

1 User: Show me the route from this office [�] to that [�] office. 

2 User: [�] 

3 System: This is the route from Sheila’s office to Tom’s office. 

In this example, the user has pointed three times but has only referred to two offices. The third 

deictic gesture of turn 2 was unintentional and has been detected as input by the multimodal 

system. Here, synchronisation information in the semantic representation, e.g., timestamps, as 

discussed in Section 2.2, can be used to determine which two offices the user is referring to. 

The third deictic gesture can then be discarded if it has occurred considerably later than the 

second referent in the user’s utterance. Another example of input ambiguity is in an industrial 

environment where a control technician points at two computer consoles saying, “copy all files 

from the ‘process control’ folder of this computer to a new folder called ‘check data’ on that 
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computer.” In this example, synchronisation of the visual and audio input is needed to 

determine exactly which two computers the control technician is referring to. Ambiguity could 

also occur in an intelligent space or smart room when a person says, “turn that on”. If there is 

more than one device in the room that can be turned on, ambiguity could arise in determining 

which device is the referent. Here, recognition of an accompanying deictic gesture could be 

used to determine which device the user is referring to. If no gesture input is received, then the 

system may need to ask the user to clarify which device he/she wants to turn on.  Only three 

examples of ambiguity were given in this section, however there are many ways in which 

ambiguity can occur during decision-making in multimodal systems. Resolving ambiguity is 

thus a key problem for the decision-making component of a multimodal platform hub. 

4.6. Uncertainty 
Representing and dealing with uncertainty, as discussed in Chapter 2, Section 2.5.1, is a key 

problem in multimodal systems. Everyday decisions are seldom taken with 100% certainty that 

they are correct. During the course of a dialogue humans continuously make judgements about 

the mental state of other dialogue participants and anticipate the future actions of others.  

Decisions on when to speak, when to listen and where to look are taken all the time. Such 

decisions are never taken with absolute certainty. When humans make assumptions about the 

mental state of another person they adapt their dialogue strategy and plan future actions based 

on these beliefs. Additionally, when new information becomes available, people can 

dynamically adapt their dialogue strategy appropriately.  

Given the uncertainty that frequently exists in multimodal dialogues between human 

users, it would be naive to assume that a multimodal system could take dialogue management 

decisions with absolute certainty. Regardless of how many multimodal inputs are considered, or 

how these inputs are weighted and analysed, there will always be a degree of uncertainty. 

Beliefs held by a multimodal system will often have confidence scores associated with them, 

which are subject to change if new evidence becomes available. The ability of Bayesian 

networks to perform intercausal reasoning enables the strengths of the beliefs in competing 

hypotheses to be reduced when new evidence is observed supporting a particular hypothesis. 

This is a desirable property for the decision-making component of a multimodal system, since it 

makes decision-making easier through the reduction of uncertainty. As an example, assume that 

the beliefs listed in Table 4.1 are held by an intelligent travel agent system and that, at this 

juncture in the multimodal dialogue, the intelligent travel agent system needs to narrow down 

the possible holiday destinations to recommend to the user. Also assume that the system can 

only select a certain category, e.g., hot destinations, if the confidence associated with the 



 

  

109

corresponding belief in Table 4.1 is greater than 65% and at least 20% greater than its 

competing hypothesis. 

Hypotheses Confidence 
1. User wants to book a holiday for two people 100% 
2. User wants a hot destination 53% 
3. Sunshine or heat is not important 47% 

Table 4.1: Example hypotheses held by an ‘intelligent travel agent’ system 

Next assume that input from the speech recognition, facial expression and gaze tracking 

modules causes the confidence associated with hypothesis 2 (user wants a hot destination) to 

rise from 53% to 66%. The system is still not in a position to decide to show holidays from the 

hot destination category since the belief in hypothesis 2 is not 20% greater than the competing 

hypothesis 3 (sunshine or heat is not important). However, an intelligent system should be able 

to determine that, if there is increased evidence that a user prefers a hot destination, then it is 

less likely that sunshine or heat is not important. It would be helpful if there was some 

mechanism that the intelligent travel agent system could use to lower the confidences of 

competing hypotheses when the belief in a certain hypothesis increases and vice versa. This 

exact capability is an inherent property of Bayesian networks, i.e., intercausal reasoning. If 

Bayesian networks were applied to decision-making in the intelligent travel agent system, 

obtaining evidence on one hypothesis would explain away competing hypotheses. 

To conclude this example, assume now that Bayesian networks are being used in the 

decision-making component of the intelligent travel agent system. By performing intercausal 

reasoning, when the belief in hypothesis 2 is increased from 53% to 66%, the belief in 

hypothesis 3 is decreased from 47% to 34%. The system is now in a position to display more 

information on hot destinations, since the belief in hypothesis 2 is at least 20% greater than the 

belief in hypothesis 3. This is just one example of how the use of Bayesian networks and, in 

particular, their ability to perform intercausal reasoning has reduced the uncertainty in decision-

making within a multimodal system. The probabilistic nature of Bayesian networks enable them 

to easily represent and dynamically adapt the beliefs associated with the semantics of 

multimodal data.   

4.7. Missing data  
Missing data is also a potential cause of ambiguity in multimodal decision-making. The 

decision-making mechanism must therefore be able to handle missing information. For 

example, if a multimodal system allows the user to move a file to the Recycle Bin using speech, 

hand gestures, facial expressions, touch and mouse input, then the user should be able to do this 
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using just one modality, a combination of modalities, or all of the available modalities. The 

absence of one or more of these modalities should not create a problem. Equally the presence of 

all of these modalities should not make the decision more difficult. The aim in multimodal 

decision-making is always to reduce ambiguity using different modalities. Careful decision-

making design is needed to ensure that ambiguity is reduced, not increased, by the presence of 

multiple modalities.  

As an analogy, consider an investor who seeks financial advice as to whether or not 

he/she should buy shares in a company in times of economic uncertainty. If the investor goes to 

just one financial advisor, then the decision may be easier to make. However, the decision being 

easier is no guarantee that the decision will be correct. Conversely, if the investor goes to five 

different financial advisors with each making recommendations with varying degrees of 

certainty, the decision becomes more complex. It is arguable, however, that the latter option is 

better since the multiple inputs to the decision allow for a more balanced, intelligent decision to 

be made. The same is true for decision-making in multimodal systems. The presence of 

multiple modalities can make the decision more complex but, by considering all of the available 

modalities, the system can come to a more intelligent conclusion. In order to ensure that 

ambiguity is reduced, and not increased, the decision-making mechanism must be able to assign 

appropriate weighting to the relevance of each modality and dynamically adjust the weighting 

at run-time. Consider an intelligent car safety system that monitors the posture, head position, 

eye-gaze and facial expression of a driver with the aim of warning the driver should he/she 

show signs of tiredness. Table 4.2 presents some of the beliefs held by the system: 

Hypotheses Confidence 
1. Driver is tired based on posture recognition 23% 
2. Driver is not tired based on posture recognition 77% 
3. Driver is tired based on head tracking 71% 
4. Driver is not tired based on head tracking 29% 
5. Driver is tired based on eye-gaze tracking 67% 
6. Driver is not tired based on eye-gaze tracking 33% 
7. Driver is tired based on facial expression 12% 
8. Driver is not tired based on facial expression 88% 

Table 4.2: Example hypotheses held by an ‘intelligent car safety’ system 

Here, if we are to assume that a hypothesis with a confidence greater than 65% is deemed true, 

the following four hypotheses are all true: 

• Driver is not tired based on posture recognition. 

• Driver is tired based on head tracking. 

• Driver is tired based on eye-gaze tracking. 
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• Driver is not tired based on facial expression. 

We now have two overall competing beliefs held by the system: (1) the driver is tired and (2) 

the driver is not tired. The intelligent car safety system now needs some way of deciding 

whether or not the driver is actually tired. What is necessary in this example is some means of 

weighting the significance of the posture, head, eye-gaze and face recognition modules. This 

can easily be done using a conditional probability table (CPT) of a Bayesian network. The 

overall belief in a driver being tired or not could be represented by a single node in the network, 

e.g. called DriverTired, that is influenced by Posture, Head, Eye-gaze and FacialExpression 

nodes. The CPT of the DriverTired node would appropriately weight the inputs to ensure that 

an intelligent conclusion could be reached as to the tiredness of the driver. 

 To continue this example further, let’s assume that there is no input to the 

FacialExpression node because glare from the sun has distorted the system’s recognition of the 

driver’s facial expressions. Now assume that the intelligent car safety system implements a 

rigid rule-based method of decision-making and uses the following rule to decide if the driver is 

tired: 

IF the belief that the driver is tired based on posture recognition is greater than 55%  

AND the belief that the driver is tired based on head tracking is greater than 55%  

AND the belief that the driver is tired based on eye-gaze tracking is greater than 50% 

AND the belief that the driver is tired based on facial expression is greater than 70%  

THEN the driver is tired 

Here, the absence of the facial expression input will mean that the decision on the driver’s 

tiredness cannot be made. Of course, the previous rule could easily be adapted to make the 

facial expression input optional but this would reduce the intelligence of the system. The 

inclusion of the semantics of facial expressions in the rule suggests it is important and therefore 

excluding it from the decision, under any circumstances, is not ideal and would only serve to 

reduce the accuracy of the system. A better approach would be to implement a Bayesian 

network that considers all available inputs at all times in the decision-making process and, 

where evidence is observed to support or disconfirm a particular hypothesis, adjust the beliefs 

of that hypothesis accordingly, i.e., update the values of the states on that node. Where no 

evidence is observed to support a particular hypothesis, as is the case in the example above, the 

system does not update the belief in that hypothesis but continues to recognise its, albeit 

limited, influence within the Bayesian network and on the decision as to the tiredness of the 

driver. Missing data can be handled by a multimodal system using Bayesian networks for 

decision-making. Where evidence is observed on the node of a Bayesian network, all nodes in 
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the network are updated. It is not an essential requirement that all, or indeed any, nodes of a 

Bayesian network are updated before a conclusion can be reached. 

4.8. Aids to decision-making in multimodal systems 
This section considers features of a multimodal system that aid the decision-making process. 

This includes a discussion on distributed processing, dialogue history, context knowledge, 

domain information and learning. 

4.8.1. Distributed processing 
Decision-making in any situation often requires the decision-maker to process information from 

a variety of sources arriving at different times. This is particularly true in an intelligent 

multimodal system which needs to process information from various input modalities, e.g., 

speech recognition, face recognition, gesture recognition and haptic modules. The multimodal 

information from the different sources will invariably arrive at different times, i.e., haptic input 

via a touch-screen will arrive before speech input. It is therefore important that the multimodal 

system has mechanisms in place to deal with distributed processing. For example, consider a 

cinema ticket reservation system. Suppose that the system enables user input using speech, eye-

gaze and mouse input. The system uses the eye-gaze input to aid decision-making where mouse 

input is not detected and ambiguity or uncertainty arises in the understanding of the speech 

input. Assume that the speech input is processed in a speech recognition module running on a 

medium specification Linux machine, whilst a much faster, more powerful Windows computer 

is used to host the gaze-tracking module. The processing of mouse input, where present, is 

conducted on the local Windows PC, which is of relatively low specification in comparison to 

the other two computers. The remaining modules of the system are also running on the local 

PC. Hence, three separate computers, all with different hardware specifications, are used to 

implement the cinema ticket reservation system.  

In this example, both Windows PCs are present in the same building, whilst the Linux 

machine is located in another building. It should be obvious to the reader why the ability to 

perform distributed processing is an essential requirement of the cinema ticket reservation 

system. Because the system is distributed across three machines and two buildings, there needs 

to be some mechanism in place to process the inputs from both the speech recognition and 

gaze-tracking modules as they arrive in the main application on the local PC. The distributed 

nature of the system discussed in this example would also leave timestamps, as discussed in 

Section 2.2, important to the correct interpretation of the different inputs. The varying 

processing speeds of the three computers and the time taken to process the different multimodal 

inputs will mean that the inputs from the recognition modules will all arrive at different times 
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and not necessarily in the correct order. It would therefore be important to know the exact time 

that each input was detected. It should also be noted that distributed processing can be 

advantageous, and often a requirement, for a multimodal system with its modules running on a 

single machine. 

 To continue this example further, assume that during the development stage the cinema 

ticket reservation system is distributed across seven computers, again all with different 

hardware specifications. There are now three speech recognition modules and three gaze-

tracking modules and each of these recognition modules is running on a separate machine. The 

remaining modules of the system are located on the local PC. The three speech recognition 

modules are each running a different speech recognition algorithm and are being monitored for 

speed and accuracy. The speed and accuracy of the gaze-tracking modules are also being 

monitored. The purpose of the current phase of development is to determine which speech 

recognition and gaze-tracking modules to implement in the final version of the cinema ticket 

reservation system. Here, not only temporal information, but also the source of the information 

and the confidence associated with the recognition results needs to be captured in order that the 

fastest and most accurate recognition modules can be identified. All this information can be 

contained in the semantic representation sent from the recognition modules. A possible frame-

based semantic representation for the speech recognition information is shown in Figure 4.7, 

whilst Figure 4.8 gives an XML segment that represents the semantics of the gaze input.  

 

Figure 4.7: Frame-based semantic representation of speech recognition result 

 

Figure 4.8: XML-based semantic representation of gaze input semantics 

[SPEECH 
FROM: SpeechRecogniser2 
INPUT TYPE: speech 
INTENTION: film_selection 
HYPOTHESIS1 [ 
 SPEECH: “the first film” 
 CONFIDENCE: 76.76% 
 ] 
HYPOTHESIS2 [ 
 SPEECH: “the third film” 
 CONFIDENCE: 23.24% 
 ] 
TIMESTAMP: 0112374323 
] 

<eye-gaze> 
 <from>GazeRecogniser3</from> 
 <inputType>film_selection</inputType> 
 <coordinates>1234,900 </coordinates>  
 <timestamp>0112301234</timestamp> 
</eye-gaze> 
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The semantic frame in Figure 4.7 has two slots, HYPOTHESIS1: and HYPOTHESIS2:, that 

represent the beliefs that the user uttered, “the first film”, and, “the third film”, respectively. 

Since the gaze of the user will continuously change as he/she is speaking, the exact timing of 

the eye-gaze input in relation to the speech input is crucial in this example. Another piece of 

information that may be beneficial is the amount of time the user’s gaze is fixed on a particular 

part of the screen. This information could be contained in a <duration> tag and could be used 

to identify, and where appropriate discard, short and long eye-gaze fixations. The coordinates of 

the corresponding eye-gaze input are also marked up in the XML segment in Figure 4.8. For the 

purposes of identifying the most effective speech recognition and eye-gaze modules, a FROM: 

slot is included in Figure 4.7 and a <from> tag is contained in the semantics in Figure 4.8. 

4.8.2. Dialogue history, context and domain information 
During the course of a dialogue, humans automatically keep track of what they and the other 

dialogue participants say and do. They then use this information to dictate their future speech, 

actions and dialogue acts. It is also important that context-specific information is maintained by 

the multimodal system. The system needs to have the capability of behaving differently 

depending on the current context. For example, an in-car multimodal presentation system may 

need to switch from video to text output if bandwidth becomes limited and the car is not 

moving or the system may opt to use speech output only when a car is moving. Sometimes a 

change in context can reduce or increase the significance of a multimodal input.  For example, 

if the environment suddenly becomes noisy, speech input may be less important and its 

accompanying visual input, e.g. lip movement, may become more important. Depending on the 

complexity of the decision-making domain a multimodal system may need to handle one, some 

or many different contexts. For example, numerous different contexts need to be considered to 

handle turn-taking between an intelligent agent and a human user (e.g. GiveTurn, TakeTurn, 

Speaking, Listening), whilst only two contexts might suffice in an intelligent in-car information 

presentation system (e.g. CarMoving, CarStopped). In order to perform intelligent context-

aware decision-making, multimodal systems need to constantly monitor the current context and 

dynamically adapt its behaviour based on the changing context. 

4.8.3. Learning 
The intelligence of a multimodal system can be greatly enhanced if it has the ability to learn 

from past experience. It is impossible for humans to prepare themselves for every eventuality in 

real life situations and dialogues. It is equally impossible for decision engineers to design a 

dialogue strategy that will be prepared for every possible combination of multimodal input. 

Whilst people cannot prepare themselves for every situation they will face, they do have the 
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ability to learn from past experiences so that they may know what to do if they encounter a 

similar situation in the future. Therefore, whilst the ability to learn from data and past 

experience is not an essential requirement of a multimodal system it does allow for more 

intelligent human-like decision-making. Bayesian networks, as discussed in Chapter 3, Section 

3.11.5, can support both structural learning and parametric learning. Structural learning learns 

dependencies between variables in a set of data. This can be useful if data has been collected for 

a particular application domain which contains typical outputs, decisions or conclusions for 

certain combination of inputs or evidence. As an example, suppose 100 users are monitored 

interacting with a multimodal system in a Wizard-of-Oz3 experiment and that the data is 

collected and stored in a case file. The case file contains the states of five inputs (A, B, C, D, 

and E) and the corresponding conclusions (X, Y and Z). Assume that the inputs A-E are captured 

by the following multimodal processing modules: 

• A - Speech recognition module. 

• B - Lip reading module.  

• C - Facial expression recognition module that tries to ascertain users’ intention based on 

their facial expressions. 

• D - eye-gaze tracking module that detects where the user what part of a computer screen 

the user is looking at. 

• E - Posture recogniser that monitors posture and body language of the user and makes 

judgments on the user’s emotional state. 

X, Y, and Z in this example are variable each with a number of states that represent conclusions 

on the intentional state of the user. Now, suppose we have a data file populated during the 

Wizard-of-Oz experiment, a segment of which is shown in Figure 4.9. Structural learning can 

take the data file shown in Figure 4.9 and learn the structure of a Bayesian network that 

represents the causal dependencies implicit in the data. Parametric learning is used to learn the 

parameters, or Conditional Probability Tables (CPTs), of a Bayesian network. This can involve 

the adaptation of an existing Bayesian network to a new data set (adaptive learning) or 

generating the CPTs of a Bayesian network from a database, i.e., Estimation-Maximum (EM) 

learning.  

                                                 
 
3 A Wizard-of-Oz experiment is one where a person, i.e., the wizard, simulates the behaviour of an intelligent 
system. 
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Figure 4.9: Segment of data file for structural learning of a Bayesian network 

4.9. Key example problems in multimodal decision-making 
This section discusses multimodal processing example problems that highlight the benefits of a 

Bayesian approach to decision-making within multimodal systems. 

4.9.1.  Anaphora resolution 
Consider the following dialogue: 

1 A: Can you tell me how to get to Mary's office? 

2 B: Yes, go down that [�] corridor and take the 3rd door on the left. 

3 A: And how do I get from her office to the school office? 

4 B: The school office is directly opposite Mary's office. The one with the red door. But it is 

currently closed for lunch and will not be open until 2:00pm. 

Here, because B has kept a record of dialogue history, he/she knows that ‘her’ in turn 3 refers to 

Mary. This kind of decision-making is easy for humans but, in order to replicate this in a 

computer, a multimodal system needs mechanisms in place to keep track of dialogue history. If 

we were to replace B in the previous dialogue with an intelligent agent, we would need to 

ensure that a dialogue history is maintained that keeps track of the name and gender of the last 

person mentioned. We would also need domain-specific information such as the current 

position of A, the location of Mary's office and the school office, the colour of the school office 

A, B, C, D, E, X, Y, Z 

TRUE, FALSE, command, A2, neutral, TRUE, FALSE, FAL SE 

TRUE, TRUE, question, B3, happy, FALSE, FALSE, TRUE  

FALSE, TRUE, comment, C24, happy, FALSE, TRUE, TRUE  

TRUE, FALSE, comment, A18, angry, TRUE, TRUE, FALSE  

TRUE, FALSE, question, D11, sad, TRUE, FALSE, FALSE  

FALSE, TRUE, question, A17, neutral, TRUE, TRUE, TR UE 

FALSE, TRUE, undefined, A5, neutral, TRUE, FALSE, F ALSE 

TRUE, FALSE, comment, G9, happy, FALSE, FALSE, FALS E 

TRUE, TRUE, comment, L3, frustrated, TRUE, FALSE, T RUE 

FALSE, TRUE, question, L6, neutral, TRUE, FALSE, FA LSE 

TRUE, FALSE, undefined, L1, happy, FALSE, TRUE, TRU E 

FALSE, FALSE, undefined, X23, happy, FALSE, FALSE, FALSE 

TRUE, TRUE, comment, Y24, neutral, TRUE, FALSE, FAL SE 

FALSE, FALSE, question, X23, neutral, FALSE, TRUE, TRUE 

TRUE, TRUE, question, C24, frustrated, FALSE, FALSE , FALSE 

TRUE, FALSE, undefined, S21, happy, TRUE, FALSE, FA LSE 

FALSE, TRUE, comment, Z23, frustrated, TRUE, TRUE, TRUE 



 

  

117

door, the current time and the opening hours of the school office. This simple example gives an 

indication of the amount of domain-specific information and dialogue history that must be 

maintained to support decision-making in a multimodal system. The multimodal dialogue 

history needs to be stored as fused semantic representations, often on a blackboard or 

whiteboard, within the multimodal system. As the complexity and scope of the dialogue 

increases, so too does the amount of dialogue information that must be maintained.  

4.9.2. Domain knowledge awareness 
Often partial frames or information chunks are encoded by a multimodal system during the 

course of a dialogue. Consider an intelligent bus ticket reservation system. Assume that the 

semantics of Figure 4.10 is created in response to the following utterance: 

1 User: I want to book a bus from Dromore to Dublin on Sunday 21st of September. 

                                                        

Figure 4.10: Partial frame for intelligent bus ticket reservation system 

Note that the frame in Figure 4.10 is only partially complete. The TIME: slot is empty since the 

user did not mention a departure time. Also assume that, after querying the domain model to 

check the correctness of the recognised source and departure locations, the system realises that 

there are several different places called Dromore. Turns 2 to 4 below are then necessary to 

resolve this ambiguity by asking the user which Dromore he/she is referring to and to confirm 

the departure time.  

2 System: Which Dromore are you departing from? 

3 User: Dromore, County Tyrone. 

4 System: And, at what time would you like to leave? 

5 User: The first bus in the morning. 

 
After turn 3 the semantics of the input will be interpreted by the system and the domain model 

will be queried to check that there is a place called Dromore in County Tyrone that is serviced 

[BookingPartial 
FROM: SpeechRecogniser 
TO: DialogueManager 
INPUT TYPE: Speech 
INTENTION: BookingRequest 
DEPART: Dromore 
DESTINATION: Dublin 
DATE: 21/09/08 
TIME:  
TIMESTAMP: 011237432 
] 
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by the bus. The system will also need to query the domain model after analysing the semantics 

of turn 5 to determine the earliest bus from Dromore to Dublin on the date specified. After the 

disambiguation steps taken in turns 2 to 5, the semantic frame in Figure 4.10 will be updated 

with the correct information. Essentially this step will involve the fusion of several semantic 

frames containing the required information to book the bus ticket. In this example, domain-

specific information is crucial to resolving the ambiguity present in the dialogue. Careful 

consideration is needed in the design of a multimodal platform to ensure that it can fully utilise 

the valuable information contained in the semantic representation. The hub of a multimodal 

platform must process the semantic content from the various sources of multimodal input, 

where appropriate route the semantics to other system modules, generate semantics for 

multimodal output and coordinate multimodal presentation. 

4.9.3. Multimodal presentation 
Consider a multimedia presentation system for monitoring the driver of a car for signs of 

tiredness. Assume that the semantics of the following modalities are available to support the 

decision-making: 

• Facial expression 

• Eye gaze 

• Head movement 

• Posture 

The system also considers driver behaviour, i.e., steering and braking. A Bayesian network for 

this example is presented in Figure 4.11.  

 

Figure 4.11: Bayesian network for multimodal presentation 

As shown in Figure 4.11, four nodes represent the beliefs relating to the multimodal inputs, i.e., 

Face, EyeGaze, Head and Posture. The Steering and Braking nodes represent driver behaviour. 
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CPTs elicit the parameters of the Bayesian network. An example CPT for the Face node is 

given in Table 4.3, whilst Table 4.4 shows a CPT for the SpeechOutput node. As illustrated by 

Table 4.4, the SpeechOutput node recommends simulated speech output based on the driver’s 

behaviour, represented by the Steering and Braking nodes. 

 

 

 

 

Table 4.3: CPT of Face node 

 

 

 

 

 

Table 4.4: CPT of SpeechOutput node 

4.9.4. Turn-taking 
Consider the problem of coordination of turn-taking in an intelligent agent. In this example, the 

multimodal system processes the semantics of speech, gaze and posture multimodal inputs. 

Figure 4.12 presents a Bayesian network for this example.  

 

Figure 4.12: Bayesian network for turn-taking 

As indicated by the directed edges in the Bayesian network, the Turn node has influence over 

the Speech, Gaze and Posture nodes. Each of the nodes in the Bayesian network in Figure 4.12 

has the states Give and Take as shown in the CPTs for the Bayesian network given in Tables 4.5 

- 4.8. 

Face 

Tired OK Tired 

Tired 0.5 0.5 

Normal 0.5 0.5 

SpeechOutput 

Braking Normal Abrupt 

Steering Normal Abrupt Normal Abrupt 

None 0.3333 0.3333 0.3333 0.3333 

FancyBreak? 0.3333 0.3333 0.3333 0.3333 

Warning 0.3333 0.3333 0.3333 0.3333 
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Table 4.5: CPT of Speech node 

 

 

 

Table 4.6: CPT of Gaze node 

 

 

 

Table 4.7: CPT of Posture node 

 

 

Table 4.8: CPT of Turn node 

In the Speech, Gaze and Posture nodes the states Give and Take represent the belief that the 

user wishes to give or take the turn. The Give and Take states of the Turn node recommend 

whether or not the intelligent agent should give or take the next turn in the dialogue. 

4.9.5. Dialogue act recognition 
Consider a multimodal system that supports the decision-making of an intelligent agent through 

dialogue act recognition. The system considers the semantics associated with speech, voice 

intonation and the recognition of eyebrow and mouth movements, before making decisions on 

the dialogue acts being performed by the user. A Bayesian network for this example is shown in 

Figure 4.13. The directed edges between the nodes of the Bayesian network in Figure 4.13 

indicated that the DialogueAct node has influence over the Speech, Intonation, Eyebrows and 

Mouth nodes. This influence is also evident in the CPTs for the Bayesian network. Tables 4.9 – 

4.11 gives the CPTs for the Intonation, Eyebrows and Mouth nodes. Tables 4.12 and 4.13 give 

the CPTs for the Speech and DialogueAct nodes respectively. 

Speech 

Turn Give Take 

Give 0.8 0.2 

Take 0.2 0.8 

Gaze 

Turn Give Take 

Give 0.8 0.2 

Take 0.2 0.8 

Posture 

Turn Give Take 

Give 0.8 0.2 

Take 0.2 0.8 

Turn 

Give 0.5 

Take 0.5 
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Figure 4.13: Bayesian network for dialogue act recognition 

 

 

 

Table 4.9: CPT of Intonation node 

 

 

 

Table 4.10: CPT of Eyebrows node 

 

 

 

Table 4.11: CPT of Mouth node 

 

 

 

 

 

Table 4.12: CPT of Speech node 

 

 

Intonation 

Turn Give Take 

Give 0.8 0.2 

Take 0.2 0.8 

Eyebrows 

Turn Give Take 

Give 0.8 0.2 

Take 0.2 0.8 

Mouth 

Turn Give Take 

Give 0.8 0.2 

Take 0.2 0.8 

Speech 

DialogueAct Greeting Comment Request Accept Reject 

Greeting 0.80 0.05 0.05 0.05 0.05 

Comment 0.05 0.80 0.05 0.05 0.05 

Request 0.05 0.05 0.80 0.05 0.05 

Accept 0.05 0.05 0.05 0.80 0.05 

Reject 0.05 0.05 0.05 0.05 0.80 
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Table 4.13: CPT of DialogueAct node 

4.9.6. Parametric learning 
Suppose the data file shown in Figure 4.14 has been used to learn the structure of a Bayesian 

network. However, following analysis of the Bayesian network, it is felt that its performance 

could be improved if a larger set of data is considered in the learning process. A Wizard-of-Oz 

experiment is conducted monitoring 1000 users interacting with the system.  

 

Figure 4.14: Segment of data file for structural learning of a Bayesian network 

Parametric (adaptive) learning is performed to learn the parameters, i.e., the CPTs, of the 

Bayesian network. As a result, the existing Bayesian network is adapted to the new, much 

larger, data set. This adapted Bayesian network can now be analysed to determine if the 

DialogueAct 

Greeting 0.2 

Comment 0.2 

Request 0.2 

Accept 0.2 

Reject 0.2 

A, B, C, D, ES 

happy, neutral, relaxed, happy, happy 

neutral, neutral, happy, relaxed, neutral 

open, happy, happy, neutral, happy 

defensive, open, confused, happy, neutral, confused  

defensive, defensive, confused, defensive, defensiv e 

open, neutral, happy closed, open 

happy, neutral, relaxed, happy, happy 

confused, relaxed, neutral, neutral, neutral 

happy, relaxed, neutral, happy, neutral 

happy, happy, happy, relaxed, happy 

happy, relaxed, relaxed, happy, neutral 

open, happy, happy, neutral, happy 

defensive, happy, confused, defensive, defensive 

open, open, neutral, neutral, neutral 

happy, happy, relaxed, happy, happy 

open, closed, open, closed, closed 

happy, happy, happy, relaxed, happy 

relaxed, neutral, neutral, relaxed, relaxed 
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increase in learning data has improved the accuracy of its conclusions. Parametric learning was 

discussed in greater detail in Chapter 3, Section 3.11.5. 

  This section has discussed six key example problems in multimodal decision-making, 

including anaphora resolution, domain knowledge awareness, multimodal presentation, turn-

taking, dialogue act recognition and parametric learning.  

4.10. Requirements criteria for a multimodal distributed platform hub 
Having considered key problems in decision-making within a multimodal system, a set of 

necessary and sufficient criteria for the decision-making mechanism in a multimodal hub can 

now be drafted. These criteria list the core requirements for the hub of a multimodal distributed 

platform. The criteria are categorised into the following two categories: 

• Essential criteria  

• Desirable criteria 

Essential criteria (denoted by E) must be met in order that the hub is capable of performing 

and/or coordinating the type of decision-making commonly required within a multimodal 

system. Desirable criteria (denoted by D) are not essential but would enhance the effectiveness 

of the decision-making mechanism. Essential criteria for a multimodal distributed platform hub 

are summarised in Table 4.14. 

4.11. Bayesian decision-making in multimodal fusion and synchronisation 
In this section the rationale for a Bayesian approach to decision-making within a multimodal 

distributed platform hub is detailed and how this approach addresses a number of key problems 

in multimodal decision-making discussed. 

4.11.1. Rationale  
There are a number of properties of Bayesian networks that leave them particularly suited to 

decision-making over multimodal data. First, intercausal reasoning, or the explaining away 

effect, can greatly simplify decision-making in multimodal systems by disconfirming, or 

explaining away, other hypotheses in the light of new evidence supporting a particular 

hypothesis. As discussed in Chapter 3, Section 3.3, intercausal reasoning is an intrinsic property 

of Bayesian networks. An example of intercausal reasoning is where evidence supporting the 

hypothesis that a person wants to take the next dialogue turn decreases the belief in the 

competing hypothesis that the person wants to give the turn to another dialogue participant, i.e., 

the competing hypothesis is explained away. Another example is where a multimodal ‘building 

data’ system detects three deictic gestures in close proximity to a user utterance, “show me 

route from that office to this office”. If timestamp information increases the belief that the user 
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intentionally referred to two particular offices using the first two deictic gestures, then the belief 

that the third deictic gesture was intentional will subsequently decrease. The ability to 

automatically perform intercausal inference is a key contributor to the reasoning power of 

Bayesian networks. 

Criterion Capability 

E1 The decision-making mechanism must be able to operate over semantic 

representations of both multimodal input and output. 

E2 The hub must be able to fuse semantics at both input and output of a 

multimodal system. 

E3 There should be, “no presentation without representation” (Wahlster 

2003, p. 12). 

E4 The decision-making mechanism should be able to dynamically update 

the beliefs associated with multimodal input and output at run-time. 

E5 The hub should be capable of distributed processing in recognition of the 

inherently distributed nature of multimodal systems. 

E6 Multimodal dialogue history should be stored for use in decision-making. 

E7 The decision-making process should consider the current context when 

making decisions. 

E8 The decision-making mechanism should be capable of resolving 

ambiguity in one modality using information from other modalities. 

E9 Domain-specific information should be available to enable intelligent 

interaction with human users. 

E10 Missing data should not create a problem for the decision-making 

process. 

E11 The decision-making mechanism must be able to make decisions on the 

optimum combination of output modalities in a multimodal system. 

E12 It should be possible to learn a decision-making strategy based on sample 

data for a particular problem domain. 

D1 The hub should operate as multi-platform.  

D2 The hub should be able to learn and adapt the decision-making based on 

previous experience. 

D3 The decision-making mechanism should have the ability to learn from 

real data. 

Table 4.14: Requirements criteria for a multimodal distributed platform hub 

Second, as discussed in Chapter 3, Section 3.3, the compact graphical nature of Bayesian 

networks is advantageous whilst attempting to model a large and complex multimodal decision-
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making domain consisting of many random variables. As an example, consider the case where 

there are several discrete random variables representing the probabilities of beliefs associated 

with various multimodal inputs. Here, if we were to specify the joint probability distribution, its 

size would grow exponentially with the number of variables, i.e., one probability would be 

needed for every possible configuration of the variables. Bayesian network provide a compact 

representation of such a complex domain by using a graphical structure to encode dependence 

and independence relations between the random variables.  

Third, there are inherent cause-effect relationships in multimodal decision-making. For 

example, if a person is observed shaking his/her head, then this causes us to believe that the 

person disagrees with what is being said, whilst facial expressions can influence our belief 

about a person’s mental state. Similarly, our knowledge of past events and dialogue history may 

cause us to adapt our future actions and dialogue strategy. In order to engage in natural human-

like communication, the ability to model causation in multimodal systems is desirable. 

Bayesian networks can explicitly represent cause-effect relationships within any decision-

making domain. Furthermore, Bayesian networks are an intuitive graphical means of 

representing causality within a domain. As discussed in Chapter 3, Section 3.1, humans 

frequently consider causation in their everyday lives and this is evident in the choice of words 

humans use in situations where uncertainty exists. Phrases such as, “John will be late for the 

meeting because of the harsh driving conditions”, “if Mary does not call today, then she must 

be satisfied that the issue is resolved”, and, “there was definitely someone at home since the 

lights and TV were on”, are all examples of causation being used in speech under uncertain 

conditions, i.e., the speaker cannot be certain that John will be late, that Mary’s issue is 

resolved or that there was anyone at home. Hence, causation is a phenomenon that humans deal 

with frequently during the course of a dialogue. It is therefore appropriate that Bayesian 

networks be used to model the cause-effect relations that arise in multimodal decision-making. 

The fact that causation sits easily with people’s reasoning processes simplifies the construction 

of Bayesian networks that model the causal dependencies between variables of a problem 

domain. 

Fourth, decision-making within multimodal systems frequently involves the resolution 

of uncertainty and ambiguity. The interpretation of multimodal input and the weightings 

assigned to multimodal output are most naturally handled using confidence or probability 

scores. The careful weighting of all available inputs enables Bayesian networks to deal with the 

complexity of decision-making within multimodal systems. The more modalities that are 

considered, the more complex the decision-making becomes. In order that one or more 

modality may be used to resolve ambiguity and uncertainty arising in another modality, a 
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flexible and intuitive means of representing the beliefs associated with modalities is needed. It 

is difficult for people to make absolute certain judgements about the emotional states of others, 

just as it may be difficult to be 100% certain that a person has pointed to a particular office and 

not an adjacent office. Even when humans are almost completely certain about something, they 

are reluctant to express certainty. For example, we frequently choose to say we are, “nearly 

sure”, or, “almost certain”, or, “99.9% certain”. Where uncertainty is present, however small 

the uncertainty may be, it is important that it is represented.  Probabilities, i.e., percentages, are 

an intuitive means of representing uncertainty. As discussed in Section 4.6, Bayesian networks 

are proficient at dealing with the beliefs assigned to various multimodal inputs. Furthermore, 

the probabilistic nature of Bayesian networks renders them useful for representing competing 

hypotheses on the semantics of multimodal input. For example, a speech recogniser may 

believe a user has said, “the first film”, with a probability of 46%, “the third film”, with a 

probability of 32%, and, “the fourth film”, with a probability of 22%. These competing 

hypotheses can be easily represented in a Bayesian network, which can use additional 

multimodal information, e.g., mouse or eye-gaze input, to overcome the uncertainty regarding 

the user’s intention. 

Fifth, missing information does not create a problem for a Bayesian network. There is 

no requirement to update all, or indeed any, nodes in a Bayesian network. Acquiring more 

information on the variables of a problem domain does lead to more intelligent decision-

making, but missing data will not prevent the Bayesian network from running and reaching a 

conclusion. Missing data is common in multimodal systems, since often the multimodal inputs 

are optional. It is also possible that certain inputs may only be considered if there is uncertainty 

or ambiguity present. For example, consider a multimodal system for downloading music from 

the Web. If the speech recognition module believes with a high degree of certainty that the user 

has said, “download the first song in the list”, and there are no competing hypotheses with a 

confidence score above a certain threshold, then the system may not consider eye-gaze or 

mouse input. Here, the only data, or evidence, applied to the Bayesian network would be that 

relating to the speech input. Of course, there would still be nodes relating to the eye-gaze and 

mouse input but, in the absence of any evidence on these nodes, they would have minimal 

influence on the conclusions reached by the Bayesian network.  

Finally, Bayesian networks possess the ability to learn and update their conditional 

probability tables based on previous experience. The conditional probability tables (CPTs), 

used to specify the quantitative part of a Bayesian network are updated dynamically at run-time 

when new evidence is propagated through the network. Additionally, both structural and 

parametric learning can derive or refine a Bayesian network from a data set. The ability to learn 
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from data is particularly advantageous when attempting to develop Bayesian networks to model 

the causal relationships between variables of a new decision-making domain. If data has been 

collected for a new application domain a Bayesian network can learn the cause-effect 

relationships between the variables in the data. The learning capability of Bayesian networks 

was discussed in Chapter 3, Section 3.11.5. 

To summarise, Bayesian networks are deemed particularly suited to multimodal decision-

making for the following reasons: 

• They can automatically perform intercausal reasoning which is advantageous when 

modelling complex multimodal problem domains. 

• They constitute a compact, intuitive means of representing large and complex decision-

making domains. 

• Their graphical structure is an intuitive way to represent the cause-effect relations that 

are inherently present in multimodal decision-making. 

• Probabilities, and hence Bayesian networks, provide a flexible and intuitive means of 

representing uncertainty and ambiguity, thereby meeting the essential criteria E4 and E8 

in Table 4.14. 

• Missing data does not create a problem. There is no requirement to add evidence on the 

node of a Bayesian network in order that the network can be run and produce useful 

conclusions (criterion E10 in Table 4.14). 

• Their ability to learn from past experience and data. Bayesian networks dynamically 

adapt their CPTs at run-time as new evidence is propagated through the network. 

Bayesian networks can also learn from data through, for example, structural and 

parametric learning (desirable criterion D2 in Table 4.14). 

4.12. Summary 
This chapter presented a Bayesian approach to decision-making within a multimodal distributed 

platform hub. Key problems within multimodal systems were highlighted before the 

characteristics of multimodal decision-making were discussed. Distributed processing, dialogue 

history, context/domain-specific information and learning where considered with regard to their 

role in aiding multimodal decision-making. Essential and desirable criteria for a multimodal 

distributed platform hub were then presented. Finally, the motivation and advantages of 

applying Bayesian networks to multimodal decision-making were discussed. In summary, this 

chapter presented the thesis that Bayesian networks fulfil the requirements associated with 

decision-making over multimodal data within a multimodal distributed platform hub. The next 
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chapter discusses the implementation of a multimodal distributed platform hub called 

MediaHub. 
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Chapter 5 Implementation of MediaHub 

 

This chapter discusses the implementation of MediaHub, a multimodal distributed platform hub 

for Bayesian decision-making over multimodal input/output data. First, we present the 

architecture of MediaHub and then its key modules are discussed in detail. A discussion follows 

on semantic representation and storage, before Psyclone (Thórisson et al. 2005), which 

facilitates distributed processing in MediaHub, is described. Next, five decision-making layers 

in MediaHub are outlined: (1) psySpec and contexts, (2) message types, (3) document type 

definitions (DTDs), (4) Bayesian networks and (5) rule-based. The role of Hugin (Jensen 1996) 

in implementing Bayesian networks for decision-making in MediaHub is then discussed. 

Multimodal decision-making in MediaHub is then demonstrated through six worked examples 

investigating key problems in various application domains.  

5.1. Constructionist Design Methodology 
The Constructionist Design Methodology (CDM) (Thórisson et al. 2004), discussed in Chapter 

2, Section 2.7.11, was used in designing MediaHub. As the development of MediaHub did not 

involve a large team not all aspects of CDM were directly relevant. The key steps of CDM that 

were particularly relevant are listed below: 

1. Define the project’s goal, i.e., implement Bayesian decision-making in a 

multimodal distributed platform hub. 

2. Define the project’s scope, i.e., the key problems and application domains 

discussed in Chapter 4. 

3. Modularisation – MediaHub is constructed using modules that communicate 

through MediaHub Whiteboard. 

4. Test the system against scenarios, i.e., MediaHub is tested against a number of 

decision-making scenarios that illustrate its capabilities in multimodal decision-

making. 

5. Iterate – Steps 2 to 4 were repeated until the desired functionality was achieved. 

6. Early testing of system modules – all MediaHub modules were tested at an early 

stage in their implementation. 
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7. Build all modules to their full specification – all MediaHub modules were 

iteratively developed to full specification.   

8. Tune the system – MediaHub was then tested with all its modules running.  

The step that was not relevant was step 6 in Chapter 2, Section 2.7.11, ‘Assign modules to 

suitable team members (based on their strengths and areas of interest)’. This step was not 

necessary since MediaHub was developed by a single researcher.  

5.2. Architecture of MediaHub 
MediaHub, developed in the Java programming language, takes as input marked up multimodal 

data in XML format. These XML segments represent potential output of recognition modules, 

e.g., speech, haptic, gaze and facial expression. Figure 5.1 shows the architecture of MediaHub, 

consisting of the following key modules: 

• Dialogue Manager 

• MediaHub Whiteboard 

• Decision-Making Module 

• Domain Model 

• MediaHub psySpec 

MediaHub’s architecture closely resembles the generic architecture of a multimodal distributed 

platform hub given in Figure 4.1, Chapter 4. As shown in Figure 5.1, MediaHub utilises 

Psyclone for distributed processing and tracking the current context.  Psyclone, discussed in 

Chapter 2, Section 2.7.10, is a message-based middleware that enables large distributed systems 

to be developed. Bayesian decision-making is performed by the Hugin decision engine, 

discussed in Chapter 3, Section 3.11.5, which is accessed through a Hugin API (Hugin 2009). 

Input/output recognition modules are not implemented, only the XML representation of the 

input/output is generated/interpreted. Some additional processing is conducted for testing 

purposes, e.g., a terminal window displays the coordinates of recognised offices, names of 

recognised individuals and coordinates for laser output.  

5.2.1. Dialogue Manager 
The Dialogue Manager, in conjunction with MediaHub Whiteboard, coordinates the following: 

(1) interaction between MediaHub and other system modules, (2) fusion and synchronisation of 

multimodal input/output and (3) communication between the modules of MediaHub. Each of 

these functions, with examples, will now be considered. 
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Interfacing to MediaHub 

Assumed output from various input modules of a multimodal system marked up in XML format 

is encapsulated within messages that are posted to MediaHub Whiteboard. Dot-delimited 

message types specify the content of messages passed within MediaHub. 

          

Figure 5.1: Architecture of MediaHub 

All message types pertaining to input/output are automatically routed by Psyclone’s whiteboard 

to the Dialogue Manager. Upon receiving input, the Dialogue Manager then decides, again 

based on the message type, how to process the input. The majority of input messages are 

processed and repackaged as new messages, with new message types, and posted back to 

MediaHub Whiteboard, where they are routed to the Decision-Making Module. When output 

messages are received the Dialogue Manager must decide which output modules should receive 

the output.  

Semantic fusion 

The Dialogue Manager coordinates the fusion of multimodal input/output. For example, fusion 

of speech input with its corresponding deictic gesture input or fusing the selection of a menu 

item with corresponding speech output. The problem of synchronisation is not fully addressed 

in the current implementation of MediaHub. The processing of multimodal input involves 

invoking a JDOM (Java Document Object Model) parser to retrieve only the relevant 
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information from the semantic representation XML mark-up. Document Type Definitions 

(DTDs) determine when all the required information has been received for a particular scenario, 

based on message type, and to ensure correctness of the XML data received. One such DTD is 

given in Figure 5.2. 

 
 

Figure 5.2: MediaHub example Document Type Definition (DTD) 

The DTD in Figure 5.2 ensures that both speech and corresponding gesture input are received 

before proceeding with processing. Effectively, the DTD acts as a delay mechanism and the 

Dialogue Manger will not proceed to the next stage of processing until the XML mark-up 

contains all the required information as specified in the DTD. Message types invoke the correct 

DTD to validate an XML segment. Note that the DTDs can also specify optional information 

that may appear in the XML segment. A subset of MediaHub’s DTDs is given in Appendix A.  

Communication between MediaHub modules 

The Dialogue Manager, as illustrated in Figure 5.1, communicates directly with MediaHub 

Whiteboard. All communication is achieved by exchanging semantic representations through 

MediaHub Whiteboard. Any messages posted to MediaHub Whiteboard with the text “input” or 

“output” in the message type are automatically routed to the Dialogue Manager which must 

then decide what future processing is required. Often this involves extracting the relevant 

information from the XML mark-up for the current situation and repackaging it in another 

message, with a new message type, which is posted back to MediaHub Whiteboard. It is usually 

necessary to acquire domain-specific information. As an example, consider the following 

dialogue segment: 

<!-- speech and gesture can be in any order--> 
<!ELEMENT multimodal ((speech, gesture)| 
(gesture, speech))> 
<!ELEMENT speech (stype, category, subject, 
stimestamp)> 
<!ELEMENT stype (#PCDATA)> 
<!ELEMENT category (#PCDATA)> 
<!ELEMENT subject (#PCDATA)> 
<!ELEMENT stimestamp (#PCDATA)> 
<!ELEMENT gesture (gtype, coordinates, 
gtimestamp)> 
<!ELEMENT gtype (#PCDATA)> 
<!ELEMENT coordinates (x, y)> 
<!ELEMENT x (#PCDATA)> 
<!ELEMENT y (#PCDATA)> 
<!ELEMENT gtimestamp (#PCDATA)> 
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1 U: Whose office is this [�] 4?   

2 S: That is Paul’s office.  

3 U: Ok. Whose office is that [�]?   

4 S: That’s Sheila’s office. 

Here, in order to respond to turns 1 and 3 MediaHub must determine which office the user is 

pointing to. The XML representation of turns 1 and 3 will contain both the speech segment and 

the coordinates of the pointing gesture. These coordinates will then facilitate querying the 

Domain Model in order to determine whose offices are at those locations, i.e., Paul’s and 

Sheila’s office.  

5.2.2. MediaHub Whiteboard 
MediaHub Whiteboard has two primary functions: (1) communication and (2) semantic storage. 

A publish-subscribe mechanism for communication is achieved by means of the MediaHub 

Whiteboard, implemented with Psyclone’s patent-pending Whiteboards™ (Thórisson et al. 

2005). During processing, input/output semantics is stored on MediaHub Whiteboard in XML 

format. Modules subscribe to dot-delimited message types. Some examples of message types in 

MediaHub are listed below: 

building.query.office.occupant.speech.input 

building.query.office.occupant.gesture.pointing.input 

building.query.office.occupant.repdoc 

movies.gesture.pointing.input 

The MediaHub messages types are listed in Appendix B. Modules can subscribe to message 

types within the XML specification file (psySpec). A psySpec is an XML configuration file read 

by Psyclone at invocation which defines the operation of all system modules. In addition to 

being triggered by message types defined in MediaHub’s psySpec, a module may also retrieve 

information dynamically at run-time. When a message is posted to MediaHub Whiteboard, a 

copy of the message is automatically delivered to all modules subscribing to that message type. 

A copy of the message remains on MediaHub Whiteboard to facilitate future processing. 

Semantic storage is another key function of MediaHub Whiteboard. All previous messages are 

stored on MediaHub Whiteboard and can be retrieved later for decision-making. It is possible to 

query MediaHub Whiteboard and retrieve the last message of a certain type, i.e., a dialogue 

                                                 
 
4 [�] is used here to indicate a deictic gesture. 
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history is maintained. MediaHub can also access the last X messages of a certain type and parse 

the XML content to assist the decision-making process.  

5.2.3. Domain Model 
The Domain Model contains data specific to a given application domain, e.g., building data, 

cinema ticket reservation, in-car safety. This data is stored in an XML format which can be 

parsed by a JDOM parser for XML. Figure 5.3 shows a segment of an XML file stored in the 

Domain Model. 

 

Figure 5.3: Segment of XML file containing data on offices 

The XML segment in Figure 5.3 contains domain-specific information for the ‘building data’ 

domain. It contains the ID (room number), occupant name, gender of occupant and the 

coordinates for each of the offices in the building. Without such information it would be 

impossible to answer queries such as, “Whose office is that [�]?”, or, “How do I get from this 

<Offices> 
 <Office>  
     <ID>MG221</ID> 
      <Person> 
      <FirstName>Paul</FirstName> 
     <Surname>McKevitt</Surname> 
        <Gender>Male</Gender> 
      </Person> 
    
   <Coordinates> 
    <From>  
   <X>1100</X> 
   <Y>2150</Y> 
    </From> 
  <To>  
   <X>1311</X> 
   <Y>2323</Y> 
  </To> 
 </Coordinates> 
 </Office> 
 <Office>  
     <ID>MG203</ID> 
     <Person> 
     <FirstName>Sheila</FirstName> 
      <Surname>McCarthy</Surname> 
     <Gender>Female</Gender> 
  </Person> 
    <Coordinates> 
  <From>  
   <X>1400</X> 
   <Y>5300</Y> 
  </From> 
  <To>  
   <X>1525</X> 
   <Y>5500</Y> 
  </To> 
 </Coordinates> 
</Office> 
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office [�] to that office [�]?”. Upon receiving the coordinates of a pointing gesture, a JDOM 

parser can query the Domain Model to determine the office being referred to. The Domain 

Model code shown in Figure 5.4 checks the coordinates received in the XML mark-up of a 

deictic gesture against data in the Domain Model. When the correct office has been identified in 

the Domain Model the office ID, first name and gender of the occupant is extracted for use in 

the current dialogue, e.g., “That’s Paul’s office”.  The Domain Model is accessed via the 

DomainModel Class.  

 

Figure 5.4: Segment of Domain Model code 

5.2.4. Decision-Making Module 
A key component of MediaHub is the Decision-Making Module. The Decision-Making Module 

manages Bayesian decision-making by accessing the Hugin Decision Engine via the Hugin 

API, as shown in Figure 5.1. The Decision-Making Module deploys, where necessary, 

appropriate Bayesian networks and supplies these networks with data contained in the XML 

segments. The decision on which Bayesian network to access is determined by the message 

type. Where necessary, data relating to dialogue history is accessed via the History class. When 

a network is accessed by the Decision-Making Module the results or conclusions are interpreted 

with simple rules within it and a message is posted to MediaHub Whiteboard. All messages 

posted to MediaHub Whiteboard from the Decision-Making Module are automatically delivered 

to the Dialogue Manager.  

 The Decision-Making Module has at its disposal a collection of Bayesian networks 

developed with the Hugin GUI. For each decision-making scenario there exists a collection of 

Bayesian networks that can be deployed depending on context and message type. The Bayesian 

networks are accessed by the Hugin API for Java. The Java API for the Hugin Decision Engine 

offers a comprehensive array of methods for creating and accessing Bayesian networks. All of 

the Bayesian networks utilised by MediaHub were developed with the Hugin GUI and are 

if(intX >= xFrom && intX <= xTo && intY >= yFrom &&  intY <= yTo){ 
 
//retrieve the office number and occupant name 
 
String strOfficeNo = ((Element)offices.get(x1)) 
                         .getChild("ID").getText();  
 
String strOccupantName = ((Element)offices.get(x1)) .getChild("Person") 
                           .getChild("FirstName").g etText(); 
 
String strOccupantGender = ((Element)offices.get(x1 )).getChild("Person") 
                           .getChild("Gender").getT ext(); 
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opened, supplied with evidence (or input), and run by the Decision-Making Module in 

MediaHub.  

5.3. Semantic representation and storage 
MediaHub generates and interprets semantic representations of multimodal input/output data to 

support the fusion and synchronisation of multimodal data. MediaHub’s Dialogue Manager 

receives marked up multimodal semantics in XML format which is parsed for data to support 

decision-making. The accuracy and completeness of XML semantics is checked by Document 

Type Definitions (DTDs), as discussed in Section 5.2.1. XML was chosen due to its 

compatibility with Java, its portability and the fact that it is easily extensible. Portability is 

important so that MediaHub can be integrated with existing multimodal systems that are 

deployed on different operating systems. The extensibility of XML affords flexibility in dealing 

with the varied and complex nature of multimodal semantics. Additionally, XML is a standard 

mark-up language used extensively for semantic representation within multimodal systems. 

XML is therefore deemed a practical choice for MediaHub which aims to be easily integrated 

with existing multimodal systems.  

Multimodal systems frequently use a shared space, or blackboard, to maintain a record of 

dialogue history. The blackboard keeps track of all interactions over time so that semantic 

information on dialogue history may be accessed to perform more intelligent decision-making. 

MediaHub has a whiteboard, as discussed in Section 5.2.2, to maintain a history of all messages 

passed within MediaHub. Psyclone’s whiteboards enable heterogeneous systems, hosted on 

different computers, to be connected together. The whiteboards in Psyclone effectively act as 

publish/subscribe servers. Information is both posted to, and dispatched from, the whiteboard to 

all modules subscribed to that type of information. The semantics of all multimodal 

input/output data is stored on MediaHub Whiteboard and is accessible at later stages of a 

multimodal dialogue, i.e., dialogue history is maintained on MediaHub Whiteboard.  

5.4. Distributed processing with Psyclone 
The nature of multimodal systems means that inputs to the decision-making process will 

typically arrive at different times from various distributed recognition and interpretation 

modules. The hub of a multimodal system must be capable of performing distributed 

processing, i.e., receiving input from the various system modules and routing this information 

to the appropriate destination modules within the system. Psyclone facilitates distributed 

processing in MediaHub. The architecture of Psyclone is shown in Figure 5.5. When Psyclone 

is invoked, it first reads the psySpec as shown by step (1) in Figure 5.5. Then, any internal or 

external modules are invoked, such as speech recognition (2) and computer graphics (3). 
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Psyclone then sets up appropriate subscription mechanisms for the modules and can be 

configured to automatically invoke other Psyclone servers as indicated by step (4). Step (4), a 

powerful feature of Psyclone, was not utilised in the current implementation of MediaHub. 

Psyclone is invoked with an executable file stored in MediaHub’s working directory. Deploying 

the psyclone.exe file launches Psyclone which automatically initialises MediaHub’s modules, as 

shown in Figure 5.6. Messages posted to MediaHub Whiteboard are automatically routed to the 

appropriate modules based on a dot-delimited message type. OpenAIR (Mindmakers 2009; 

Thórisson et al. 2005), implemented within Psyclone, is a communication protocol based on a 

publish-subscribe system architecture and is the protocol for communication within MediaHub.  

 

Figure 5.5: Architecture of Psyclone (Thórisson et al. 2005) 

 

Figure 5.6: Psyclone running in command window 

5.4.1. MediaHub’s psySpec 
Psyclone has a central XML specification file (psySpec) for defining the setup of all system 

modules. The functionality of Psyclone’s psySpec was discussed in Section 5.2.2. Although the 
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psySpec can set a number of advanced configuration options, MediaHub’s psySpec primarily 

starts MediaHub Whiteboard and registers modules to receive, or be triggered by, messages of a 

certain type. A module is subscribed to messages of a certain type with the type attribute of the 

<trigger>  tag in the psySpec. A segment of MediaHub’s psySpec is shown in Figure 5.7. 

 

Figure 5.7: Segment of MediaHub’s psySpec.XML file 

As shown in Figure 5.7, the Domain Model is registered to be triggered by messages of certain 

types with the <trigger>  tag. Also included in the psySpec configuration of the Domain Model 

is the operating system type and a Java command to automatically invoke the module. Note that 

the host value is typically localhost and the default port is 10000 if not specified. The from 

attribute of the <triggers> tag defines the module that can send a message to the Domain 

Model. In this case, a message from any module can trigger the Domain Model, provided it is of 

a message type listed in the psySpec. The allowselftriggering tag here stops the Domain Model 

from being triggered by messages it has posted itself to MediaHub Whiteboard.  

5.4.2. JavaAIRPlugs 
Note that it is possible to override the settings specified in the psySpec. For example, a module 

can be registered to receive messages of a certain type at run time with a JavaAIRPlug 

connected to Psyclone. The Java code which makes a connection to Psyclone with a 

JavaAirPlug is shown in Figure 5.8. 

 

Figure 5.8: Java code for establishing a connection to Psyclone 

 plugDMM = new JavaAIRPlug("DMM", host, port); 
         
if (!plugDMM.init()) { 
  System.out.println("Could not connect to the Serv er on " + host  
  + " on port " + port + "..."); 
   System.exit(0); 
        } 
         
 System.out.println("Connected to the Server on " +  host + 
                " on port " + port + "...");   
} 

<module name="DomainModel">  
<description>Used to access domain-specific informa tion</description> 
 <executable name="DomainModel" consoleoutput="yes" > 
 <sys ostype="Win32"> 
 java -cp .;JavaOpenAIR.jar DomainModel psyclone=%h ost%:%port%  
  name=%name% 
 </sys> 
 </executable> 
 <spec> 
    <triggers from="any" allowselftriggering="no"> 
  <trigger type="MediaHub.shutdown"/> 
       <trigger type="building.query.office.occupan t.intdoc"/> 
       <trigger type=" cinema . request . reservation .int doc"/>  
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Once the connection to Psyclone has been established, the JavaAIRPlug then posts messages to, 

and retrieve messages from, MediaHub Whiteboard.  

5.4.3. psyProbe 
Psyclone enables developers to ‘see inside the system’ at run-time through a web-based 

interface called a psyProbe. A psyProbe is a built-in monitoring system that enables developers 

to monitor all activities of the system. Figure 5.9 shows the psyProbe viewing the messages 

posted to MediaHub Whiteboard.  

 

Figure 5.9: Viewing messages on MediaHub Whiteboard with psyProbe 

psyProbe defaults to port 10000 of localhost and is usually accessed by browsing 

http://localhost:10000. A Psyclone server running on another machine can be accessed over the 

network by browsing http://machine:10000, where machine is the name of the computer 

running Psyclone. psyProbe can facilitate viewing time-stamped information on MediaHub 

Whiteboard and the content of individual messages with a standard web browser.  

5.4.4. Psyclone contexts 
Contexts in Psyclone are globally announced system states that manage the runtime behaviour 

of a system’s modules. MediaHub’s modules are context-driven in that they are only active 

when a certain context is active. MediaHub’s modules primarily operate in the default context 

of Psyclone.System.Ready. Each of the modules in Psyclone is assigned at least one context and 

the module will not run until one of its contexts becomes true. Contexts enable individual 

modules to change their behaviour to meet the overall requirements of the system. Modules can 
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be configured to perform different tasks in different contexts, thus reducing the number of 

separate modules that a system will need to implement. 

5.5. Decision-making layers in MediaHub 
The granularity of the decision-making necessary in a multimodal system varies considerably 

across different application domains. MediaHub implements a five layer approach in order to 

increase the resolution of its decision-making. The five layers of decision-making are illustrated 

in Figure 5.10.  

 
 

Figure 5.10: MediaHub’s five decision-making layers 

Layer 1 represents the decisions undertaken when MediaHub initialises. This type of decision-

making is performed when Psyclone reads the psySpec.XML configuration file, as discussed in 

Section 5.4.1. Decisions in Layer 1 relate to determining what modules in MediaHub should 

receive which message types when the messages are posted to MediaHub Whiteboard. The 

psySpec can also set the context in which a module becomes active.  

 The second layer of decision-making analyses message types of received messages to 

determine their purpose and apply appropriate processing. Message types in MediaHub are dot-

delimited strings that indicate the purpose of the message. The second layer is the most 

commonly used layer of decision-making in MediaHub since it facilitates all decisions across 
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all application domains, regardless of whether or not Bayesian decision-making is applied. A 

collection of MediaHub message types is given in Appendix B. 

 The third layer of decision-making shown in Figure 5.10 is that performed with 

Document Type Definitions (DTDs). DTDs, as discussed in Section 5.2.1, are used by 

MediaHub modules to check: (1) that the XML received is syntactically correct and (2) that all 

the required information, e.g., semantics of speech, deictic gesture, eye-gaze, has been received 

at a particular stage in the decision-making. 

 The fourth layer of decision-making in MediaHub is the Bayesian networks layer. This 

is the layer concerned with the resolution of uncertainty and ambiguity in multimodal decision-

making. It is this layer that deploys Bayesian networks to represent the cause-effect relations 

inherently present in multimodal decision-making. Note that ambiguity or uncertainty is not 

always present in multimodal decision-making and therefore Bayesian networks are only 

applied within MediaHub when they are deemed necessary. 

 The final layer of decision-making in MediaHub addresses rule-based decisions. This 

layer involves decisions at various stages of processing, e.g., what to do if the message type is 

of the form x.y.z, which DTD to check an XML segment against, how to proceed if a check 

against a DTD fails, how to interpret the results from a Bayesian network and how to proceed 

based on the results read from a Bayesian network.  

It should be noted that the layers shown in Figure 5.10 are not mutually exclusive but 

interleave with each other. It is possible that all layers can contribute to a given decision. For 

example, a message may be automatically delivered to the Decision-making Module based on 

the triggering information in the psySpec read by Psyclone (i.e. Layer 1) and, depending on its 

message type (i.e. Layer 2), the XML contents may be checked against a particular DTD to 

ensure all the relevant information has been received (i.e. Layer 3). Then, based on the message 

type and/or semantic content, an appropriate Bayesian network can be invoked for a particular 

application domain (i.e. Layer 4). Finally, the result of running the Bayesian network can be 

interpreted with rule-based decision-making (i.e. Layer 5). An example rule is: if the confidence 

of the state of a certain node is greater than 60%, then perform a certain action and, if it is less 

than 60%, ask for clarification from the user. 

5.6. Bayesian decision-making using Hugin 
MediaHub deploys Hugin to perform Bayesian decision-making over multimodal data. The 

Hugin software tools, consisting of the Hugin Graphical User Interface (GUI) and the Hugin 

Decision Engine or inference engine, enable the implementation of Bayesian networks as 

Causal Probabilistic Networks (CPNs). The functionality of the Hugin Decision Engine, or 
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inference engine, is accessed through a set of Application Programming Interfaces (APIs) or 

through the Hugin GUI. MediaHub uses Hugin’s Java API to access Bayesian networks for 

different application domains constructed using the Hugin GUI.  

5.6.1. Hugin GUI 
Bayesian networks for MediaHub are developed with the Hugin GUI and the API for Java 

opens, supplies evidence to, and runs the networks at run-time. The Hugin GUI, in run mode, is 

shown in Figure 5.11. The right pane of Figure 5.11 shows the Bayesian network, while the left 

pane shows the probabilities for all states of each of the nodes. It is possible to add evidence to 

the network by clicking on the input nodes in the left pane. The Hugin Decision Engine then 

automatically recalculates the new conditional probabilities for each of the nodes in the 

Bayesian network. The Hugin GUI is thus an invaluable tool for constructing and tuning a 

Bayesian network. When the iterative design process of a network has been completed, Java 

code is then written to open and run the network through the Hugin API.  

 

Figure 5.11: Hugin Graphical User Interface (GUI) 

5.6.2. Documentation of Bayesian networks 
The Hugin GUI offers a useful feature that enables automatic generation of HTML 

documentation for Bayesian networks developed with the GUI. Provided a description has been 

given for each of the states and nodes of a Bayesian network, the generated document provides 

a concise summary of all nodes in the Bayesian network and the relationships between them. 

The generation of documentation can be accessed by selecting Network | Generate 

Documentation in the Hugin GUI. Doing so allows the developer to save a HTML file 

containing documentation of the current Bayesian network. Appendix C shows an example of 
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HTML documentation automatically generated for a Bayesian network implemented in 

MediaHub.  

5.6.3. Use of Hugin API (Java) 
This section discusses the use of the Hugin API (Java) to access Bayesian networks developed 

with the Hugin GUI. 

Accessing Bayesian networks 

The following code creates a new domain and opens an existing Bayesian network with the 

Hugin API for Java: 

 

For example, the following code opens a Bayesian network called CinemaTicketReservation in 

the cinema ticket reservation domain: 

 

Since Bayesian networks are developed with the Hugin GUI, names of nodes in these networks are 

already defined and the following syntax accesses a node by its name:  

The following line of code accesses the EyeGaze node of the CinemaTicketReservation Bayesian 

network: 

 

Supplying evidence 

There are two steps involved in supplying evidence to a Bayesian network with the Hugin API: 

(1) retrieve the conditional probability table (CPT) for the node and (2) enter evidence to the 

states of the node. The following segment of code retrieves the CPT of a node in a Bayesian 

network: 

 

Hence, the following line of code gets the CPT of the EyeGaze node of a Bayesian network: 

 
table = EyeGaze.getTable(); 

[Table Name]  = [N odeName] .getTable(); 

LabelledDCNode EyeGaze = (LabelledDCNode) domain.ge tNodeByName ("EyeGaze");  

Domain domain = new Domain ("CinemaTicketReservatio n.net", new 

DefaultClassParseListener());   

domain.openLogFile("CinemaTicketReservation" + ".lo g"); 

Domain domain = new Domain (" [Filename]. net", new  

DefaultClassParseListener());   

domain.openLogFile(" [Filename]."  + ".log"); 

LabelledDCNode [Node Name]  = (LabelledDCNode) domain.getNodeByName  
(" [Node Name] "); 
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The following syntax enters evidence on the node of a Bayesian network: 

 

Note that states are numbered from 0, so the first state of a node has an index of 0, the second 

has an index of 1 and so on. The EyeGaze node in the CinemaTicketReservation Bayesian 

network has four states: First, Second, Third and Fourth that indicate which film on the list an 

eye-gaze tracking module believes the user is looking at. The following segment of code enters 

65%, 25%, 5% and 5% on the First, Second, Third and Fourth states of the EyeGaze node: 

 

The following code propagates the evidence and calculates updated beliefs for all the nodes in 

the Bayesian network: 

 

Note that triangulation is the process of converting a graph of a domain into a triangulated 

graph. The triangulated graph forms the basis for the construction of the JunctionTree of the 

Domain. In this example, H_TM_FILL_IN_WEIGHT is the specified triangulation method. The 

propagate method propagates the evidence through the domain and has the equilibrium and 

evidence mode parameters, Domain.H_EQUILIBRIUM_SUM, representing the sum 

equilibrium state, and Domain.H_EVIDENCE_MODE_NORMAL, representing the normal 

mode for propagating evidence in Hugin.  

Reading updated beliefs 

On propagation of evidence in a Bayesian network the following syntax reads the updated 

beliefs of the states of a node: 

 

The following segment of code reads the four states of the ChosenMovie node of the 

CinemaTicketReservation Bayesian network: 

 

first = ChosenMovie.getBelief(0); 
second = ChosenMovie.getBelief(1); 
third = ChosenMovie.getBelief(2); 
fourth = ChosenMovie.getBelief(3);  

 

[Variable Name]   = [Node Name] .getBelief([ State Number] ); 

domain.triangulate(Domain.H_TM_FILL_IN_WEIGHT); 
 
domain.compile(); 
 
domain.propagate(Domain.H_EQUILIBRIUM_SUM, Domain.H _EVIDENCE_MODE_NORMAL); 

EyeGaze.enterFinding(0, 0.65); 
EyeGaze.enterFinding(1, 0.25); 
EyeGaze.enterFinding(2, 0.05); 
EyeGaze.enterFinding(3, 0.05); 

[Table Name] .  enterFinding ( [State Number] , [Probability Value] );  
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Saving a Bayesian network 

The code below saves a network: 

 

The following line of code saves the CinemaTicketReservation Bayesian network in the cinema 

ticket reservation domain: 

 

5.7. Example decision-making scenarios in MediaHub 
In order to demonstrate MediaHub’s approach to decision-making, a number of scenarios are 

considered that address the key problems of anaphora resolution, domain knowledge awareness, 

multimodal presentation, turn-taking, dialogue act recognition and parametric learning with 

application domains of building data, cinema ticket reservation, in-car safety, intelligent agents 

and emotional state recognition. The nature of the decision-making in each of these problems 

demonstrates various capabilities of MediaHub. 

5.7.1. Anaphora resolution 
This example focuses on anaphora resolution in MediaHub using dialogue history. Consider the 

following sequence of turns taken from a dialogue between a user and an intelligent ‘building 

data’ system: 

1 U: Whose office is this [�]?   

2 S: That is Paul’s office.  

3 U: Ok. Whose office is that [�]?   

4 S: That’s Sheila’s office. 

5 U: Show me the route from her office to this [�] office. 

Note that, in turns 1, 3 and 5, it is necessary to use domain-specific information to determine 

which offices the user is referring to. Additionally, in turn 5, it is necessary to use dialogue 

history to determine who ‘her’ refers to. An extract from the Domain Model is shown in Figure 

5.12. Note that each office or room has a set of X-Y coordinates that define its boundary on a 2D 

building plan. To illustrate MediaHub’s approach to resolving this ambiguity, we can look 

closer at turns 1, 3 and 5 of the example dialogue and describe the corresponding actions taken 

within MediaHub. Semantic representations relating to turn 1 are packaged in two XML 

segments: (1) an XML segment containing the semantics of the speech input and (2) an XML 

segment containing the semantics of the deictic gesture, i.e., the coordinates of the pointing 

gesture. The semantics of the speech input is shown in Figure 5.13. 

domain.saveAsNet("CinemaTicketReservation.net");  

domain.saveAsNet(" [File name] ");  
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Figure 5.12: Domain Model XML file for ‘anaphora resolution’ 

 

Figure 5.13: Semantics of speech input for ‘anaphora resolution’ 

The semantics of the speech input is posted from the Dialogue Manager to MediaHub 

Whiteboard in a message of the following type: 

 building.query.office.occupant.speech.input 

<speech> 
 <stype>query-partial</stype> 
 <category>Who</category> 
 <subject>office</subject> 
 <stimestamp>10345</stimestamp> 
</speech> 

<?xml version="1.0"?> 
<!DOCTYPE Offices SYSTEM 
"C:\Psyclone2\DomainModel\BuildingInformation.dtd"
>  
<Offices> 
 <Office>  
     <ID>MG221</ID> 
      <Person> 
     <FirstName>Paul</FirstName> 
    <Surname>McKevitt</Surname> 
        <Gender>Male</Gender> 
      </Person> 
   <Coordinates> 
    <From>  
   <X>1100</X> 
   <Y>2150</Y> 
    </From> 
  <To>  
   <X>1311</X> 
   <Y>2323</Y> 
  </To> 
 </Coordinates> 
 </Office> 
 <Office>  
     <ID>MG203</ID> 
     <Person> 
      <FirstName>Sheila</FirstName> 
      <Surname>McCarthy</Surname> 
      <Gender>Female</Gender> 
 </Person> 
    <Coordinates> 
  <From>  
   <X>1400</X> 
   <Y>5300</Y> 
  </From> 
  <To>  
   <X>1525</X> 
   <Y>5500</Y> 
  </To> 
 </Coordinates> 
</Office> 
</Offices> 
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The posting of the speech input using Psyclone psyProbe is shown in Figure 5.14. 

 

Figure 5.14: Use of Psyclone psyProbe for ‘anaphora resolution’ 

The corresponding semantics of the deictic gesture, shown in Figure 5.15, is posted from the 

Dialogue Manager to MediaHub Whiteboard in a message of type: 

building.query.office.occupant.gesture.deictic.input 

 

Figure 5.15: Semantics of deictic gesture for ‘anaphora resolution’ 

MediaHub Whiteboard is configured to automatically route messages of type building.query*5 

to the Decision-making Module. This configuration is implemented in the PsySpec.XML file 

which configures Psyclone, and hence MediaHub Whiteboard, at initialisation. The segment of 

XML enabling this is shown in Figure 5.16. 

                                                 
 
5 The asterisk here acts as a wildcard. 

<gesture> 
 <gtype>pointing</gtype> 
 <coordinates>  
  <x>1155</x> 
  <y>2234</y> 
 </coordinates>  
 <gtimestamp>10312</gtimestamp> 
</gesture> 
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Figure 5.16: Segment of PsySpec.XML configuring MediaHub Whiteboard 

When the speech segment is received in the Decision-making Module, an if-else statement 

identifies the purpose of the message. The XML content is then retrieved, as shown in Figure 

5.17. 

 

Figure 5.17: Segment of if-else statement in Decision-Making Module 

If the corresponding gesture input has been received, this is appended to the speech segment to 

form an integration document (IntDoc) that is stored in a string variable called strIntDoc (see 

Figure 5.18). This new XML segment is then checked against a Document Type Definition 

(DTD), SpeechGesture.DTD, which checks if all the required information is present in the 

XML segment. The DTD for this example is shown in Figure 5.19. If the check against 

SpeechGesture.DTD returns no errors, the integration document is packaged in a message and 

posted to MediaHub Whiteboard as follows: 

Domain Model 

The Domain Model is configured to receive all messages of type 

building.query.office.occupant.intdoc. Again, this triggering is configured in the PsySpec.XML 

file. Note that, if the corresponding deictic gesture has not been received, the check against 

SpeechGesture.DTD fails and the Decision-Making Module continues to wait for the gesture 

input. Again, an if-else statement in the Domain Model applies appropriate processing to the 

XML integration document. The X and Y coordinates of the deictic gesture are then extracted 

from the XML, as shown in Figure 5.20. 

… 
<module name="DMM"> 
… 
<spec> 
… 
   <triggers from="any" allowselftriggering="no"> 
 <trigger type="building.query*"/> 
 <trigger type="MediaHub.shutdown"/> 
   </triggers> 
 <posts> 
   <post to="MediaHub_Whiteboard" type="dmm.registe r"/> 
 </posts> 
</spec> 
… 

boolean posted = plugDMM.postMessage("MediaHub_Whit eboard","building.query 
                 .office.occupant.intdoc", strIntDo c, "English", "");  

 else if (strMsgType.equals(" building.query.office.occupant.speech.input ")) 
{     
    strSpeechPart = retrievedMsg.content; //retriev e speech semantics 
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Figure 5.18: Checking XML segment against a Document Type Definition 

 

 

Figure 5.19: SpeechGesture.DTD for ‘anaphora resolution’ 

 

 

Figure 5.20: Extracting coordinates from XML Integration Document 

A similar approach opens and parses the BuildingData.XML file, before checking which two 

offices the coordinates relate to. The X and Y coordinates of each office in the building are 

selected with the code given in Figure 5.21. 

<!-- speech and gesture can be in any order--> 
<!ELEMENT multimodal ((speech, gesture)| (gesture, speech))> 
<!ELEMENT speech (stype, category, subject, stimest amp)> 
<!ELEMENT stype (#PCDATA)> 
<!ELEMENT category (#PCDATA)> 
<!ELEMENT subject (#PCDATA)> 
<!ELEMENT stimestamp (#PCDATA)> 
<!ELEMENT gesture (gtype, coordinates, gtimestamp)>  
<!ELEMENT gtype (#PCDATA)> 
<!ELEMENT coordinates (x, y)> 
<!ELEMENT x (#PCDATA)> 
<!ELEMENT y (#PCDATA)> 
<!ELEMENT gtimestamp (#PCDATA)>                                                            

//convert the string to an xml document 
doc = builder.build(new InputSource(new StringReade r(strIntDoc))); 
             
List allChildren = rootElement.getChildren();             
 //Get the x coordinates of pointing gesture 
 String strX = ((Element)allChildren.get(1)).getChi ld("coordinates") 
                .getChild("x").getText(); 
 int intX = Integer.parseInt(strX); 
             
//Get the x coordinates of pointing gesture 
String strY = ((Element)allChildren.get(1)).getChil d("coordinates") 
               .getChild("y").getText(); 
int intY = Integer.parseInt(strY);             

strSpeechGestureDTD = "\u003C!DOCTYPE multimodal SY STEM 
\"C:/Psyclone2/DomainModel/SpeechGesture.dtd\"\u003 E"; 
   
  if(strGesturePart != null){ 
  strIntDoc = strSpeechGestureDTD + strSpeechPart +  strGesturePart; 
  } 
 else 
      strIntDoc = strSpeechPart;  
      System.out.println(strIntDoc); 
   
      SAXBuilder builder = new SAXBuilder(true); 
      Document doc; 
      try { 
    //convert the string to an xml document 
    doc = builder.build(new InputSource(new 
StringReader(strIntDoc))); 
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Figure 5.21:  Extraction of coordinates for each office 

Then, each set of coordinates is compared against the coordinates contained in the semantics. 

When a match has been found, the office ID and the name and gender of its occupant are 

extracted as shown in Figure 5.22. A replenished document (RepDoc) is then created containing 

this information and is forwarded to the Dialogue Manager via MediaHub Whiteboard. The 

RepDoc is now replenished with the data necessary for turn 2 of the dialogue. A segment of the 

RepDoc, containing the new data, is shown in Figure 5.23.  

 

Figure 5.22: Parsing Domain Model for ‘anaphora resolution’ 

 

Figure 5.23: Segment of Replenished Document (RepDoc) 

The RepDoc is posted to MediaHub Whiteboard with the following message type: 
 
building.query.office.occupant.repdoc 
 

... 
<gender>Male</gender> 
<occupant>Paul</occupant> 
<tts>That's Paul's office.</tts> 
... 

if(intX >= xFrom && intX <= xTo && intY >= yFrom &&  intY <= yTo){ 
                 
// Get the office ID 
String strOfficeNo = ((Element)offices.get(x1)).get Child("ID").getText(); 
 
// Get the name of occupant 
String strOccupantName = 
((Element)offices.get(x1)).getChild("Person").getCh ild("FirstName").getText(); 
 
// Get the gender of occupant 
String strOccupantGender = 
((Element)offices.get(x1)).getChild("Person" ).getChild("Gender").getText();  

for(x1 = 0; x1 < intElementCount; x1++ ) 
           { 
int xFrom = 
Integer.parseInt(((Element)offices.get(x1)).getChil d("Coordinates")
.getChild("From").getChild("X").getText()); 

 
int xTo = 
Integer.parseInt(((Element)offices.get(x1)).getChil d("Coordinates")
.getChild("To").getChild("X").getText()); 
 
int yFrom = 
Integer.parseInt(((Element)offices.get(x1)).getChil d("Coordinates")
.getChild("From").getChild("Y").getText()); 
 
int yTo = 
Integer.parseInt(((Element)offices.get(x1)).getChil d("Coordinates")
.getChild("To").getChild("Y").getText()); 
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All messages of type *repdoc are automatically routed to the Dialogue Manager. Turn 3 of the 

example ‘building data’ dialogue is dealt with in exactly the same manner as turn 1. 

Dialogue History 

In order to respond to turn 5 (“Show me the route from her office to this [�] office.”) 

MediaHub must access dialogue history on MediaHub Whiteboard to determine who the user is 

referring to by uttering the word ‘her’. Here the gender of the occupant is relevant and, before 

the speech semantics can be combined with the semantics of the corresponding deictic gesture, 

the speech segment (see Figure 5.24) is checked against a different DTD, namely 

SpeechGender.DTD. 

 

Figure 5.24: Speech segment for turn 5 of ‘anaphora resolution’ 

The request for dialogue history is packaged in a new type of MediaHub XML document called 

History Document (HisDoc) and this XML document is stored in a string variable called 

strHisDoc. As with all XML segments passed within MediaHub, the HisDoc is converted back 

into an XML document for parsing. In the Decision-Making Module, the History class is called 

with two parameters: (1) QueryType contains either Building.Occupant.Male or 

Building.Occupant.Female depending on gender and (2) strSpeechFrom which contains the 

relevant XML speech segment. The code which invokes the History class is shown in Figure 

5.25.  

 

Figure 5.25: Retrieval of dialogue history from MediaHub Whiteboard 

Checking MediaHub Whiteboard in the History class 

In the History class the last three messages of type building.occupant.hisdoc are retrieved from 

MediaHub Whiteboard as shown in Figure 5.26. Next, the contents of each message is 

converted to an XML document and parsed for information, e.g., occupant name, office ID, 

else if (QueryType == "Building.Occupant.Male"){ 
  
        strXML = "<retrieve from=\"MediaHub_Whitebo ard\" 
type=\"building.occupant.hisdoc\"> <latest>3</lates t> </retrieve>"; 
        coll = plugHistory.retrieveMessages(strXML) ; 

<!DOCTYPE speech SYSTEM "C:/Psyclone2/DomainModel/S peechGender.dtd"> 
<speech> 
  <type>request-partial</type> 
  <category>show-route</category> 
  <subcategory>from-to</subcategory> 
  <subject>office</subject> 
  <gender>female</gender> 
  <stimestamp>10345</stimestamp> 
</speech> 
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gender and timestamp. The timestamp then facilitates finding the last male referred to by the 

user, as shown in Figure 5.27.  

 

Figure 5.26: Calling History class from Decision-Making Module 

 

Figure 5.27: Finding the last male referred to in a dialogue 

When the last male referred to in the dialogue has been identified, this information is 

repackaged in an XML speech segment as shown in Figure 5.28. 

 

Figure 5.28: Repackaging speech segment in the History class 

The speech segment in Figure 5.24 is then posted to MediaHub Whiteboard with the single line 

of code shown in Figure 5.29. 

 

Figure 5.29: Posting speech segment from the History class to MediaHub Whiteboard 

boolean posted = plugHistory.postMessage("MediaHub_ Whiteboard","building 
     .request.route.speech.from.office", strSpeechP art, "English", ""); 

strHeader = "<multimodal><speech><stype>query-route partial</stype> 
<category>from-to</category><subject>from-office</s ubject>"; 
     strNameTag = "<from-occupant>" + lastMale + "< /from-occupant>"; 
     strOfficeNoTag = "<no>" + lastOfficeNo + "</no >"; 
     strGenderTag = "<gender>male</gender>"; 
     strTimestampTag = "<stimestamp>" + strLatestTi mestamp + 
     "</stimestamp>"; strFooter = "</speech>"; 
          
strSpeechPart = strHeader + strNameTag + strOfficeN oTag + strGenderTag + 
strTimestampTag + strFooter; 

if(strGender.equals("Male")){           
   if(timestamp > latest){ 
       latest = timestamp; 
       strLatestTimestamp = strTimestamp; 
       lastMale = strName;    
       lastOfficeNo = strOfficeNo; 
        }  

if(strGender.equals("male")){ 
        QueryType = "Building.Occupant.Male"; 
        
        strSpeechFrom = retrievedMsg.content; 
         
        new History(QueryType, strSpeechFrom);       
        } 
 
else if(strGender.equals("female")){ 
          QueryType = "Building.Occupant.Female"; 
        
        strSpeechFrom = retrievedMsg.content; 
         
        new History(QueryType, strSpeechFrom);           
        }  
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This message is automatically routed, based on its message type, to the Decision-Making 

Module which then waits for the corresponding deictic gesture. This is performed in exactly the 

same manner as before at turn 1 by checking the IntDoc against a Document Type Definition – 

a check that will only succeed when all the required information, i.e., semantics of speech and 

deictic gesture, is present. 

 This anaphora resolution example has focused on distributed processing and the 

resolution of internal ambiguity using dialogue history on MediaHub Whiteboard. In this 

example it was not necessary to utilise Bayesian decision-making. The next example focuses on 

the use of the Domain Model to support multimodal decision-making in MediaHub. 

5.7.2. Domain knowledge awareness 
Consider domain knowledge awareness in a multimodal system for booking cinema tickets. The 

system presents a list of four films to the user who selects the desired film with speech and eye-

gaze input. Figure 5.30 shows the Bayesian network, called CinemaTicketReservation, for this 

example.  

 

Figure 5.30: Bayesian network for ‘domain knowledge awareness’ 

The Bayesian network in Figure 5.30 has one node, ChosenMovie, which has influence over 

four other nodes, namely Watch, MoreDetail, StartTime and EyeGaze. All nodes have the states 

first, second, third and fourth, which relate to a list of four movies that are currently showing at 

the cinema complex. The Watch node represents the belief, based on speech input, that the user 

wants to reserve tickets for a movie on the list. The MoreDetail node represents the fact that the 
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user has previously asked for more information on the first, second, third and fourth movies on 

the list. The MoreDetail node accepts hard, or instantiation, evidence, i.e., either the user has 

asked for more details (indicated by 1) or not (indicated by 0). Unity on one or more states of 

the MoreDetail node indicates that the user has previously acquired more information about the 

movie.  

MediaHub checks the dialogue history on MediaHub Whiteboard to determine if the 

user has previously requested more information about a particular movie. The StartTime node, 

again contains hard evidence, and represents the certain belief that the user has, or has not, 

enquired about the start time of a movie. The EyeGaze node represents the belief that that user 

is looking at each movie on the list based on input from a gaze-tracking module. The EyeGaze 

and Watch nodes primarily have soft, or likelihood, evidence applied (e.g., 0.1, 0.45, 0.67).   

Document Type Definition (DTD) 

Two of the input nodes, MoreDetail and StartTime, in the Bayesian network shown in Figure 

5.29 are populated following a query of MediaHub Whiteboard to establish whether or not the 

user had inquired about the start time or asked for more information about any of the movies. 

Note that information on all nodes is mandatory and this is reflected in the Document Type 

Definition (DTD) shown in Figure 5.31. As the speech, eye-gaze and dialogue history segments 

arrive in the Decision-Making Module, they are appended to an integration document (IntDoc). 

The IntDoc is checked against the CinemaTicketReservation DTD after each relevant input is 

received in the Decision-Making Module. As discussed in Section 5.7.1, the check against the 

DTD will not succeed until all the required information is present. When all the required 

information has been received, the IntDoc contains all the parameters to be supplied to the 

Bayesian network as shown in Figure 5.32. The IntDoc is then posted to MediaHub 

Whiteboard, which automatically delivers it to the Domain Model to be replenished with 

domain-specific information, i.e., the titles of the first, second, third and fourth movies in the 

list and the movie that is believed to be the focus of the user’s eye-gaze. In this example, the 

Domain Model accesses domain-specific information from the MoviesCurrentlyShowing.XML 

file. This file contains a list of movies currently being shown, including their title, the start time, 

a link to a .wav file containing more information, a value indicating their position in the list and 

their coordinates on the display. A segment of this XML file is shown in Figure 5.33 and its 

corresponding DTD file is shown in Figure 5.34. 
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Figure 5.31: DTD for ‘domain knowledge awareness’ 

 

Figure 5.32: Complete IntDoc for ‘domain knowledge awareness’ 

<!DOCTYPE multimodal SYSTEM 
"C:/Psyclone2/DomainModel/CinemaTicketReservation.d td"> 
<multimodal> 
<Speech> 
      <sType>request</sType> 
      <category>reservation</category> 
      <subject>movie</subject> 
      <sTimestamp>10354</sTimestamp> 
</Speech> 
<MoreDetail> 
      <mdFirst>1.0</mdFirst> 
      <mdSecond>0.0</mdSecond> 
      <mdThird>0.0</mdThird> 
      <mdFourth>0.0</mdFourth> 
</MoreDetail> 
<StartTime> 
      <stFirst>1.0</stFirst> 
      <stSecond>0.0</stSecond> 
      <stThird>0.0</stThird> 
      <stFourth>0.0</stFourth> 
</StartTime> 
<EyeGaze> 
      <coordinates>  
            <x>1155</x> 
            <y>2234</y> 
      </coordinates>  
      <gTimestamp>10312</gTimestamp> 
</EyeGaze> 
</multimodal>  

<!ELEMENT cinemaTicketReservation (speech, eyeGaze,  moreDetail, startTime)> 
<!ELEMENT speech (sFirst, sSecond, sThird, sFourth,  sTimestamp)> 
<!ELEMENT sFirst (#PCDATA)> 
<!ELEMENT sSecond (#PCDATA)> 
<!ELEMENT sThird (#PCDATA)> 
<!ELEMENT sFourth (#PCDATA)> 
<!ELEMENT sTimestamp (#PCDATA)> 
<!ELEMENT eyeGaze (coordinates, belief, eTimestamp) > 
<!ELEMENT coordinates (x, y)> 
<!ELEMENT x (#PCDATA)> 
<!ELEMENT y (#PCDATA)> 
<!ELEMENT belief (#PCDATA)> 
<!ELEMENT eTimestamp (#PCDATA)> 
<!ELEMENT moreDetail (mFirst, mSecond, mThird, mFou rth, mTimestamp)> 
<!ELEMENT mFirst (#PCDATA)> 
<!ELEMENT mSecond (#PCDATA)> 
<!ELEMENT mThird (#PCDATA)> 
<!ELEMENT mFourth (#PCDATA)> 
<!ELEMENT mTimestamp (#PCDATA)> 
<!ELEMENT startTime (stFirst, stSecond, stThird, st Fourth, stTimestamp)> 
<!ELEMENT stFirst (#PCDATA)> 
<!ELEMENT stSecond (#PCDATA)> 
<!ELEMENT stThird (#PCDATA)> 
<!ELEMENT stFourth (#PCDATA)> 
<!ELEMENT stTimestamp (#PCDATA)><!ELEMENT gTimestam p (#PCDATA)> 
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Figure 5.33: Domain-specific information for ‘domain knowledge awareness’ 

 

Figure 5.34: DTD for ‘domain knowledge awareness’ 

In the Domain Model, the IntDoc is first parsed for the coordinates of the user’s eye-gaze. 

These are then checked against the position coordinates of each of the movies in the 

MoviesCurrentlyShowing.XML file using the code in Figure 5.35. When a match has been 

found the contents of the following XML tags are read: 

<!ELEMENT movies (movie+)> 
<!ELEMENT movie (title, starttime, moredetails, no,  coordinates)> 
<!ELEMENT title (#PCDATA)> 
<!ELEMENT starttime (#PCDATA)> 
<!ELEMENT moredetails (#PCDATA)> 
<!ELEMENT no (#PCDATA)> 
<!ELEMENT coordinates (x,y)> 
<!ELEMENT x (from, to)> 
<!ELEMENT y (from, to)> 
<!ELEMENT from (#PCDATA)> 
<!ELEMENT to (#PCDATA)> 

<?xml version="1.0"?> 
<!DOCTYPE movies SYSTEM "C:\Psyclone2\DomainModel\M oviesCurrentlyShowing.dtd">  
<movies> 
  <movie>  
 <title>The Whole Nine Yards</title> 
 <starttime>2015</starttime> 

<moredetails>"C:\Psyclone2\DomainModel\TheWholeNine YardsSummary.wav" 
</moredetails> 

 <no>1</no> 
   <coordinates> 
          <x> 
  <from>900</from> 
  <to>1200</to> 
          </x> 
          <y> 
  <from>1800</from> 
  <to>1900</to> 
     </y> 
  </coordinates>   
   </movie> 
   <movie>  
 <title>The Green Mile</title> 
 <starttime>2115</starttime> 
 <moredetails>"C:\Psyclone2\DomainModel\TheGreenMil eSummary.wav" 
      </moredetails> 
 <no>2</no> 
      <coordinates> 
          <x> 
  <from>900</from> 
  <to>1200</to> 
     </x> 
          <y> 
  <from>1600</from> 
  <to>1700</to> 
     </y> 
 </coordinates>   
    </movie> 
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• <title>  which contain the name of the movie. 

• <starttime> containing the start time in twenty-four hour format. 

• <moredetails> which contains a URL to a .wav file. 

• <no> which holds a number indicating the movie’s position in the list presented to the 

user. 

This information is then repackaged into two XML documents that are posted to MediaHub 

Whiteboard: (1) RepDoc, i.e., replenished document, which is the IntDoc instantiated with 

additional domain-specific data, i.e., the movie the user is believed to be looking at based on 

eye-gaze input, and (2) HisDoc, i.e. history document, which is a more concise document stored 

on MediaHub Whiteboard for the purpose of dialogue history retrieval (see Figure 5.36). 

 

 

Figure 5.35: Matching coordinates of eye-gaze in the Domain Model 

 

Figure 5.36: Code which posts RepDoc and HisDoc to MediaHub Whiteboard 

To conclude this example the remaining key interactions in MediaHub are as follows: 

• When the IntDoc is received in the Decision-Making Module, it is checked against 

another DTD before the domain-specific data (movie title, position in list, name of the 

movie the user is looking at) is extracted. 

// Send RepDoc to MediaHub Whiteboard 
 
boolean posted = plugDomainModel.postMessage("Media Hub_Whiteboard", 
"building.request.route.repdoc", strRepDoc, "Englis h", ""); 
 
//Send HisDoc with movie title and position in list  to Whiteboard (for  
dialogue history) 
 
boolean posted = plugDomainModel.postMessage("Media Hub_Whiteboard", 
"building.request.route.hisdoc", strHistory, "Engli sh", ""); 

// intX and intY contain the eye-gaxe coordinates f rom the IntDoc 
// xFrom, xTo, yFrom and yTo contain the coordinate  vaules in the Domain Model 
 
if(intX >= xFrom && intX <= xTo && intY >= yFrom &&  intY <= yTo){ 
 
String strMovieTitle =  
(Element)movies.get(x1)).getChild("title").getText( ); 
 
String strStartTime = 
((Element)movies.get(x1)).getChild("starttime").get Text(); 
 
String strMoreDetails = 
((Element)movies.get(x1)).getChild("moredetails").g etText(); 
 
String strNumber = ((Element)movies.get(x1)).getChi ld("no").getText(); 
}  
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• The values of each state of the Speech, MoreDetails, StartTime and EyeGaze nodes are 

read into variables.  

• The CinemaTicketReservation Bayesian network is accessed via the Hugin API. 

Evidence, contained in the variables discussed in the previous step, is applied to the 

Bayesian network. 

• The Bayesian network is run and the resulting values of the First, Second, Third and 

Fourth nodes are captured. These are posted to MediaHub Whiteboard and are then 

automatically routed to the Decision-Making Module. 

• The Decision-Making Module decides whether a conclusion can be reached or not, i.e., 

is there sufficient confidence attached to the winning hypothesis? A decision is taken 

subsequently to either confirm the booking of the identified movie or ask the user for 

clarification. 

• An XML-based representation of the required action is posted to MediaHub 

Whiteboard, where it is automatically delivered to the Dialogue Manager. 

This ‘domain knowledge awareness’ example has focused on the role of the Domain Model in 

supporting multimodal decision-making in MediaHub. This has included detail on how 

Document Type Definitions (DTDs) facilitate checking the validity of XML semantic 

representations and ensure that all the required data relating to different modalities has been 

received.  A Bayesian network represents the semantics of speech and eye-gaze input in the 

Speech and EyeGaze nodes. Dialogue history determines whether the user had previously asked 

for more information about a movie or had inquired about its start time. The semantics of this 

dialogue history information is captured in the MoreDetail and StartTime nodes of the Bayesian 

network. The actual opening, editing and running of the CinemaTicketReservation Bayesian 

network has not been explicitly discussed in this section. In the remaining examples, the focus 

is placed entirely on the implementation of Bayesian networks for decision-making in 

MediaHub. 

5.7.3. Multimodal presentation 
Consider the problem of multimodal presentation in an in-car safety system which monitors the 

driver’s steering, braking, facial expression, gaze, head movement and posture and gives a 

warning if it believes the driver is tired. The Bayesian network for this decision-making 

scenario is shown in Figure 5.37. As shown in Figure 5.37, there are four nodes that represent 

the belief that the driver is tired based on facial expression (Face), eye-gaze (EyeGaze), head 

movement (Head) and posture (Posture). Each of these multimodal nodes has the states Tired 

and Normal which represent the belief that the driver looks tired, or not, based on the modality, 
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or evidence, observed. Two nodes, Steering and Braking, monitor the driver’s behaviour. Both 

these nodes have two states: (1) Normal – representing the belief that the driver’s steering or 

braking is normal and (2) Abrupt – expressing the belief that the driver’s steering or braking is 

abrupt or harsh. 

 

Figure 5.37: Bayesian network for ‘multimodal presentation’ 

The Tired node in the Bayesian network has the states Tired and Normal. The SpeechOutput 

node has three states: (1) None – representing the belief that no action on the part of the system 

is necessary, (2) FancyBreak? – which represents the belief that the system should suggest that 

the driver takes a break and (3) Warning – representing the belief, based on the evidence 

observed, that the driver is too tired and a warning should be issued through speech output.  

The Bayesian network shown in Figure 5.37 captures a number of cause-effect relations 

in the in-car safety application domain. As shown by the directed edges in the Bayesian 

network, the Tired node has influence over the Steering, Braking, Face, EyeGaze, Head and 

Posture nodes, i.e., the fact that the driver is tired will affect steering, braking, and the signs of 

tiredness evident in the facial expression, eye-gaze, head movement and posture of the driver. 

Also note that the Steering and Braking nodes have direct influence over the SystemOutput 

node, whilst the Face, EyeGaze, Head and Posture nodes have indirect influence over the 

SystemOutput node through the Tired node in the Bayesian network. The causal relations 

present in the ‘in-car safety’ application domain are encoded in the Conditional Probability 
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Tables (CPTs) of the nodes in the Bayesian network. The CPTs of the ‘multimodal 

presentation’ Bayesian network are shown in Figures 5.38 – 5.45. 

 

Figure 5.38: CPT of Steering node 

 

Figure 5.39: CPT of Face node 

 

Figure 5.40: CPT of EyeGaze node 

 

Figure 5.41: CPT of Head node 

 

Figure 5.42: CPT of Posture node 

 

Figure 5.43: CPT of Braking node 

 

Figure 5.44: CPT of Tired node 
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Figure 5.45: CPT of SpeechOutput node 

Due to the ability of Bayesian networks to perform abductive reasoning, i.e., from effect to 

cause, evidence that a driver is braking abruptly will increase the belief that the person is tired. 

Similarly, if the belief that the driver is tired based on his/her facial expression is increased, 

then the value of the Tired state of the Tired node in the Bayesian network in Figure 5.37 will 

also increase. 

 When accessed through the Hugin API, the Bayesian network in Figure 5.37 can 

recommend system output depending upon its beliefs about the tiredness of the driver. For 

example, if the driver is deemed tired, i.e., the FancyBreak? state of the SystemOutput node has 

a value greater than that of the None and Warning states, the system can issue the prompt, 

“Would you like a break? You look a little tired.”. If the driver is believed to be very tired, i.e., 

the Warning state of the SystemOutput node has a value greater than that of the None and 

FancyBreak? states, then the system could issue the prompt, “ Please pull over for a short break, 

as you appear too tired to drive!” . Of course, other information could be used to influence the 

decision on the likelihood of the driver being tired. For example, the length of time since the 

journey commenced or the time since the last break could be incorporated into the set of rules 

applied in interpreting the resulting values of the states in the SystemOutput node. The key 

interactions in MediaHub for this example are summarised as follows: 

• XML semantics of the driver’s facial expression, eye-gaze, head movement and posture 

and an XML file relating to the steering and braking behaviour of the driver are received 

in the Dialogue Manager. 

• The Dialogue Manager identifies the application domain and purpose of both messages 

using their message types. 

• A DTD confirms the accuracy and completeness of the XML semantics.  

• In the Decision-Making Module, the XML IntDoc is checked against a DTD before the 

input values of the states in the ‘multimodal presentation’ Bayesian network are 

extracted. 

• The Bayesian network is opened with the Hugin API. Available evidence is supplied to 

the Steering, Braking, Face, EyeGaze, Head and Posture nodes.  



 

  

162

• The supplied evidence is propagated through the Bayesian network. 

• The resulting values of the states in the SystemOutput node are read and interpreted in 

the Decision-Making Module with if-else rules.  

• The XML semantics of the recommended system output is sent to MediaHub 

Whiteboard for the attention of a speech synthesis module that could interpret the 

semantics and produce appropriate speech output. 

5.7.4. Turn-taking 
In this example we consider the problem of turn-taking strategy for an intelligent agent. The 

Bayesian network in Figure 5.46 can support decision-making in respect of turn-taking in an 

intelligent agent. The Bayesian network has three nodes that receive input information from 

gaze-tracking (Gaze), posture recognition (Posture) and speech recognition (Speech) modules. 

These nodes all have the same two states, Give and Take, that represent the belief that the user 

wants to give or take a turn. The Turn node relates to the decision of the intelligent agent to 

give or take a turn and also has the states Give and Take. The CPTs of each node in the 

Bayesian network are given in Figures 5.47 - 5.50.  

 

Figure 5.46: Bayesian network for ‘turn-taking’ 

Turn-taking in intelligent agents is a complex task and the Bayesian network in Figure 5.46 is 

not intended to comprehensively model turn-taking. Rather, the Bayesian network is intended to 
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be used in conjunction with other modules to enable natural turn-taking in an intelligent agent. 

In this example, the key decisions are those made by the recognition modules that provide the 

input information to the Give and Take states of the Gaze, Posture and Speech nodes. Such 

modules are not implemented in MediaHub, although possible outputs from these modules are 

assumed and presented in XML format to the Dialogue Manager. The Bayesian network in 

Figure 5.46 augments the individual beliefs of the gaze-tracking, posture recognition and 

speech recognition modules and decides whether or not it is appropriate for the intelligent agent 

to take a turn at a particular stage in a multimodal dialogue.  

 

Figure 5.47: CPT of Gaze node 

 

Figure 5.48: CPT of Posture node 

 

Figure 5.49: CPT of Speech node 

 

Figure 5.50: CPT of Turn node 

Whilst the Bayesian network in Figure 5.46 is simplified and is only intended to complement 

the decision-making of other modules in an intelligent agent system, an alternative more 

powerful Bayesian network for the ‘turn-taking’ example is shown in Figure 5.51. As shown in 

Figure 5.51, Speech, Gaze, Posture and Head nodes represent beliefs that the user wishes to 

take or give a turn. Each of these nodes has the states Give and Take. Note that such nodes are 

not necessary for the system, or intelligent agent, since the agent will already know when it 
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needs to take a turn. The Bayesian network in Figure 5.51 contains nodes that represent the 

turn-taking intentions of both the system (S_Turn) and the user (U_Turn). Both the U_Turn and 

S_Turn nodes have two states: (1) GiveTurn – representing the belief that the user/system 

wishes to give the turn to the system/user and (2) TakeTurn – representing the belief that the 

user/system wishes to take the turn from the system/user.  Old and new turn-taking states are 

represented by the Old_State and New_State nodes. 

 

Figure 5.51: Alternative Bayesian network for ‘turn-taking’ 

Both these nodes contain the states UserTurn and SystemTurn, and relate to the dialogue 

participant who currently holds the turn (Old_State) and the participant that will take the next 

turn (New_State). Note that many other possibilities exist for the design of a Bayesian network 

to support turn-taking in an intelligent agent. It is likely that several different Bayesian 

networks will be needed in this, and other, key problem areas. When the required Bayesian 

networks have been implemented, MediaHub can use a combination of message types, DTDs 

and basic rules to decide which Bayesian network to invoke for a particular situation. 

5.7.5. Dialogue act recognition 
Consider the problem of dialogue act recognition in an ‘intelligent travel agent’ that engages in 

multimodal communication with users wishing to book a holiday. The understanding of speech 

signals and recognition of facial expressions (eyes and mouth) facilitates ambiguity resolution 

relating to user dialogue acts. The system’s Bayesian network combines beliefs associated with 

multimodal input to make decisions about the intentions of the user. The Bayesian network for 

this example is shown in Figure 5.52.  
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Figure 5.52: Bayesian network for ‘dialogue act recognition’ 

As shown in Figure 5.52 there are four input nodes in the Bayesian network, Speech, 

Intonation, Eyebrows and Mouth and one output node, DialogueAct. Note that the Eyebrow 

node of Figure 5.52 is not concerned with the focus of user’s gaze, rather it pertains to the 

recognition of muscle movement around the eye and, in particular, the eyebrows. Likewise, the 

Mouth node is not related to the recognition of lip movement but is populated following the 

interpretation of the shape and movement of the mouth, e.g., smile or frown. The Speech node 

represents the recognition of utterances from the user, whilst the Intonation node relates to 

voice intonation. The CPTs for each of the nodes depicted in Figure 5.52 are shown in Figures 

5.53 - 5.57.  

 

Figure 5.53: CPT of Speech node 
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Figure 5.54: CPT of Intonation node 

 

Figure 5.55: CPT of Eyebrows node 

 

Figure 5.56: CPT of Mouth node 

 

Figure 5.57: CPT of DialogueAct node 

As shown in Figures 5.53 and 5.57, the Speech and DialogueAct nodes in the Bayesian network 

in Figure 5.52 have five states: (1) Greeting, (2) Comment, (3) Request, (4) Accept and (5) 

Reject. Figures 5.54 – 5.56 show that the remaining nodes in the Bayesian network have four 

states: (1) Unassigned, (2) Request, (3) Accept and (4) Reject. In order to simplify the Bayesian 

network, the Request state represents both requests and questions, the latter being a request for 

more information. The Bayesian network can resolve ambiguity that occurs in the speech input 

by considering the beliefs associated with voice intonation and facial expressions of the user. 
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 An example of ambiguity that can occur in the ‘intelligent travel agent’ application domain is 

where the user says “OK” in response to the system utterance, “A seven night stay in Venice 

would be great this time of year”. Here the utterance “OK” has three possible interpretations: 

(1) the user wants to go to Venice, i.e., the dialogue act is Accept, (2) the user wants more 

details on the trip to Venice, i.e., the utterance “OK” constitutes a Request dialogue act, or (3) 

the user is just considering the agent’s suggestion, i.e., the dialogue act is Comment. Another 

example is where the user says ‘right’ in response to a suggestion made by the agent. Again, 

this could be either an acceptance of a proposition, a request for further information or a 

comment. In both these situations, recognition of the speech input alone is not sufficient for 

resolving the ambiguity. In these cases the voice intonation of the user and, to a lesser degree, 

the image processing of facial gestures facilitate resolution of ambiguity. 

5.7.6. Parametric learning 
Suppose an ‘intelligent interviewer’ multimodal system is being trained to recognise the 

emotional state (e.g., happy, nervous, confused, defensive) of a person during an interview 

based on voice intonation, facial expression, posture and body language. Assume that, initially, 

a team of experts were consulted by decision engineers during the design of the ‘intelligent 

interviewer’ and that a Bayesian network has been created that models relationships between 

the voice intonation (I), facial expression (FE), posture (P), body language (BL) and emotional 

state (ES) of the interviewee. In order to refine the decision-making accuracy of the ‘intelligent 

interviewer’, a Wizard-of-Oz experiment is undertaken in the form of 100 live interviews. The 

same team of experts who assisted the decision engineers in designing the Bayesian network 

now monitor live video of the interviews and are asked to make judgements on the emotional 

states of the interviewees at various stages in the interview. As a result of this process a number 

of large data files are created containing each expert’s interpretation of the person’s voice 

intonation, facial expression, posture and body language at various stages throughout the 

interview. For each such set of interpretations, the experts also make a judgement on the 

emotional state of the interviewee at that exact time, based on their multimodal interpretations. 

A subset of an expert’s data file is shown in Figure 5.58. Finally, all the individual data files 

from the experts are combined into one complete data set.  

Parametric learning, i.e., Estimation-Maximum (EM), is now performed to learn the 

parameters, or the CPTs, of the Bayesian network. Adaptive and EM learning in Hugin were 

discussed in greater detail in Chapter 3, Section 3.11.5. The CPTs of the Bayesian network are 

now updated to more accurately model the decision-making of the team of experts. In order to 

confirm the correctness of the new Bayesian network it is possible to generate a case set of data 
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in the Hugin GUI. This is done by selecting File | Simulate Cases which opens the Generate 

Simulated Cases window, as shown in Figure 5.59.  

 

Figure 5.58: Section of data file for ‘parametric learning’ 

 

Figure 5.59: ‘Generate Simulated Cases’ window 

Selecting Simulate produces a random set of evidence data that is propagated through the 

Bayesian network. The resulting generated data file will be of a similar format to that produced 

by the team of experts when watching the live video of the interviews. The experts can now 

check this data file to ensure that they agree with the conclusions being reached by the Bayesian 

network. A better method of evaluating the Bayesian network would be to conduct another 

Wizard-of-Oz experiment, this time enabling the ‘intelligent interviewer’ to make judgements 

on the emotional state of the interviewee, and have the team of experts monitor these decisions 

to ensure their correctness.  

5.8. Summary 
This chapter discussed the implementation of a multimodal distributed platform hub, called 

MediaHub, which performs Bayesian decision-making over multimodal input/output data. 

Initially, MediaHub’s architecture and key modules were described. Next, each of MediaHub’s 

modules including the Dialogue Manager, MediaHub Whiteboard, Domain Model and 

I, FE, P, BL, ES 
unassigned, confused, defensive, neutral, confused 

relaxed, happy, relaxed, relaxed, relaxed 

confused, confused, defensive, neutral, confused 

happy, neutral, happy, relaxed, happy 

unassigned, neutral, neutral, open, neutral 

neutral , neutral , neu tral , closed , neutral  
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Decision-Making Module were discussed in detail. Semantic representation and storage with 

MediaHub Whiteboard was then considered, before the role of Psyclone (Thórisson et al. 2005) 

in enabling distributed processing within MediaHub was described. Five decision-making 

layers were outlined, before Hugin (Jensen 1996), which implements Bayesian decision-making 

in MediaHub, was detailed. MediaHub's approach to multimodal decision-making was 

demonstrated for six key problems (anaphora resolution, domain knowledge awareness, 

multimodal presentation, turn-taking, dialogue act recognition and parametric learning) across 

five application domains (building data, cinema ticket reservation, in-car safety, intelligent 

agents and emotional state recognition). The next chapter discusses testing and evaluation of 

MediaHub. 
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Chapter 6 Evaluation of MediaHub 

 

This chapter details the evaluation of MediaHub. First, the test environment in terms of the 

hardware and software specification of the machines on which MediaHub is tested are outlined. 

Next, the preliminary testing of MediaHub, with NetBeans IDE, Hugin GUI and Psyclone’s 

psyProbe is outlined. Then, the results of testing MediaHub on six key problems in multimodal 

decision-making are discussed: (1) anaphora resolution, (2) domain knowledge awareness, (3) 

multimodal presentation, (4) turn-taking, (5) dialogue act recognition and (6) parametric 

learning across five application domains: (1) building data, (2) cinema ticket reservation, (3) in-

car safety, (4) intelligent agents and (5) emotional state recognition. Next, the performance and 

potential scalability of MediaHub is considered. The chapter concludes with a discussion on 

how MediaHub meets the essential and desirable criteria required for a multimodal distributed 

platform hub outlined in Chapter 4, Section 4.9. 

6.1. Test environment systems specifications 
MediaHub has been tested on two versions of the Windows Operating System (XP and Vista) 

and one Linux distribution (Kubuntu). The hardware and software specifications of each test 

machine are given in Table 6.1. 

Operating System Windows XP Windows Vista Linux (Kubuntu) 

Edition Professional Version 
2002 Service Pack 2 

Home Premium Service 
Pack 1 

7.10 (Gutsy Gibbon) 

RAM 1024 MB 2046 MB 512 MB 

Processor  2.33 GHz 3.20 GHz 2.8 GHz 

Version of NetBeans IDE 5.0 5.5.1 5.5.1 

Version of Psyclone 1.0.6 1.0.6 1.0.6 

Version of Hugin 7.0 7.0 7.0 

Table 6.1: Test environment system specifications 

6.2. Initial testing 
As discussed in Chapter 5, Section 5.6, the implementation and testing of MediaHub Bayesian 

networks is completed in two stages: (1) the qualitative part, i.e., the structure, and quantitative 

part, i.e., the parameters of the Conditional Probability Tables (CPTs), are defined with the 
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Hugin GUI and (2) the network is accessed and run through the Hugin API. The Hugin GUI 

runs the Bayesian network and enables viewing of resulting values of each state of every node 

in the network as shown in Figure 6.1. 

 

Figure 6.1: Hugin GUI deploying Bayesian network 

In initial testing of MediaHub a set of test values for each of the states in the Bayesian network 

is drafted and these are applied to the network by right-clicking on the node in the left pane of 

the GUI depicted in Figure 6.1. This invokes the Insert Likelihood window, as shown in Figure 

6.2.  

 

Figure 6.2: Entering evidence on a node through the Hugin GUI 

When the evidence is entered, the beliefs on all nodes of the Bayesian network are 

automatically updated and the resulting values are observed. For each set of test values, the 

resulting values of the output node are manually recorded in a table, as shown in Table 6.2. 
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Input Nodes Output Node 

Node 1 Node 2 Node 3 Hugin GUI Hugin API 

State 

1 

State 

2 

State 

1 

State 

2 

State 

1 

State 

2 

State 

1 

State 

2 

State 

1 

State 

2 

          

          

Table 6.2: Generic structure of initial testing results table 

The next stage of initial testing is to open and run the Bayesian network via the Hugin API. 

This step is performed with NetBeans IDE, as shown in Figure 6.3. The resulting values of the 

nodes in the Bayesian network are then recorded, e.g., in a results table as illustrated in Table 

6.2, and compared to the values obtained by the network running through the Hugin GUI. 

Hence, the initial testing of MediaHub ensures that identical results are achieved when the 

Bayesian network is accessed with the Hugin API and when it is run in the Hugin GUI. 

 

Figure 6.3: NetBeans IDE 

  Psyclone’s psyProbe, shown in Figure 6.4, also facilitates initial testing of MediaHub. 

The Post Message page of psyProbe facilitates checking that messages of a certain type are 

being correctly routed to MediaHub modules subscribed to that message type. The Post 

Messages page of the psyProbe is shown in Figure 6.5. The Post Message page enables the 

developer to define the sender, e.g., Dialogue Manager, receiver, e.g., MediaHub Whiteboard, 
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message type and XML content of the message. The psyProbe Whiteboard Messages page can 

then confirm that these messages have been posted to MediaHub Whiteboard, as shown in 

Figure 6.6. Additional information on each message can be viewed by selecting the message in 

the Messages page. For example, Figure 6.7 shows more information on a message of type 

building.query.office.occupant.gesture.deictic.input. The psyProbe thus proves very useful in 

the testing of MediaHub, particularly since it enables specific parts of MediaHub’s processing 

to be quickly tested, i.e., functionality that has been previously tested, such as the integration of 

speech and gesture input into a single IntDoc, can be bypassed by posting the complete IntDoc 

from the Decision-Making Module to MediaHub Whiteboard using the Post Message page of 

Psyclone psyProbe. 

 

Figure 6.4: Psyclone’s psyProbe for testing MediaHub 

 

Figure 6.5: psyProbe Post Message page 
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Figure 6.6: psyProbe Whiteboard Messages page 

 

Figure 6.7: Viewing more information on a message with psyProbe 

6.3. Evaluation of MediaHub 
The evaluation of MediaHub focuses on decision-making scenarios from the six key problem 

areas within five application domains, as discussed in Chapter 5, Section 5.7. This section 

considers evaluation of MediaHub’s performance with respect to decision-making in each of 

the six key problem areas.   

6.3.1. Anaphora resolution 
Decision-making with regard to anaphora resolution is demonstrated in the ‘building data’ 

application domain. The ‘anaphora resolution’ example, as discussed in Chapter 5, Section 

5.7.1, focuses on MediaHub’s capability of using dialogue history during the course of a 

multimodal dialogue. To demonstrate the process of evaluation of MediaHub in this application 

domain we will consider the sequence of turns below: 

1 U: Whose office is this [�]?   
2 S: That’s Paul’s office.  
3 U: Ok. Whose office is that [�]?   
4 S: That’s Sheila’s office. 
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5 U: Show me the route from her office to this [�] office. 

First, the speech semantics of turn 1 is posted from the Dialogue Manager to MediaHub 

Whiteboard in a message of type: 

building.query.office.occupant.speech.input 

This is executed with the Post Message page of psyProbe, as shown in Figure 6.8. 

 

Figure 6.8: Sending speech segment from Dialogue Manager to MediaHub Whiteboard 

MediaHub Whiteboard is configured in the psySpec to automatically deliver messages of type 

building.query* to the Decision-making Module. NetBeans’ output window, as shown in Figure 

6.9, can then enable checking if the speech segment has been received by the Decision-Making 

Module. 

 

Figure 6.9: NetBeans’ output window confirming speech input received 
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Next, the corresponding semantics of the deictic gesture in turn 1 is posted from the Dialogue 

Manager to MediaHub Whiteboard with a message of type: 

building.query.office.occupant.gesture.deictic.input 

Again the Post Message page in psyProbe, as shown in Figure 6.8, enables posting of the 

message to MediaHub Whiteboard. The NetBeans output window confirms that the 

corresponding deictic gesture semantics has been received in the Decision-Making Module and 

that a replenished document (RepDoc) has been created and sent to the Dialogue Manager, as 

shown in Figure 6.10. 

 

Figure 6.10: RepDoc received in Dialogue Manager 

The RepDoc contains data obtained from the Domain Model, e.g., the occupant’s name, gender 

and office number. This data is processed in the Dialogue Manager to enable the system to 

respond with turn 2 (That’s Paul’s office.). Next, the speech and gesture semantics of turn 3 

(Ok. Whose office is that [�]?) is posted from the Dialogue Manager to MediaHub 

Whiteboard with messages of the following respective types: 

• building.query.office.occupant.speech.input  

• building.query.office.occupant.gesture.deictic.input  

As with turn 1, both messages are posted to MediaHub Whiteboard with the Post Message page 

of psyProbe shown in Figure 6.8 which results in the two XML segments being combined and 

the Domain Model being queried for office data. The resulting NetBeans output window trace is 

shown in Figure 6.11. 

 

Figure 6.11: Output trace for turn 3 of ‘anaphora resolution’ 
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Again, the RepDoc sent from the Domain Model to the Dialogue Manager processes turn 4 

(That’s Sheila’s office.). The speech segment for turn 5 is shown in Figure 6.12. 

 

Figure 6.12: Speech segment for turn 5 

This XML segment in Figure 6.12 is posted from Dialogue Manager to MediaHub Whiteboard 

through the Post Message page of psyProbe as shown in Figure 6.13. The speech segment is 

packaged in a message of type building.request.route.speech.from.office.female and all 

messages of this type posted on MediaHub Whiteboard are automatically delivered to the 

Decision-Making Module. 

 

Figure 6.13: Posting the speech segment of turn 5 to MediaHub Whiteboard 

As shown in Figure 6.14, the NetBeans output window confirms that the first component of the 

input has been received in the Decision-Making Module and that MediaHub is waiting on the 

corresponding deictic gesture. 

 

Figure 6.14: First part of turn 5 received in Decision-Making Module 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE speech SYSTEM "C:/Psyclone2/DomainModel/S peechGender.dtd"> 
<speech> 
 <type>request-partial</type> 
 <category>show-route</category> 
 <subcategory>from-to</subcategory> 
 <subject>office</subject> 
 <gender>female</gender> 
 <stimestamp>10345</stimestamp> 
</speech> 
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Next, the semantics of the corresponding deictic gesture, shown in Figure 6.15, is posted to 

MediaHub Whiteboard in a message of type building.request.route.gesture.to.office.  

 

Figure 6.15: Semantics of deictic gesture for turn 5 

The semantics of the deictic gesture is combined with that of the speech segment and the 

IntDoc is sent to the Domain Model via MediaHub Whiteboard. A RepDoc is then created in the 

Domain Model and forwarded to the Dialogue Manager. As shown in Figure 6.16, the RepDoc 

contains a text to speech string that is printed to the NetBeans output window to confirm the 

correct operation of MediaHub. 

 

Figure 6.16: Final output trace for ‘anaphora resolution’ 

Hence, a combination of Psyclone’s psyProbe and the NetBeans IDE output window have 

facilitated testing the various stages of processing in the ‘anaphora resolution’ example and 

have confirmed MediaHub’s capabilities in this problem area. 

6.3.2. Domain knowledge awareness 
In the ‘domain knowledge awareness’ example discussed in Chapter 5, Section 5.5.2, 

MediaHub integrates the semantics of speech and eye-gaze input together with domain-specific 

information and dialogue history to determine which movie from a list the user wishes to 

reserve cinema tickets for. The Bayesian network implemented to demonstrate MediaHub’s 

application in this problem area is given in Figure 6.17. 

<gesture> 
<gtype>pointing-to-office</gtype> 
 <coordinates>  
            <x>1155</x> 
            <y>2234</y> 
 </coordinates>  
 <gtimestamp>12150</gtimestamp> 
</gesture> 
</multimodal>  
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Figure 6.17: Bayesian network for ‘domain knowledge awareness’ 

As shown in Figure 6.17, the Bayesian network for this example has two nodes that receive 

multimodal input, Speech and EyeGaze, and two nodes that are populated as a result of 

accessing dialogue history on MediaHub Whiteboard, MoreDetail and StartTime.  The initial 

stage of testing is completed with the Hugin GUI, as shown in Figure 6.18.  

 

Figure 6.18: Testing of ‘domain knowledge awareness’ Bayesian network in Hugin GUI 

Initial testing is part of the iterative process of Bayesian network construction discussed in 

Chapter 3, Section 3.6 which includes four steps performed repeatedly until the required 

functionality has been received: (1) design, (2) implementation, (3) testing and (4) analysis. As 

shown in Figure 3.4 of Chapter 3, the testing phase involves running test scenarios with known 

outcomes. To facilitate this testing, a table of test cases was drafted to contain different 

combinations of inputs and their corresponding expected outputs. A subset of this table is given 

in Table 6.3. The complete test case table is given in Appendix D. Table 6.3 has five columns 

for each node in the Bayesian network and one column for checking if the expected results have 

been achieved. Note that the numbers 1-4 refer to the states of each node in the Bayesian 
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network, i.e., first, second, third, fourth which in turn relate to the first, second, third and fourth 

movie in the list presented to the user. T (true) and F (false) represent whether the user has, or 

has not, asked for more details or inquired about the start time of a movie in the list. 

  The evidence contained in the test case table shown in Table 6.3 is entered into the 

Bayesian network at run-time, as shown in Figure 6.19.  

 

Figure 6.19: Testing of ‘domain knowledge awareness’ Bayesian network 

Table 6.3: Subset of test cases for ‘domain knowledge awareness’ Bayesian network 

If the desired results are not observed, the parameters of the CPTs of the nodes in the Bayesian 

network are adjusted and the test evidence is re-propagated through the network. This iterative 
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No – % of 1 

should be > 

89 



 

  

181

process of design, implementation, testing and analysis continues until the Bayesian network 

correctly models the decision-making in the application domain.  

  To demonstrate ambiguity resolution in this example, consider the following scenario. 

Based on the semantics of speech input, MediaHub is 40% certain that the user wants to view 

the first movie in the list, 20% certain that the user wants to view the second movie in the list 

and 40% certain that the user wants to view the fourth movie. Based on the semantics produced 

by a gaze-tracking module, MediaHub is 27%, 33%, 18% and 12% certain that the user is 

focusing on the first, second, third and fourth movies in the list respectively. Applying this 

evidence to the Bayesian network produces beliefs of 46.41%, 0%, 23.51% and 30.08% in the 

First, Second, Third and Fourth states of the ChosenMovie node respectively, as shown in 

Figure 6.20.  

 

Figure 6.20: Evidence applied to the Speech and EyeGaze nodes 

The Decision-Making Module applies rule-based decision-making to decide if the winning 

hypothesis is greater than 50% and at least 20% more than the closest competing hypothesis. 

Currently this is not the case and therefore a decision on which movie the user wants to view 

cannot be made without seeking clarification from the user. Now assume that data from the 

domain model facilitates updating the MoreDetails node, i.e., the user asked for more details on 

both the first and second movie. This causes a belief of 50% being applied to both the First and 

the Second states of the MoreDetails node. The First and Fourth states of the ChosenMovie 

node are updated to 48.07% and 51.93%, as shown in Figure 6.21. Next, information from 

MediaHub Whiteboard that the user previously only asked about the start time of the first movie 

is applied to the Bayesian network, i.e., the belief in the First state of the StartTime node is 
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updated to 100%. This causes MediaHub to believe with absolute certainty that the user wishes 

to reserve tickets to see the first movie, as illustrated in Figure 6.22.  

 

Figure 6.21: Further evidence applied to Speech and EyeGaze nodes 

 

Figure 6.22: Evidence applied on the Speech and EyeGaze nodes 

Hence, a combination of the semantics of multimodal inputs and information from dialogue 

history facilitates resolving ambiguity on the intentions of the user. As discussed in Chapter 5, 

Section 5.7.2, domain-specific information is accessed to determine which movies are currently 

being shown in the cinema and are therefore presented to the user. 

  For testing access to the Bayesian network in MediaHub via the Hugin API, the 

semantics of previous queries requesting more details on, and the start times of, certain movies 

is first posted to MediaHub Whiteboard through the Post Message page of psyProbe. Then, 
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again using psyProbe, the marked up XML semantics of the speech and eye-gaze is posted to 

MediaHub Whiteboard. The output window in NetBeans IDE verifies that the data posted to 

MediaHub Whiteboard has been received by the correct MediaHub modules and that the 

processing within each module is correct. An example output trace from testing in NetBeans 

IDE is shown in Figure 6.23. 

 

Figure 6.23: NetBeans output trace for ‘domain knowledge awareness’ 

The test scenarios in Table 6.3 facilitate creating the marked-up semantics posted to MediaHub 

Whiteboard. The results of propagating the test evidence held in Table 6.3 is output in 

NetBeans IDE and checked against the results obtained with the Hugin GUI. To summarise, the 

key steps in testing the ‘domain knowledge awareness’ example are:  

• Post semantics of dialogue history to MediaHub Whiteboard using psyProbe. 

• Post semantics of speech input to MediaHub Whiteboard. 

• Post semantics of eye-gaze input to MediaHub Whiteboard. 

• Confirm that the messages have been successfully delivered to appropriate modules 

through the output window in NetBeans IDE. 

• Output the conclusions reached by the Bayesian network, i.e., values of the states in the 

ChosenMovie node. 

• Check that these results are correct by cross referencing against those obtained when 

running the Bayesian network with the Hugin GUI.  

6.3.3. Multimodal presentation 
The ‘multimodal presentation’ example discussed in Chapter 5, Section 5.7.3, demonstrates 

MediaHub’s use in addressing the problem of multimodal presentation in an in-car safety 

application domain. In this example, the semantics of facial expression, eye-gaze, head and 

posture input are considered along with the inputs derived from monitoring of the steering and 
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braking behaviour of the driver. The Bayesian network for demonstrating MediaHub’s 

application to this problem area is shown in Figure 6.24. 

 

Figure 6.24: Bayesian network for ‘multimodal presentation’ 

As with all Bayesian networks developed in MediaHub, the initial stage of testing is performed 

with the Hugin GUI and a table of test cases facilitates verification of correct operation of the 

Bayesian network. A subset of this table is presented in Table 6.4. See Appendix D for the full 

test case table.  
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5 95 30 70 55 45 45 55 40 60 60 40 25 75 2 18 80 Yes 

Table 6.4: Subset of test cases for ‘multimodal presentation’ Bayesian network 

Table 6.4 has eight columns, one for each of the nodes in the Bayesian network and one field 

for recording whether or not correct results have been obtained. Note that the letters N and L 

relate to the Normal and Abrupt states in the Steering and Braking nodes of the Bayesian 

network. Letters N and T in the Face, EyeGaze, Head, Posture and Tired nodes represent the 

belief that the driver looks tired or normal. Note that N in the SpeechOutput node represents that 
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the in-car safety system should not issue any speech output, F represents the FancyBreak? state, 

whilst W represents the belief that the system should issue a spoken warning to the driver. 

 As with the previous example, the ‘multimodal presentation’ Bayesian network is tested with 

test scenarios in the Hugin GUI with known, or expected, outcomes. For example, the process 

of entering the first row of data in Table 6.4 is shown in Figure 6.25. The left pane in the Hugin 

GUI window shows the values of states in all nodes of the Bayesian network. 

 

Figure 6.25: Entering test evidence into ‘multimodal presentation’ Bayesian network 

 Following each iterative test of the Bayesian network, the Tired and SpeechOutput fields of 

Table 6.4 are updated. The results are then analysed and the OK? field is completed. Again, the 

CPTs of the nodes in the Bayesian network are updated based on the analysis of the Bayesian 

network’s performance and the testing is continued until satisfactory performance has been 

achieved. 

  An example of ambiguity resolution in this example, is where steering is abrupt 

(Normal: 35, Abrupt: 65), braking is normal (Normal: 65, Abrupt: 35) and the drivers facial 

expression suggest with a confidence of 50% that the driver is tired. Applying these parameters 

to the Bayesian network does not reach a conclusion with a sufficient degree of confidence, as 

shown in Figure 6.26. As shown in the SpeechOutput monitor window in Figure 6.26, applying 

this evidence to the Bayesian network produces the following results in the states of the 

SpeechOutput node: 

• None: 26.78% 

• FancyBreak?: 32.51% 
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• Warning: 40.71% 

If we now add evidence to the EyeGaze node, i.e., the driver looks tired with a belief of 74%, 

the Head node, i.e., the driver is tired with a belief of 78% and the Posture node, i.e., the driver 

is tired with a belief of 80%, the ambiguity is reduced as illustrated in Figure 6.27. 

 

Figure 6.26: Entering test evidence into the ‘multimodal presentation’ Bayesian network 

 

Figure 6.27: Entering test evidence into ‘multimodal presentation’ Bayesian network 

 As shown in Figure 6.27, the belief that a warning has been issued has increased from 40.71% 

to 50.54%. Also note that as the evidence on each of the nodes is propagated, all nodes are 

automatically updated to reflect this new evidence and the degree of influence applied from 

parent nodes. For, example, the Tired state of Head node was set to 78%, but when the 

influence of the Tired node is taken into account the belief of this state is dynamically updated 
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to 82.45% as shown in Figure 6.27. This dynamic updating of beliefs based on new evidence, 

and hence the new weighting of influence between the nodes, is true for all nodes in the 

Bayesian network. 

  When the Bayesian network is thoroughly tested in the Hugin GUI, the opening, editing 

and running of the Bayesian network through the Hugin API is then evaluated. Semantics 

pertaining to the various inputs is posted to MediaHub Whiteboard through Psyclone psyProbe 

and the conclusions reached by the Bayesian network are observed in the output window of 

NetBeans IDE. Figure 6.28 shows the psyProbe posting the semantics of the driver’s facial 

expression to from Dialogue Manager to MediaHub Whiteboard.  

 

Figure 6.28: psyProbe testing ‘multimodal presentation’ 

Figure 6.29 shows the conclusion reached by the Bayesian network being written to the output 

window in NetBeans IDE. 

 

Figure 6.29: Results of running ‘multimodal presentation’ Bayesian network 
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6.3.4. Turn-taking 
The Bayesian networks in Figures 6.30 and 6.31 demonstrate MediaHub’s application to the 

problem of turn-taking in intelligent agents. Decision-making within this problem area was 

discussed in greater detail in Chapter 5, Section 5.7.4. 

 

Figure 6.30: ‘Turn-taking’ Bayesian network in Hugin 

 

Figure 6.31: Alternative ‘turn-taking’ Bayesian network 

The same approach to testing is applied as in the previous example: (1) the Bayesian networks 

are thoroughly tested with the Hugin GUI, and (2) access to the Bayesian network in MediaHub 

via the Hugin GUI is tested with NetBeans IDE and psyProbe. Tables 6.5 and 6.6 show subsets 

of the test case tables for both ‘turn-taking’ Bayesian networks (See Appendix D for full test 

case tables).  
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Gaze Posture Speech Turn 
OK? 

G T G T G T G T 

62 38 40 60 60 40 57 43 Yes 

55 45 33 67 56 44 46 54 Yes 

35 65 52 48 41 59 37 63 Yes 

Table 6.5: Subset of test cases for ‘turn-taking’ Bayesian network 
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G T G T G T G T GT TT GT TT U S U S 

45 55 50 50 38 62 30 70 29 71 T F F T 85 15 Yes 

74 26 55 45 62 38 49 51 72 28 F T T F 17 83 Yes 

91 9 70 30 85 15 70 30 94 6 F T T F 3 97 Yes 

Table 6.6: Subset of test cases for alternative ‘turn-taking’ Bayesian network 

In Tables 6.5 and 6.6, the letters G and T represent the states of Give and Take, GT and TT are 

abbreviations of GiveTurn and TakeTurn, whilst U and S represent the UserTurn and 

SystemTurn of the New_State node. Tables 6.5 and 6.6 facilitate testing and refining the 

decision-making of the Bayesian networks in Figures 6.30 and 6.31 and both networks were 

considered capable of contributing to the resolution of ambiguity in respect of turn-taking in 

intelligent agents. 

6.3.5. Dialogue act recognition 
The problem of dialogue act recognition in the application domain of an ‘intelligent travel 

agent’ was discussed in Chapter 5, Section 5.7.5. Figure 6.32 illustrates the testing of the 

Bayesian network implemented for the ‘dialogue act recognition’ example. Table 6.7 presents a 

subset of test cases used for testing the Bayesian network in Figure 6.32. The complete test case 

table is given in Appendix D. The testing and evaluation of the Bayesian network in Figure 6.32 

confirmed MediaHub’s capability of supporting dialogue act recognition in an intelligent agent.  
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Figure 6.32: Testing of ‘dialogue act recognition’ Bayesian network 

Speech Intonation Eyebrows Mouth DialogueAct OK? 

G C R A X U R A X U R A X U R A X G C R A X 

95 5 0 0 0 90 0 0 10 90 0 0 10 25 25 25 25 90 10 0 0 0 Yes 

0 20 0 80 0 0 0 30 70 0 0 30 70 0 0 50 50 0 0 0 75 25 Yes 

0 20 0 80 0 25 25 25 25 0 0 30 70 0 0 50 50 0 0 0 85 15 Yes 

Table 6.7: Subset of test cases for ‘dialogue act recognition’ Bayesian network 

6.3.6. Parametric learning 
Chapter 5, Section 5.5.6 discussed the example of an ‘intelligent interviewer’ multimodal 

system to demonstrate MediaHub’s capability of supporting parametric learning with the Hugin 

GUI. To facilitate the testing of parametric learning the Bayesian network shown in Figure 6.33 

was constructed. However, unlike the previous example, the CPTs of the Bayesian network 

were not altered during its construction. Next, a data file was created containing 100 

combinations of inputs to the states of the Bayesian network combined with the corresponding 

conclusions, i.e., values in the states of the EmotionalState node. A section of the data file for 

learning the parameters of the Bayesian network is shown in Figure 6.34. Note that I, FE, P, BL 

and ES in the Bayesian network in Figure 6.34 are abbreviations for intonation, facial 

expression, posture, body language and emotional state respectively. 
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Figure 6.33: Bayesian network for ‘parametric learning’ 

 

Figure 6.34: Section of data file for ‘parametric learning’ 

The data file given in Figure 6.34 then facilitates learning the parameters of the Bayesian 

network and hence modelling the causal relationships between the variables of the data file, as 

shown in Figure 6.35. 

 

Figure 6.35: Section of data file for ‘parametric learning’ 

I, FE, P, BL, ES 
happy, neutral, happy, relaxed, happy 

relaxed, happy, relaxed, relaxed, relaxed 

neutral, confused, defensive, neutral, confused 

unassigned, neutral, neutral, open, neutral 

happy, neutral, neutral, open, neutral 

unassigned, confused, defensive, neutral, confused 
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When the parameters of the CPTs in the Bayesian network were learned, the Bayesian network 

was tested with a test case table as in the previous example. The Bayesian network was then 

adjusted manually through the Hugin GUI until desired performance was achieved. The Hugin 

GUI was found to correctly model the relationships between the variables of the data file. 

However, since the data file was simulated, i.e., not the result of a Wizard-of-Oz experiment as 

discussed in Section 5.7.6, and it contained just 100 test cases, the resulting Bayesian network 

required considerable refinement before it was deemed useful for emotional state recognition. 

This was to be expected, since the data file was created by a non-expert in the field of emotional 

state recognition. However, the testing did confirm MediaHub’s ability to learn the parameters 

of a Bayesian network from multimodal data. 

6.4. Performance of MediaHub  
The performance of MediaHub obviously has a huge impact on its potential scalability. Since 

MediaHub constitutes a centralised distributed platform hub, the load on the machine hosting 

MediaHub will increase proportionally to the number of interacting modules and the frequency 

of the interactions between modules. The ability of MediaHub to process the semantics of 

multimodal data in a timely fashion is critical to its applicability within a multimodal system. 

Temporality, as discussed in Chapter 4, Section 4.4, is hugely significant if intelligent and time 

critical decisions are to be made during the course of a multimodal dialogue. Psyclone has 

mechanisms in place that assist temporal management. As observed in Stefánsson et al. (2009, 

p. 67), “Psyclone does not need to pre-compute the dataflow beforehand but rather manages it 

dynamically at runtime, optimizing based on priorities of messages and modules”. Although 

MediaHub was tested across six key problem areas and five application domains and could be 

potentially applied to a number of other problem areas and application domains, it should be 

noted that MediaHub has yet to be fully tested in a live fully functional multimodal system. 

MediaHub’s performance and scalability will be dependent upon the application domain in 

which it is deployed. It is therefore difficult to make definitive claims on MediaHub’s expected 

performance in a fully implemented multimodal system. Throughout testing, however, 

MediaHub’s impact on system resources was monitored with Task Manager in the Windows 

Operating System (see Figure 6.36) and KDE System Guard (KSysGuard) Performance 

Monitor in Linux (Kubuntu), as shown in Figure 6.37.  

  MediaHub was found to achieve acceptable levels of performance on all three test 

environment operating systems, i.e., Windows XP, Windows Vista and Linux (Kubuntu). There 

was no noticeable difference in performance between the Windows XP and Vista PCs. Nor was 

MediaHub found to run noticeably faster or more efficiently on the Linux machine. Both speed 
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and impact on system resources was comparable across all three test environment operating 

systems. However, it is again worth noting that, MediaHub is a testbed distributed platform hub 

that has yet to be fully implemented within a live multimodal system. It is therefore not possible 

to draw complete conclusions on its performance and scalability. However, initial testing across 

six key problem areas and five application domains has produced satisfactory performance 

results. 

 

Figure 6.36: Task Manager in Windows Vista 

  

Figure 6.37: KSysGuard Performance Monitor in Linux (Kubuntu) 

6.5. Requirements criteria check 

Table 6.8 summarises a check against MediaHub’s capabilities against each of the requirements 

criteria for a multimodal distributed platform hub listed in Chapter 4, Section 4.9. A  symbol 

indicates full capability and a  symbol denotes partial capability.  
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Capability MediaHub 

E1. Ability to process both multimodal input and output.  
E2. Fusion of both input and output semantics.  
E3. Representation of semantics on both input and 

output.  

E4. Dynamic updating of belief associated with 

multimodal input and output.  

E5. Distributed processing.  
E6. Maintenance of dialogue history.  
E7. Current context consideration.  
E8. Ambiguity resolution.  
E9. Storage of domain-specific information.  
E10. Ability to deal with missing data.  
E11. Decisions on best combination of output.  
E12. Ability to learn from sample data.  
D1. Multi-platform.  
D2. Ability to learn from experience.  
D3. Ability to learn from real data.  

Table 6.8: Check on multimodal hub requirements criteria 

As shown in Table 6.8, MediaHub offers full capability for each of the essential criteria listed in 

Chapter 4, Section 4.9. MediaHub is concerned with the processing of multimodal input/output 

data and with the fusion and storage of input/output semantics. Bayesian networks dynamically 

update the states of all nodes as new evidence is applied. Psyclone enables distributed 

processing in MediaHub and the maintenance of dialogue history on the MediaHub 

Whiteboard. The current context is encoded in Bayesian networks applicable to each problem 

domain. Also, Psyclone offers its own context mechanism for enabling different module 

behaviour that is context dependant. Ambiguity resolution with different modalities is a key 

task for MediaHub’s decision-making mechanism. The Domain Model stores domain-specific 
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information in XML format. As previously mentioned, Bayesian networks are capable of 

reaching conclusions when some of the relevant inputs to the problem domain are absent. 

Therefore MediaHub has the capability of dealing with missing data. MediaHub can also make 

decisions on the optimal combinations for multimodal output. 

6.6. Summary 
This chapter discussed the objective evaluation of MediaHub. The evaluation focused on 

MediaHub’s performance in six key problem areas: (1) anaphora resolution, (2) domain 

knowledge awareness, (3) multimodal presentation, (4) turn-taking, (5) dialogue act recognition 

and (6) parametric learning, across five application domains: (1) building data, (2) cinema ticket 

reservation, (3) in-car safety, (4) intelligent agents and (5) emotional state recognition. The 

iterative process of design, implementation, testing and analysis of the implemented Bayesian 

networks was described and the utilisation of Psyclone psyProbe and Hugin GUI for testing 

Bayesian networks was detailed. The use of NetBeans IDE for verifying access to Bayesian 

networks via the Hugin GUI was also described. MediaHub’s performance and potential 

scalability was then discussed. Finally, MediaHub was checked against the necessary and 

sufficient requirements criteria for a distributed multimodal platform hub. MediaHub was found 

to offer full capability for all essential criteria and partial capability for the remaining three 

desirable criteria. In summary, based on the evaluation discussed here, MediaHub is considered 

capable of performing effective Bayesian decision-making in a multimodal distributed platform 

hub. 
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Chapter 7 Conclusion and Future Work 

 
Decision-making in multimodal systems includes semantic representation, communication and 

AI reasoning techniques. This chapter concludes the thesis by first providing a summary of the 

research completed here. Next, the results are compared to other related work. Finally, there is a 

discussion on future work and applications of this work. 

7.1. Summary 
In this thesis we have discussed the problems and solutions for decision-making in a 

multimodal distributed platform hub. These are broadly categorised into three areas: (1) 

semantic representation and storage, (2) communication and (3) decision-making. The three key 

objectives of this thesis are: (1) interpretation and generation of multimodal semantic 

representations, (2) coordination of communication between the modules of a multimodal 

distributed platform hub and with external modules and (3) performing decision-making with 

Bayesian networks.  

  Previous work in the areas of multimodal data fusion and synchronisation, semantic 

representation and storage, communication, decision-making, distributed processing, 

multimodal platforms and systems, intelligent multimedia agents, turn-taking in intelligent 

agents, multimodal corpora and annotation tools, dialogue act recognition and reference 

resolution was reviewed. A detailed analysis of Bayesian networks was provided, including a 

discussion of the definition, history and structure of Bayesian networks, intercausal inference, 

influence diagrams, challenges in Bayesian network construction, Conditional Probability 

Tables (CPTs), limitations, advantages and applications of Bayesian decision-making, the 

utilisation of Bayesian networks in multimodal systems and software tools for their 

implementation. 

  Having examined the problems and solutions pertinent to multimodal decision-making a 

Bayesian approach to decision-making in a multimodal distributed platform hub was proposed. 

This included a discussion on the key problems and the nature of decision-making within 

multimodal systems, with decisions categorised into two areas relating to: (1) synchronisation 

of multimodal data and (2) multimodal data fusion. The rationale for MediaHub was discussed 

by explaining the key advantages of Bayesian networks, i.e., their ability to perform intercausal 

reasoning, representation of casual dependencies between variables of a problem domain, their 
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compact graphical structure, their ability to represent uncertainty and ambiguity, their tolerance 

of missing data and their ability to learn. Necessary and sufficient requirements criteria for an 

intelligent multimodal distributed platform hub and the benefits derived from the application of 

Bayesian networks in multimodal decision-making were also discussed. 

  Next, the implementation of a multimodal distributed platform hub, called MediaHub, 

was discussed. The following four key modules of MediaHub were detailed: (1) Dialogue 

Manager, (2) MediaHub Whiteboard, (3) Decision-Making Module and (4) Domain Model. 

MediaHub constitutes a publish-subscribe architecture with a central whiteboard for semantic 

representation. Communication within MediaHub is based on the OpenAIR specification 

(Mindmakers 2009; Thórisson et al. 2005) and is achieved by exchanging semantic 

representations between modules via MediaHub Whiteboard. The role of Psyclone (Thórisson 

et al. 2005) which facilitates distributed processing in MediaHub was then described in detail 

and the Hugin tools (Jensen 1996) for Bayesian decision-making were explained. The role of 

MediaHub psySpec in defining the configuration of MediaHub’s modules on invocation was 

also described.  

  Bayesian networks were developed through an iterative process of design, 

implementation, testing and analysis. The four key stages in implementing Bayesian network 

are: (1) defining the variables of the application domain, (2) understanding the causal 

relationships between the variables of the domain, (3) determining the structure of a Bayesian 

network, i.e., the qualitative component, to model the causal relations and (4) eliciting the 

parameter values of the Bayesian network in the Conditional Probability Tables (CPTs), i.e., the 

quantitative component. When these four stages are resolved, the actual construction and testing 

of the Bayesian network in the Hugin GUI is a relatively straightforward task. Five decision-

making making layers were outlined: (1) psySpec and Contexts, (2) Message Types, (3) 

Document Type Definitions (DTDs), (4) Bayesian networks and (5) Rule-based.  

  Multimodal decision-making in MediaHub was demonstrated through worked examples 

that provide solutions to six key problems in five application domains. The evaluation of 

MediaHub focused on its performance in six key problem areas for multimodal decision-

making: (1) anaphora resolution, (2) domain knowledge awareness, (3) multimodal 

presentation, (4) turn-taking, (5) dialogue act recognition and (6) parametric learning, across 

five application domains: (1) building data, (2) cinema ticket reservation, (3) in-car safety, (4) 

intelligent agents and (5) emotional state recognition. Finally, MediaHub’s capabilities were 

checked against the requirements criteria for a multimodal distributed platform hub.  
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To sum up, this thesis provides: 

(1) A generic approach to Bayesian-based decision-making within a multimodal distributed 

platform hub.  

(2) Applications of Bayesian networks to decision-making for six key problems in 

multimodal systems: anaphora resolution, domain knowledge awareness, multimodal 

presentation, turn-taking, dialogue act recognition and learning. 

(3) Implementation and evaluation of (1) within MediaHub. 

7.2. Relation to other work 
MediaHub relates to other research within a similar theoretical and practical context including 

multimodal platforms, multimodal presentation systems, intelligent agents and other 

multimodal systems as discussed in Chapter 2, Sections 2.8 and 2.9. This section discusses 

MediaHub in relation to other research.  

DARBS (Distributed Algorithmic and Rule-Based System) (Choy et al. 2004a, 2004b; 

Nolle et al. 2001) proposes the use of rule-based, neural network and genetic algorithm 

knowledge sources working in parallel around a central blackboard. However, DARBS does not 

implement or advocate the use of Bayesian networks. Similarities exist between MediaHub and 

Chameleon (Brøndsted et al. 1998, 2001), discussed in Chapter 2, Section 2.8.1. For example, 

Chameleon’s dialogue manager and Blackboard operate in a similar fashion to MediaHub’s 

Dialogue Manager and MediaHub Whiteboard. Both implement a domain model and in both 

communication is achieved by exchanging semantic representation between modules via a 

semantic storage module. Both Chameleon and MediaHub address the problem of anaphora 

resolution in a ‘building data’ application domain. However, Chameleon uses a frame-based 

method for semantic representation, whilst MediaHub uses XML. Also, domain-specific 

information in Chameleon is stored in text files linked together in hierarchical linked-list 

structures with a series of search functions, whilst all domain information in MediaHub is 

stored in XML format. MediaHub’s use of Psyclone for distributed processing compares 

favourably with DACS (Fink et al. 1996) used for communication in Chameleon. Chameleon 

performs rule-based decision-making, whilst MediaHub implements Bayesian networks. 

Additionally, MediaHub implements a Whiteboard using Psyclone which is an extension of the 

blackboard-based model of semantic storage implemented in Chameleon. 

XWand (Wilson & Shafer 2003; Wilson & Pham 2003) is a wireless sensor package 

enabling natural interaction within intelligent spaces. XWand has a dynamic Bayesian network 
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for action selection within an intelligent space focussing on the home environment. XWand 

could potentially be applied to select movies from a list on a computer screen as discussed in 

the ‘domain knowledge awareness’ example in Chapter 5, Section 5.7.2. However, the hand-

held wand would clearly not be suitable for use by the driver in the car environment as 

considered in the ‘multimodal presentation’ example in Chapter 5, Section 5.7.3. SmartKom 

offers a wide range of capabilities in a host of areas important to multimodal systems. However, 

it does not specifically explore the application of a generic Bayesian approach to decision-

making within the hub of a distributed platform. Moreover, the focus of MediaHub is the 

development of a multimodal distributed platform hub that can be utilised within other 

multimodal systems. Much multimodal research is concerned with improving the quality of the 

time a driver spends in a car. Multimodality in the car environment has been considered at 

length in SmartKom (Wahlster 2006). In Berton et al. (2006) driver interaction with mobile 

services in the car is investigated. However, SmartKom is not applied to in-car safety as 

described in Section 5.5.3, Chapter 5. SmartKom deploys rule-based processing and a 

stochastic model for decision-making. Driver interaction with both online and offline 

entertainment and information services is considered in Rist (2001) where monitoring of the 

status of the driving situation, i.e., visibility, distance from another vehicle, road condition and 

the status of the driver, i.e., steering, pressure on the steering wheel, eye-gaze and heartbeat, is 

addressed.  

7.3. Future work 
In this section other problem areas and functionality that will be addressed by MediaHub in the 

future are discussed. The potential deployment of MediaHub within other application domains 

is also considered.  

7.3.1. MediaHub increased functionality 
Future work includes the integration of MediaHub with existing multimodal systems, such as 

TeleTuras (Solon et al. 2007) and CONFUCIUS (Ma 2006), that require complex decision-

making and distributed communication. This integration will address the problem of 

synchronisation, which was not fully addressed in this thesis. It is also possible that structural 

learning could facilitate generation of entirely new Bayesian networks that model the causal 

dependencies that exist between variables in a given data set. The data could be derived from 

existing multimodal corpora, e.g., AMI (Carletta et al. 2006; Petukhova 2005), or it could be 

created with a Wizard-of-Oz experiment for the application domain. Structural learning, as 

discussed in Chapter 3, Section 3.11.5, is a feature offered by the Hugin software tool and will 

be investigated further in the future development of MediaHub. Currently, all semantics in 
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MediaHub is represented in XML format and manually created for the purpose of 

demonstration and evaluation. The potential for applying the EMMA (2009) semantic 

representation formalism is a future consideration, as is the automatic learning of Bayesian 

networks from corpora of existing data, e.g., AMI (Carletta et al. 2006). Future work will also 

aim to meet the requirements criteria discussed in Chapter 6, Section 6.5, which are presently 

only partially met, including the ability to operate across multiple platforms and the ability to 

learn from both experience and real data. Also planned for future work is a more detailed 

analysis of MediaHub’s performance and scalability. 

7.3.2. MediaHub application domains 
The use of Bayesian networks in MediaHub across various application domains was discussed 

in Section 5.7, Chapter 5. A number of other potential application domains have been 

considered including determining the emotional and intentional state of a user during a web-

browsing session, strategy adaptation for an intelligent sales agent and structural learning of a 

new Bayesian network from a data set. Similar to the ‘intelligent interviewer’ example 

discussed in Section 5.5.6, provided there are recognition modules available for speech, facial 

expression and eye-gaze, it is feasible that a Bayesian network can be applied to determining 

the emotional and intentional state (e.g., happy, confused, frustrated, angry) of the user whilst 

browsing the Web. An ‘intelligent Web browser’ multimodal system could monitor a user’s 

speech, facial expression and eye-gaze to determine the user’s emotional state at various stages 

in a Web browsing session. The relevance of web page content, the accuracy of a search 

strategy and the understanding of the user’s intentions could then be improved based on the 

beliefs about the user’s emotional state. Whilst decision engineers and experts may have 

varying views on the causal relations in this, and indeed any other, application domain, 

Bayesian networks would certainly be capable of representing these relations. MediaHub, in 

conjunction with the Hugin API and Psyclone, has both the framework and functionality 

necessary to implement Bayesian decision-making for user emotional state recognition.  

 Another possible application considered is related to the strategy adaptation for an 

‘intelligent sales agent’. The system could operate in a number of contexts derived through 

discussions with sales and marketing experts (e.g., Introduction, ExplainProduct, Listen, 

NegotiateOnPrice, ArrangeAnotherMeeting and CloseDeal). The input nodes of the ‘intelligent 

sales agent’ Bayesian network would relate to the gesture, posture, facial expression and body 

language of the potential buyer. Context and dialogue history would influence the decision-

making process. Outputs of the Bayesian networks would be decisions on strategy, e.g. ‘attempt 

to close the sale’, ‘change package offering’, ‘drop the price’, ‘arrange another meeting’, and 
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‘give up’. Another Bayesian network could recommend non-verbal cues and body language 

categories (e.g., neutral, open, relaxed, confident) and speech output of the ‘intelligent sales 

agent’. Again, the real challenge is not in the actual representation of the multimodal data or the 

construction of the Bayesian networks, but in understanding the causal relations present 

between the relevant variables in the application domain. When this knowledge is elicited, e.g., 

through discussions with sales and marketing and body language experts, the construction of 

the Bayesian networks is relatively straightforward. 

7.4. Conclusion 
The aim of this thesis is to develop a Bayesian approach to decision-making within a 

multimodal distributed platform hub. In order to demonstrate this approach, MediaHub, a test-

bed multimodal distributed platform hub, was implemented. MediaHub constitutes a publish-

subscribe architecture that uses existing software tools, Psyclone and Hugin, to enable Bayesian 

decision-making over multimodal input/output data. Evaluation results demonstrate how 

MediaHub has met the objectives of this research and a set of requirements criteria defined for a 

multimodal distributed platform hub. This evaluation focused on six key problem areas across 

five application domains. The evaluation gives positive results that highlight MediaHub’s 

capabilities for decision-making and shows MediaHub to compare favourably with existing 

approaches.  

  Suggestions for future work include increased functionality of MediaHub such as the 

automatic learning of Bayesian networks from multimodal corpora and the utilisation of 

EMMA for MediaHub’s semantic representation, as well as the development of a more 

formalised API or user interface to facilitate integration with existing multimodal systems. In 

addition, there are opportunities to demonstrate the potential of MediaHub to new application 

domains. MediaHub is domain independent and could be potentially deployed in a range of 

multimodal application areas that require distributed processing and intelligent multimodal 

decision-making and this merits further consideration. The Bayesian approach employed in 

MediaHub has demonstrated a degree of universality, regarding decision making over 

multimodal data, which has enhanced its applicability in the domain of multimodal decision-

making. 

 



 

  

202

 

 

 

 

 

 

 

 

 

 

                                                         Appendices



 

  

203

Appendix A: MediaHub’s Document Type Definitions (DTDs) 

Example Document Type Definitions (DTDs) which check the validity of XML semantic 

segments in MediaHub. 

 

Figure A.1: DTD for ‘anaphora resolution’ 

 

Figure A.2: DTD for ‘domain knowledge awareness’ 

 

 

 

 

 

 

 

 

 

 

<!ELEMENT movies (movie+)> 
<!ELEMENT movie (title, starttime, moredetails, no,  coordinates)> 
<!ELEMENT title (#PCDATA)> 
<!ELEMENT starttime (#PCDATA)> 
<!ELEMENT moredetails (#PCDATA)> 
<!ELEMENT no (#PCDATA)> 
<!ELEMENT coordinates (x,y)> 
<!ELEMENT x (from, to)> 
<!ELEMENT y (from, to)> 
<!ELEMENT from (#PCDATA)> 
<!ELEMENT to (#PCDATA)> 

<!ELEMENT Offices (Office+)> 
<!ELEMENT Office (ID, Person, Coordinates)> 
<!ELEMENT ID (#PCDATA)> 
<!ELEMENT Person (FirstName, Surname, Gender)> 
<!ELEMENT FirstName (#PCDATA)> 
<!ELEMENT Surname (#PCDATA)> 
<!ELEMENT Gender (#PCDATA)> 
<!ELEMENT Coordinates (From, To)> 
<!ELEMENT From (X,Y)> 
<!ELEMENT To (X,Y)> 
<!ELEMENT X (#PCDATA)> 
<!ELEMENT Y (#PCDATA)> 

<!-- speech and gesture can be in any order --> 
<!ELEMENT carSafety (face, eyeGaze, posture, head, steering, braking)> 
<!ELEMENT face (fNormal, fTired, fTimestamp)> 
<!ELEMENT fNormal (#PCDATA)> 
<!ELEMENT fTired (#PCDATA)> 
<!ELEMENT fTimestamp (#PCDATA)> 
<!ELEMENT eyeGaze (eNormal, eTired, eTimestamp)> 
<!ELEMENT eNormal (#PCDATA)> 
<!ELEMENT eTired (#PCDATA)> 
<!ELEMENT eTimestamp (#PCDATA)> 
<!ELEMENT posture (pNormal, pTired, pTimestamp)> 
<!ELEMENT pNormal (#PCDATA)> 
<!ELEMENT pTired (#PCDATA)> 
<!ELEMENT pTimestamp (#PCDATA)> 
<!ELEMENT head (hNormal, hTired, hTimestamp)> 
<!ELEMENT hNormal (#PCDATA)> 
<!ELEMENT hTired (#PCDATA)> 
<!ELEMENT hTimestamp (#PCDATA)> 
<!ELEMENT steering (sNormal, sAbrubt, sTimestamp)> 
<!ELEMENT sNormal (#PCDATA)> 
<!ELEMENT sAbrubt (#PCDATA)> 
<!ELEMENT sTimestamp (#PCDATA)> 
<!ELEMENT braking (bNormal, bAbrubt, bTimestamp)> 
<!ELEMENT bNormal (#PCDATA)> 
<!ELEMENT bAbrubt (#PCDATA)> 
<!ELEMENT bTimestamp (#PCDATA)> 

Figure A.3: DTD for ‘multimodal presentation’ 
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Figure A.4: DTD for ‘turn-taking’ 

 

Figure A.5: DTD for ‘dialogue act recognition’ 

 

<!ELEMENT turnTaking2 (speech, eyeGaze, posture, he ad, status)> 
<!ELEMENT speech (sGive, sTake, sTimestamp)> 
<!ELEMENT sGive (#PCDATA)> 
<!ELEMENT sTake (#PCDATA)> 
<!ELEMENT sTimestamp (#PCDATA)> 
<!ELEMENT eyeGaze (eGive, eTake, eTimestamp)> 
<!ELEMENT eGive (#PCDATA)> 
<!ELEMENT eTake (#PCDATA)> 
<!ELEMENT eTimestamp (#PCDATA)> 
<!ELEMENT posture (pGive, pTake, pTimestamp)> 
<!ELEMENT pGive (#PCDATA)> 
<!ELEMENT pTake (#PCDATA)> 
<!ELEMENT pTimestamp (#PCDATA)> 
<!ELEMENT head (hGive, hTake, hTimestamp)> 
<!ELEMENT hGive (#PCDATA)> 
<!ELEMENT hTake (#PCDATA)> 
<!ELEMENT hTimestamp (#PCDATA)> 
<!ELEMENT status (oldState, sysTurn)> 
<!ELEMENT oldState (userTurn, systemTurn)> 
<!ELEMENT userTurn (#PCDATA)> 
<!ELEMENT systemTurn (#PCDATA)> 
<!ELEMENT sysTurn (sysGive, sysTake, sysTimestamp)>  
<!ELEMENT sysGive (#PCDATA)> 
<!ELEMENT sysTake (#PCDATA)> 
<!ELEMENT sysTimestamp (#PCDATA)> 

<!ELEMENT dialogueAct (speech, intonation, eyebrows , mouth)> 
<!ELEMENT speech (sGreeting, sComment, sRequest, sA ccept, sReject, sTimestamp)> 
<!ELEMENT sGreeting (#PCDATA)> 
<!ELEMENT sComment (#PCDATA)> 
<!ELEMENT sRequest (#PCDATA)> 
<!ELEMENT sAccept (#PCDATA)> 
<!ELEMENT sReject (#PCDATA)> 
<!ELEMENT sTimestamp (#PCDATA)> 
<!ELEMENT intonation (iUnassigned, iRequest, iAccep t, iReject, iTimestamp)> 
<!ELEMENT iUnassigned (#PCDATA)> 
<!ELEMENT iRequest (#PCDATA)> 
<!ELEMENT iAccept (#PCDATA)> 
<!ELEMENT iReject (#PCDATA)> 
<!ELEMENT iTimestamp (#PCDATA)> 
<!ELEMENT eyebrows (eUnassigned, eRequest, eAccept,  eReject, eTimestamp)> 
<!ELEMENT eUnassigned (#PCDATA)> 
<!ELEMENT eRequest (#PCDATA)> 
<!ELEMENT eAccept (#PCDATA)> 
<!ELEMENT eReject (#PCDATA)> 
<!ELEMENT eTimestamp (#PCDATA)> 
<!ELEMENT mouth (mUnassigned, mRequest, mAccept, mR eject, mTimestamp)> 
<!ELEMENT mUnassigned (#PCDATA)> 
<!ELEMENT mRequest (#PCDATA)> 
<!ELEMENT mAccept (#PCDATA)> 
<!ELEMENT mReject (#PCDATA)> 
<!ELEMENT mTimestamp (#PCDATA)> 
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Appendix B: MediaHub message types 

A collection of message types implemented in MediaHub. 

 

 

Figure B.1: ‘Anaphora resolution’ message types 

 

Figure B.2: ‘Domain knowledge awareness’ message types 

  

Figure B.3: ‘Multimodal presentation’ message types 

 

 

 car.eyegaze.input 

 car.posture.input 

 car.face.expression.input 

 car.head.input 

 car.steering.input 

 car.braking.input 

 movies.speech.input 

 movies.gesture.pointing.input 

 movies.eyegaze.input 

 movies.posture.input 

 movies.moredetail.input 

 movies.starttime.input 

 movies.multimodal.repdoc 

building.query.office.occupant.speech.input 

building.query.office.occupant.gesture.pointing.input 

building.query.office.occupant.intdoc 

building.query.office.occupant.repdoc 

building.query.office.occupant.hisdoc 

building.request.route.speech.from.office.gender 

building.request.route.speech.from.office 

building.request.route.intdoc 
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Figure B.4: ‘Turn-taking’ message types 

 

Figure B.5: ‘Dialogue act recognition’ message types 

 

 

 

 

 

 

 

 

 

 

 

 

 

dialogueact.speech.input 

dialogueact.intonation.input 

dialogueact.eyebrows.input 

dialogueact.mouth.input 

turntaking.eyegaze.input 

turntaking.posture.input 

turntaking.speech.input 

turntaking2.speech.input 

turntaking2.eyegaze.input 

turntaking2.posture.input 

turntaking2.head.input 

turntaking2.status.input 
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Appendix C: HTML Bayesian network documentation 

Example of HTML documentation automatically generated by the Hugin GUI for the ‘domain 

knowledge awareness’ Bayesian network. 

 

Domain Knowledge Awareness 

 

The model is depicted below:  

 

Nodes 

 

Gaze 

Represent the belief that the user wants to give a turn based on gaze input.  
 
Name = Gaze 

Label = Gaze 

Type = Discrete Labelled Node 

States 
Give : Belief, based on gaze input, that the user wishes to give the turn to the agent. 

Take : Belief, based on gaze input, that the user wishes to take the turn from the agent. 

Parents 

• Turn  

Posture 

Represent the belief that the user wants to give a turn based on posture input.  
 
Name = Posture 
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Label = Posture 

Type = Discrete Labelled Node 

 
States 

Give : Belief, based on posture input, that the user wishes to give the turn to the agent. 

Take : Belief, based on posture input, that the user wishes to take the turn from the agent. 

Parents 

• Turn  

Speech 

Represent the belief that the user wants to give a turn based on speech input.  
 
Name = Speech 

Label = Speech 

Type = Discrete Labelled Node 

 

States 

Give : Belief, based on speech input, that the user wishes to give the turn to the agent. 

Take : Belief, based on speech input, that the user wishes to take the turn from the agent. 

Parents 

• Turn  

Turn 

The Turn node relates to the turn-taking strategy of the agent.  
 
Name = Turn 

Label = Turn 

Type = Discrete Labelled Node 

States 

Give : Give the turn to the User 

Take : Take the turn from the User 
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Appendix D: Test case tables 

Test case tables used to confirm correctness of Bayesian networks. 
 

 

Table D.1: Test cases for ‘domain knowledge awareness’ Bayesian network 

Speech MoreDetail StartTime EyeGaze ChosenMovie 
OK? 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

65 0 15 20 T F F F F F F F 55 45 0 0 95 3 1 1 Yes 

66 0 0 34 T F F F T F F T 80 20 0 0 83 0 0 17 
No – % of 1 

should be > 83 

74 0 26 0 T F F F T F F F 76 24 0 0 89 11 0 0 
No – % of 1 

should be > 89 

0 0 35 65 F T F F F F T T 0 6 40 54 1 7 32 60 Yes 

0 0 40 60 F T F F F F T T 0 0 50 50 1 5 41 53 Yes 

0 0 38 62 F T F F F F F T 0 0 48 52 1 5 8 86 Yes 

0 0 67 33 F T F F F F F T 0 0 46 54 1 6 17 76 Yes 

54 0 0 46 T F F F T F F F 89 11 0 0 100 0 0 0 Yes 

59 0 0 41 T F F F T F F F 50 35 15 0 99 .5 0 .5 Yes 

59 0 0 41 T F F F T F F T 50 35 15 0 97 1 0 2 Yes 

0 88 12 0 F T F F F T F F 0 90 10 0 .5 98 1 .5 Yes 

0 88 12 0 F T F F F F T F 0 90 10 0 .5 93 6 .5 Yes 

0 0 75 25 F F F F F F T F 0 0 80 20 .5 .5 97 2 Yes 

0 0 75 25 F F T F F F F F 0 0 80 20 .5 .5 97 2 Yes 

0 0 75 25 F F T F F F T F 0 0 80 20 0 0 100 0 Yes 

80 0 20 0 T F T F T F F F 55 45 0 0 98 1 1 0 Yes 

50 0 50 0 T T T T T F F F 78 22 0 0 96 2 2 0 Yes 

50 0 50 0 T F F F T F F F 78 22 0 0 99 .5 .5 0 Yes 
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Table D.2: Test cases for ‘multimodal presentation’ Bayesian network 

 

 

S
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F
ac

e 

E
ye

G
az

e 
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S
pe

ec
hO

ut
pu

t 

OK? 

N A N A N T N T N T N T N T N F W 

65 35 45 55 50 50 55 45 60 40 40 60 58 42 36 30 34 Yes 

70 30 22 78 70 30 85 15 45 55 50 50 77 23 27 39 34 Yes 

30 70 25 75 51 49 90 10 80 20 60 40 67 33 15 29 56 Yes 

20 80 20 80 70 30 50 50 65 35 78 22 54 46 8 23 69 Yes 

29 71 21 79 95 5 50 50 50 50 50 50 73 27 14 30 56 Yes 

55 45 50 50 45 55 43 57 34 66 32 68 35 65 25 30 45 Yes 

88 12 85 15 51 49 55 45 19 81 78 22 85 15 90 5 5 
No, value of None state of 

SpeechOutput should be lower 

10 90 35 65 50 50 45 55 34 66 55 45 23 77 3 20 77 
Yes – but try few more test cases 

like this! 

5 95 30 70 55 45 45 55 40 60 60 40 25 75 2 18 80 Yes 

20 80 11 89 60 40 60 40 25 75 65 35 18 82 3 15 82 Yes 

14 86 38 62 54 46 49 51 20 80 52 48 24 76 5 22 73 Yes 

89 11 94 6 5 95 20 80 50 50 10 90 20 80 72 18 10 Yes 

89 11 94 6 50 50 50 50 50 50 50 50 80 20 87 9 4 Yes 

50 50 50 50 50 50 50 50 50 50 50 50 50 50 29 29 42 Yes 

66 34 49 51 60 40 40 60 55 45 45 55 60 40 40 29 31 Yes 

66 34 61 39 60 40 40 60 60 40 45 55 66 34 49 26 25 Yes 

72 28 85 15 55 45 45 55 45 55 50 50 71 29 67 20 13 Yes 

20 80 15 85 50 50 41 59 38 62 25 75 16 84 2 14 84 Yes 

98 2 30 70 52 48 48 52 50 50 40 60 61 39 36 44 20 Yes 

30 70 98 2 52 48 48 52 50 50 40 60 61 39 36 44 20 Yes 

50 50 50 50 55 45 56 44 40 60 43 57 52 48 30 29 41 Yes 



 

  

211

Gaze Posture Speech Turn 
OK? 

G T G T G T G T 

65 35 45 55 60 40 67 33 Yes 

35 65 30 70 50 50 30 70 Yes 

75 25 80 20 11 89 59 41 Yes 

80 20 89 11 30 70 78 22 Yes 

95 5 90 10 10 90 77 23 Yes 

50 50 50 50 50 50 50 50 Yes 

50 50 80 20 80 20 82 18 Yes 

20 80 80 20 80 20 68 32 Yes 

10 90 72 28 52 48 39 61 Yes 

25 75 78 22 58 42 57 43 Yes 

34 66 48 52 52 48 40 60 Yes 

10 90 90 10 50 50 50 50 Yes 

30 70 70 30 50 50 50 50 Yes 

45 55 55 45 50 50 50 50 Yes 

5 95 55 45 50 50 25 75 Yes 

12 88 44 56 22 78 14 86 Yes 

12 88 44 56 5 95 9 91 Yes 

95 5 90 10 92 8 97 3 Yes 

40 60 52 48 51 49 46 54 Yes 

88 12 50 50 12 88 50 50 Yes 

50 50 78 22 18 82 47 53 Yes 

50 50 49 51 25 75 34 66 Yes 

62 38 40 60 60 40 57 43 Yes 

55 45 33 67 56 44 46 54 Yes 

35 65 52 48 41 59 37 63 Yes 

Table D.3: Test cases for ‘turn-taking’ Bayesian network 
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OK? 

G T G T G T G T GT TT GT TT U S U S 

74 26 60 40 40 60 40 60 60 40 F T T F 24 76 Yes 

84 16 20 80 80 20 21 79 54 46 F T T F 28 72 Yes 

84 16 50 50 80 20 21 79 70 30 F T T F 18 82 Yes 

60 40 54 46 38 62 50 50 52 48 F T T F 29 71 Yes 

45 55 20 80 38 62 30 70 17 83 T F F T 91 9 Yes 

55 45 20 80 38 62 30 70 21 79 T F F T 89 11 Yes 

50 50 50 50 50 50 50 50 50 50 T F F T 75 25 Yes 

45 55 50 50 38 62 30 70 29 71 T F F T 85 15 Yes 

74 26 55 45 62 38 49 51 72 28 F T T F 17 83 Yes 

91 9 70 30 85 15 70 30 94 6 F T T F 3 97 Yes 

95 5 95 5 20 80 20 80 71 29 F T T F 17 83 Yes 

50 50 10 90 50 50 50 50 27 73 T F F T 86 14 Yes 

50 50 85 15 50 50 50 50 68 32 T F F T 66 34 Yes 

50 50 90 10 50 50 90 10 87 13 T F T F 56 44 Yes 

35 65 50 50 30 70 20 80 17 83 T F F T 91 9 Yes 

35 65 50 50 49 51 49 51 40 60 T F F T 80 20 Yes 

49 51 50 50 49 51 49 51 48 52 T F F T 76 24 Yes 

85 15 84 16 90 10 96 4 98 2 F T T F 1 99 Yes 

10 90 15 85 11 89 30 70 3 97 T F F T 98 2 Yes 

10 90 48 52 11 89 30 70 7 93 T F F T 96 4 Yes 

45 55 48 52 43 57 50 50 42 58 T F F T 79 21 Yes 

55 45 48 52 11 89 50 50 30 70 T F F T 85 15 Yes 

90 10 90 10 40 60 40 60 82 18 F T T F 11 89 Yes 

Table D.4: Test cases for alternative ‘turn-taking’ Bayesian network 
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Speech Intonation Eyebrows Mouth DialogueAct OK? 

G C R A X U R A X U R A X U R A X G C R A X 

12 9 11 68 0 25 25 25 25 36 24 40 0 30 30 35 5 14 12 9 65 0 Yes 

34 63 3 0 0 85 0 10 5 50 22 20 8 25 25 25 25 37 63 0 0 0 Yes 

66 34 0 0 0 85 0 10 5 50 22 20 8 25 25 25 25 64 36 0 0 0 Yes 

85 15 0 0 0 85 0 10 5 50 22 20 8 25 25 25 25 81 19 0 0 0 Yes 

95 5 0 0 0 85 0 10 5 50 22 20 8 25 25 25 25 89 11 0 0 0 Yes 

95 5 0 0 0 90 0 0 10 90 0 0 10 25 25 25 25 90 10 0 0 0 Yes 

0 20 0 80 0 0 0 30 70 0 0 30 70 0 0 50 50 0 0 0 75 25 Yes 

0 20 0 80 0 25 25 25 25 0 0 30 70 0 0 50 50 0 0 0 85 15 Yes 

0 0 0 80 20 0 0 30 70 25 25 25 25 0 0 50 50 0 0 0 60 40 Yes 

0 0 0 80 20 0 0 30 70 25 25 25 25 25 25 25 25 0 0 1 60 39 Yes 

0 0 0 80 20 0 0 90 10 25 25 25 25 25 25 25 25 0 0 0 95 5 Yes 

0 0 0 90 10 0 0 90 10 25 25 25 25 0 0 90 10 0 0 0 99 1 Yes 

0 0 0 90 10 0 0 90 10 25 25 25 25 0 0 10 90 0 0 0 85 15 Yes 

0 0 0 90 10 0 0 25 75 25 25 25 25 0 0 10 90 0 0 0 93 7 Yes 

0 0 0 55 45 0 0 25 75 25 25 25 25 0 0 10 90 0 0 0 7 93 Yes 

20 20 20 20 20 0 0 25 75 25 25 25 25 0 0 10 90 0 0 0 6 94 Yes 

20 20 20 20 20 0 0 25 75 25 25 25 25 0 0 75 25 0 0 0 50 50 Yes 

20 20 20 20 20 0 0 25 75 0 0 75 25 0 0 75 25 0 0 0 72 28 Yes 

0 0 0 60 40 0 0 60 40 0 0 45 55 0 0 46 54 0 0 0 60 40 Yes 

0 0 0 60 40 0 0 80 20 0 0 30 70 0 0 46 54 0 0 0 66 34 Yes 

0 0 0 60 40 0 0 80 20 0 0 30 70 0 0 30 70 0 0 0 51 49 Yes 

0 25 75 0 0 25 75 0 0 0 80 20 0 0 90 10 0 0 0 100 0 0 Yes 

0 25 75 0 0 25 75 0 0 0 30 70 0 0 30 70 0 0 0 97 3 0 Yes 

Table D.5: Test cases for ‘dialogue act recognition’ Bayesian network 
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